JP3561886B2 - Pressure fluctuation adsorption separation method - Google Patents

Pressure fluctuation adsorption separation method Download PDF

Info

Publication number
JP3561886B2
JP3561886B2 JP32645394A JP32645394A JP3561886B2 JP 3561886 B2 JP3561886 B2 JP 3561886B2 JP 32645394 A JP32645394 A JP 32645394A JP 32645394 A JP32645394 A JP 32645394A JP 3561886 B2 JP3561886 B2 JP 3561886B2
Authority
JP
Japan
Prior art keywords
adsorption
gas
cylinder
pressure
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32645394A
Other languages
Japanese (ja)
Other versions
JPH08173746A (en
Inventor
輝二 金子
雅人 川井
伸 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP32645394A priority Critical patent/JP3561886B2/en
Priority to US08/578,224 priority patent/US5704964A/en
Priority to CN95109999A priority patent/CN1091630C/en
Publication of JPH08173746A publication Critical patent/JPH08173746A/en
Priority to CNB011435305A priority patent/CN1200759C/en
Application granted granted Critical
Publication of JP3561886B2 publication Critical patent/JP3561886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、圧力変動吸着分離方法に関し、例えば、空気を原料ガスとして窒素ガスを優先的に吸着する吸着剤を充填した複数の吸着筒を用いて難吸着成分ガスである酸素ガスを製品として分離する圧力変動吸着分離方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
圧力変動吸着分離法(以下、PSA法という)により空気中の窒素と酸素とを分離して酸素を製品として得る方法は、ゼオライトを吸着剤として従来から広く行われている。このPSA法による酸素製造装置(酸素PSA)は、基本的には、前記ゼオライトを充填した複数の吸着筒を、相対的に高い圧力で操作する吸着工程と、相対的に低い圧力で操作する再生工程とに順次切換えることにより、連続的に製品酸素を得るようにしたものであるが、近年は、製品酸素のコストを低減するため、前記両工程の間に均圧工程や再加圧工程を行うようになってきている。また、均圧工程に代えて、いわゆる並流減圧工程を行い、吸着工程を終了した吸着筒内に残留する濃縮された酸素分を製品あるいはパージ用ガスとして利用することも行われている。
【0003】
いずれにしても、装置の小型化や製品酸素のコストを低減させるためには、吸着剤の剤当たりの酸素発生量を多くすることと、製品酸素の回収率を高くして電力原単位を下げることが重要なポイントとなる。
【0004】
例えば、吸着剤の剤当たりの酸素発生量を多くするための一手段として、再生工程において製品ガスの一部により筒内のパージを行い、吸着剤(ゼオライト)からの窒素の脱着を促進することが有効であり、この製品酸素によるパージ操作は、再生方法の違い(常圧再生,真空再生)に拘らず広く採用されている。
【0005】
一方、均圧工程を行うことにより、吸着工程を終了した吸着筒内の酸素分が濃縮されたガスを再生工程を終了した吸着筒内に回収することができるので、酸素の回収率を高めることができるが、従来の均圧法では、酸素分の回収と同時に窒素分が同伴されることを避けることができないため、吸着剤における有効窒素吸着量が少なくなってしまうという不都合があった。
【0006】
すなわち、前述のパージ操作を行うことは、主として吸着剤の剤当たりの酸素発生量を向上させるための操作であり、回収率はあまり変わらない。前述の均圧工程を行うことにより、製品酸素の回収率を上げることができるが、吸着剤の剤当たりの酸素発生量は低下する。このように、製品酸素の回収率を高くすることと、剤当たりの酸素発生量を多くすることとは、二律相反する要求であるため、両者を両立させ得るようなプロセスは行われていなかった。
【0007】
そこで本発明は、難吸着成分である製品ガスの回収率を高くできるとともに、吸着剤の剤当たりの製品ガス発生量も多くすることができる圧力変動吸着分離方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記した目的を達成するため、本発明の圧力変動吸着分離方法は、混合ガス中の易吸着成分ガスを優先的に吸着する吸着剤を充填した複数の吸着筒を、吸着工程と再生工程とに順次切換えることにより、連続的に難吸着成分ガスを製品として分離する圧力変動吸着分離方法において、前記吸着工程を終了した吸着筒と前記再生工程を終了した吸着筒の互いの製品吐出側と原料供給側とをそれぞれ連結し、吸着工程を終了した吸着筒内のガスを再生工程を終了した吸着筒内に回収する均圧操作を行うにあたり、再生工程を終了した吸着筒内の排気操作を継続しながら、原料供給側における回収ガスの流量を徐々に増加させることを特徴とし、さらに、前記均圧操作における原料供給側のガスの回収を、前記吸着筒の排気用配管を用いて行うことを特徴としている。
【0009】
【作 用】
上記構成によれば、均圧操作を行うことにより、高い製品回収率が期待できるとともに、製品吐出側と原料供給側における均圧量を調整することにより、吸着剤の剤当たりの製品ガス発生量を多くすることができる。
【0010】
【実施例】
以下、本発明を、図面を参照しながらさらに詳細に説明する。
図1は、本発明方法を実施するための圧力変動吸着分離装置の一例を示すもので、空気を原料として酸素と窒素を分離し、酸素を製品として採取する酸素PSAに本発明を適用した一実施例を示すものである。
【0011】
まず、装置構成としては、吸着剤として窒素を優先的に吸着するゼオライトを充填した3基の吸着筒A,B,Cを備えた3筒式のPSA装置であって、このPSA装置は、前記3基の吸着筒A,B,Cと、原料である空気を所定圧力に昇圧して前記吸着筒に供給する送風機1と、前記吸着筒内を真空排気する真空ポンプ2と、前記吸着筒から導出された製品酸素を一時貯留する製品貯槽3と、再生工程や加圧工程の際のガス流量を制御する流量制御弁4,5及び製品酸素ガス供給量を制御する流量調節弁6と、各吸着筒を吸着工程,再生工程等に切換えるための多数の自動弁11,12,13,14,15,16(各吸着筒に付随する弁には、それぞれの吸着筒A,B,Cに対応させてa,b,cを付す。)とを備えている。これらの自動弁の内で、各吸着筒A,B,Cと真空ポンプ2とを接続する排気用配管17に設けられる自動弁15a,15b,15cには、その開弁速度を調整可能な弁、例えばスピードコントローラー(動作速度の調節器)を備えた弁が用いられている。
【0012】
上記酸素PSA装置は、上記多数の自動弁を所定の順序で開閉して連続的に酸素ガスを発生するものであり、例えば、図2に示す9工程を繰り返して行うことにより、酸素と窒素を主成分とする混合ガス、例えば空気中の酸素と窒素とを分離して製品酸素を発生させる。
【0013】
以下、本発明の酸素発生方法の第1実施例を、上記酸素PSA装置を用いた図2に示す工程図に基づいて説明する。
まず、工程1は、吸着筒Aが吸着工程に入った段階であり、吸着筒B,Cは、吸着筒Bが吸着工程を終了して筒内に残留する比較的酸素分に富んだガスを、再生工程の中のパージ排気段階を終了した吸着筒Cに供給する均圧工程を行っている段階であり、吸着筒Aで酸素と窒素との分離が行われている。
【0014】
すなわち、送風機1で所定圧力、例えば500mmAq(約800Torr)に昇圧した原料空気が入口弁11aを介して吸着筒Aに導入され、筒内に充填されているゼオライトに空気中の窒素が吸着して酸素と分離し、非吸着成分である酸素が製品酸素として出口弁12aから導出され、製品貯槽3に送られている。
【0015】
また、吸着工程を終了して筒内圧力が500mmAqの吸着筒Bと、パージ排気段階を終了して筒内圧力が200Torrの吸着筒Cとは、それぞれの製品吐出側と原料供給側とが連結され、吸着筒B内のガスが上部及び下部の両方から吸着筒C内に導入される。すなわち、吸着筒Bの上部のガスは均圧弁14bから流出し、流量制御弁5で流量を制御されて吸着筒Cの加圧弁13cから吸着筒Cの上部に導入され、吸着筒Bの下部のガスは排気弁15bから排気用配管17に流出し、吸着筒Cの排気弁15cを経て吸着筒Cの下部に導入される。
【0016】
このとき、吸着筒Cの排気弁15cは、前段階のパージ排気段階から続けて全開状態であるが、吸着筒Bの排気弁15bは、前段階の吸着工程の全閉状態から徐々に開かれて全開状態になる。したがって、筒上部のガスは、流量制御弁5で所定の流量に制御されて移動し、筒下部のガスは、排気弁15bの開速度に合わせて徐々に流量が増加しながら移動する。さらに、真空ポンプ2は前段階から作動中であり、吸着筒Bの下部から排気用配管17を経て吸着筒Cの下部に移動するガスの一部は、真空ポンプ2により排気されている。
【0017】
工程2では、吸着筒Aは、引き続いて加圧された原料空気を筒下部から受け入れ、筒頂部から製品酸素を発生する吸着工程にあり、吸着筒Bは、真空ポンプ2により筒内に残留するガスを排気弁15b,排気用配管17を介して排気する真空再生段階に入り、筒内の吸着剤に吸着していた窒素分が脱着排気される。また、吸着筒Cは酸素加圧段階に入り、排気弁15cが閉じられ、加圧元弁16が開かれることにより、製品貯槽3内の製品酸素ガスの一部が流量制御弁4で流量調節されて加圧弁13cから吸着筒C内に導入される。
【0018】
工程3では、吸着筒Aは引き続いて吸着工程にあり、吸着筒Bは、筒下部からの真空ポンプ2による排気を継続しながら加圧弁13bが開かれ、製品貯槽3内の製品酸素ガスの一部が流量制御弁4及び加圧元弁16を介して筒上部から導入されるパージ排気段階に入る。このように製品吐出側から製品酸素ガスを導入しながら原料供給側から真空排気することにより、単に真空排気のみを行った場合に比べて著しく窒素の脱着が進む。また、吸着筒Cは、工程2から引き続いて製品酸素ガスの一部による酸素加圧段階が行われており、最終的に吸着操作圧力と略同等の500mmAqまで加圧される。
【0019】
工程4では、吸着筒Aが工程1における吸着筒Bと同じガス放出側の均圧工程に、吸着筒Bが工程1における吸着筒Cと同じガス受入れ側の均圧工程に、吸着筒Cが工程1における吸着筒Aと同じ吸着工程になる。以下、工程5では、吸着筒Aが真空再生段階、吸着筒Bが酸素加圧段階になり、工程6では吸着筒Aがパージ排気段階になる。
【0020】
さらに、工程7,8、9では、工程1〜3における吸着筒Aの状態を吸着筒Bが、吸着筒Bの状態を吸着筒Cが、吸着筒Cの状態を吸着筒Aが、それぞれ行い、工程9を終えると工程1に戻る。このように工程1〜9をそれぞれの吸着筒で行い、工程9から工程1に戻って繰り返すことで、吸着工程にある吸着筒から連続的に製品酸素が採取される。
【0021】
上述した方法は、吸着工程を終了した吸着筒内に存在する比較的酸素分に富んだガスを、再生工程(パージ排気段階)を終了した吸着筒内に回収する均圧工程を行うことにより、製品回収率の向上が図れるとともに、該均圧工程における均圧量を調整することにより、吸着剤の剤当たりの製品ガス発生量も多くすることができる。さらに、均圧工程中にも排気操作を行うことにより、真空ポンプの遊び時間を解消することができる。
【0022】
但し、上記均圧工程における原料供給側(入口側)の均圧ガスの移動において、単純に排気弁を開いてガスの移動を開始すると、ガス放出側の吸着筒からガス受入側の吸着筒に向かって極めて大きな流速でガスの移動が行われるため、吸着成分である窒素がガス受入側吸着筒の上部まで貫流して性能を低下させたり、吸着剤を吹き上げて吸着剤の粉化を招いたりすることがある。同様に、製品吐出側における均圧操作においても、ガス受入側吸着筒への窒素ガスの流入等の問題がある。
【0023】
一方、上記問題を回避するために均圧ガスの流入量を制限し過ぎると、定められた均圧工程時間内に十分なガス回収を行うことができず、期待する製品回収率を達成できないことになる。このように、均圧工程におけるガス回収は多すぎても、少なすぎても装置の性能に大きな影響を与える。
【0024】
また、吸着筒の上下で同時に均圧操作を行う場合は、上下の均圧ガス(回収ガス)のバランスも考慮する必要があるが、上部均圧におけるガスの回収量は、全回収ガス量の1/2〜3/4の範囲が好ましく、特に、約3/5とすることが最も好ましい。逆に、下部均圧におけるガスの回収量は、全回収ガス量の1/4〜1/2の範囲が好ましく、特に、約2/5とすることが最も好ましい。
【0025】
なお、ここでは、回収ガスの割合を量的な割合で表しているが、実際の調整操作においては、吸着筒内の圧力変化によってこの割合を知ることができる。例えば、800Torrで吸着工程を終了した筒と、200Torrで再生工程を終了した筒とを連結して均圧操作を行った場合、均圧を最大に行えば、500Torrで両筒は同圧になる。実際は、吸着剤の吸着等温線の曲線性が関係するので、500Torrよりは低くなる。また、意識的に同圧になる前に均圧操作を停止することもある。
【0026】
この場合、300Torr分の圧力が回収されたことになるが、この内3/5、すなわち180Torr分を上部均圧により回収し、120Torr分を下部均圧により回収することが好ましい。このような回収ガス量の配分は、上部均圧においては配管途中に設けた流量制御弁5で流量を略一定に保つことにより行い、下部均圧においては、自動弁の開速度を調節して流量を徐々に増加させることにより行うことが好ましい。
【0027】
なお、自動弁の開速度の調節は、例えば、自動弁の開閉操作用に供給される計装空気系統にスピードコントローラーを設け、自動弁の開方向への動作を遅くすることにより行うことができる。
【0028】
図3及び図4は、上部均圧及び下部均圧におけるそれぞれの弁開度とガスの流量の関係を示すもので、図4の流量は、工程1においてガス放出側となる吸着筒Bから流出するガスの流量(図1のX点)と、ガス受入側となる吸着筒Cに流入する側の流量(図1のY点)とを表している。
【0029】
図3に示す上部均圧においては、吸着筒Bの均圧弁14bは均圧工程の開始と同時に全開状態になるが(吸着筒Cの加圧弁13cは前工程からすでに全開)、ガスの流量は、流量制御弁5で制御された流量になる。
【0030】
一方、図4に示す下部均圧においては、吸着筒Bの排気弁15bは均圧工程の開始から終了するまでの間に徐々に全開となる。この排気弁15bの開動作は、均圧工程時間の全てを使って全開になるように設定することが特に好ましいが、全開になるまでの時間が均圧工程時間の80%になるように設定することが好ましい。ガスの流量は、排気弁15bの開動作に伴って増加するが、このとき、真空ポンプ2が作動しており、吸着筒Bから流出したガスの一部が真空ポンプ2から排気されるため、吸着筒Cに流入するガス量は、その分少なくなる。
【0031】
そして、図3及び図4に斜線入りで示した部分の面積、すなわちガス量が上述の配分になるように、流量制御弁5及び排気弁15a,15b,15cで調節する。または、弁14a,14b,14cに流量調節機構を持たせて、これで調節する。
【0032】
このように、吸着筒の上下で同時に均圧を行うにあたり、下部均圧のガス流量を上記のように徐々に増加させるとともに、真空排気を同時に行うことにより、ガス放出側からガス受入側に急激にガスが流入すること防止でき、しかも、余分な窒素(易吸着成分)がガス受入側に流入することもなくなるので、酸素回収率及び剤当たりの酸素発生量を向上させることができる。
【0033】
なお、本実施例では、下部均圧を排気用配管17を利用して行うことにより設備を簡略化しているが、別に下部均圧用の配管及び弁を設けてもよく、流量制御も専用の弁で行うようにしてもよい。さらに、用いる吸着筒の数は3筒に限られるものではなく、2筒式あるいは4筒以上の吸着筒を用いる装置にも適用できる。また、酸素PSAにおいて使用する吸着剤としては、酸素に比べて窒素を優先的に多量に吸着するゼオライト、例えば、いわゆるMS−5A,MS−10X,MS−13X,モルデナイト,その他、窒素を十分な吸着速度で吸着できる細孔径を持つようにゼオライト中の金属をイオン交換したゼオライト等を用いることができ、酸素と窒素を主成分とする混合ガスとしては、空気に限らず、任意の組成の混合ガスを用いることができる。
【0034】
また、本発明は、吸着剤を適当に選定することにより、各種の易吸着成分ガスと難吸着成分ガスとを分離する装置に適用することが可能である。
【0035】
次に、前記構成の装置を使用して、本発明により下部均圧の流量調節を行った場合(実験1)と、行わなかった場合(実験2)とにおける酸素発生量と酸素回収率とを測定した実験結果を説明する。
【0036】
吸着筒は、内径155mm×高さ1.6mであり、吸着剤には、モレキュラーシーブス5Aの1.6mm径ペレットを用いた。運転条件としては、吸着圧力を500mmAq、真空再生圧力を200Torrとした。また、サイクルタイムは60秒とし、均圧工程時間は5秒とした。実験結果を下記に示す。なお、得られた製品酸素の濃度は、両者とも93%であった。
【0037】

Figure 0003561886
【0038】
【発明の効果】
以上説明したように、本発明の圧力変動吸着分離方法は、吸着工程を終了した吸着筒と再生工程を終了した吸着筒の互いの製品吐出側と原料供給側とをそれぞれ連結し、吸着工程を終了した吸着筒内のガスを再生工程を終了した吸着筒内に回収する均圧操作を行うにあたり、再生工程を終了した吸着筒内の排気操作を継続しながら、原料供給側における回収ガスの流量を徐々に増加させるようにしたので、ガス放出側からガス受入側に急激にガスが流入すること防止でき、しかも、余分な易吸着成分がガス受入側に流入することもなくなるので、製品回収率及び剤当たりの製品発生量を向上させることができる。
【図面の簡単な説明】
【図1】本発明方法を実施するための圧力変動吸着分離装置の一例を示す系統図である。
【図2】図1の装置を用いて本発明を実施する際の一実施例を示す工程図である。
【図3】上部均圧における弁開度とガスの流量の関係を示す図である。
【図4】下部均圧における弁開度とガスの流量の関係を示す図である。
【符号の説明】
A,B,C…吸着筒、1…送風機、2…真空ポンプ、3…製品貯槽、4,5,6…流量制御弁、17…排気用配管[0001]
[Industrial applications]
The present invention relates to a pressure fluctuation adsorption separation method, for example, using a plurality of adsorption cylinders filled with an adsorbent that preferentially adsorbs nitrogen gas using air as a raw material gas, and separates oxygen gas, which is a hardly adsorbable component gas, as a product. Pressure fluctuation adsorption separation method.
[0002]
Problems to be solved by the prior art and the invention
2. Description of the Related Art A method of separating nitrogen and oxygen in air to obtain oxygen as a product by a pressure fluctuation adsorption separation method (hereinafter, referred to as a PSA method) has been widely used conventionally using zeolite as an adsorbent. The oxygen production apparatus (oxygen PSA) using the PSA method basically includes an adsorption step of operating a plurality of adsorption columns filled with the zeolite at a relatively high pressure and a regeneration step of operating a plurality of adsorption columns at a relatively low pressure. By sequentially switching to the process, the product oxygen is continuously obtained, but in recent years, in order to reduce the cost of the product oxygen, a pressure equalizing step or a repressurizing step is performed between the two steps. I am starting to do it. Further, instead of the equalizing step, a so-called co-current depressurizing step is performed, and concentrated oxygen remaining in the adsorption column after the adsorption step is used as a product or a purge gas.
[0003]
In any case, in order to reduce the size of the equipment and reduce the cost of product oxygen, increase the amount of oxygen generated per agent of the adsorbent and increase the product oxygen recovery rate to reduce the power consumption unit This is an important point.
[0004]
For example, as a means for increasing the amount of oxygen generated per adsorbent, purging the inside of the cylinder with a part of the product gas in the regeneration process to promote the desorption of nitrogen from the adsorbent (zeolite) This purge operation using product oxygen is widely used regardless of the difference in the regeneration method (normal pressure regeneration, vacuum regeneration).
[0005]
On the other hand, by performing the pressure equalizing step, it is possible to recover the gas in which the oxygen content in the adsorption cylinder after the adsorption step has been concentrated into the adsorption cylinder after the regeneration step, thereby increasing the oxygen recovery rate. However, in the conventional pressure equalization method, it is unavoidable that the nitrogen content is entrained at the same time as the recovery of the oxygen content, so that there is a disadvantage that the effective nitrogen adsorption amount in the adsorbent decreases.
[0006]
That is, performing the above-described purging operation is mainly an operation for improving the amount of oxygen generated per agent of the adsorbent, and the recovery rate does not change much. By performing the above-mentioned equalizing step, the recovery rate of product oxygen can be increased, but the amount of oxygen generated per adsorbent decreases. As described above, increasing the recovery rate of product oxygen and increasing the amount of oxygen generated per agent are two conflicting requirements, and no processes have been carried out to achieve both. Was.
[0007]
Accordingly, an object of the present invention is to provide a pressure-fluctuation adsorption separation method capable of increasing the recovery rate of a product gas, which is a hardly adsorbable component, and increasing the amount of product gas generated per agent of an adsorbent.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the pressure fluctuation adsorption separation method of the present invention comprises a plurality of adsorption cylinders filled with an adsorbent that preferentially adsorbs easily adsorbable component gases in a mixed gas, in an adsorption step and a regeneration step. In the pressure-fluctuation adsorption separation method of continuously separating the hardly adsorbable component gas as a product by successively switching, in the pressure fluctuation adsorption separation method, the product discharge side and the raw material supply of the adsorption cylinder after the adsorption step and the adsorption cylinder after the regeneration step are completed. When the pressure equalization operation is performed to connect the respective sides to each other and recover the gas in the adsorption cylinder after the adsorption process into the adsorption cylinder after the regeneration step, the exhaust operation in the adsorption cylinder after the regeneration step is continued. While gradually increasing the flow rate of the recovered gas on the raw material supply side, and further performing the recovery of the raw material supply side gas in the equalizing operation using the exhaust pipe of the adsorption column. It is characterized.
[0009]
[Operation]
According to the above configuration, by performing the equalizing operation, a high product recovery rate can be expected, and by adjusting the equalizing amount on the product discharge side and the raw material supply side, the amount of product gas generated per agent of the adsorbent is adjusted. Can be more.
[0010]
【Example】
Hereinafter, the present invention will be described in more detail with reference to the drawings.
FIG. 1 shows an example of a pressure fluctuation adsorption separation apparatus for carrying out the method of the present invention, in which the present invention is applied to an oxygen PSA that separates oxygen and nitrogen using air as a raw material and collects oxygen as a product. It shows an embodiment.
[0011]
First, the apparatus configuration is a three-tube PSA device including three adsorption columns A, B, and C filled with zeolite that preferentially adsorbs nitrogen as an adsorbent. Three adsorption cylinders A, B and C, a blower 1 for increasing the pressure of air as a raw material to a predetermined pressure and supplying the air to the adsorption cylinder, a vacuum pump 2 for evacuating the interior of the adsorption cylinder, and A product storage tank 3 for temporarily storing the derived product oxygen, flow rate control valves 4 and 5 for controlling a gas flow rate in a regeneration step or a pressurization step, and a flow rate control valve 6 for controlling a product oxygen gas supply amount; A number of automatic valves 11, 12, 13, 14, 15, 16 for switching the adsorption cylinder to the adsorption step, the regeneration step, etc. (the valves associated with each adsorption cylinder correspond to the respective adsorption cylinders A, B, C) A, b, and c). Among these automatic valves, some of the automatic valves 15a, 15b, and 15c provided in the exhaust pipe 17 that connects each of the adsorption tubes A, B, and C to the vacuum pump 2 are valves whose opening speed can be adjusted. For example, a valve provided with a speed controller (operating speed regulator) is used.
[0012]
The oxygen PSA apparatus opens and closes the plurality of automatic valves in a predetermined order to continuously generate oxygen gas. For example, by repeating the nine steps shown in FIG. A product gas is generated by separating a mixed gas as a main component, for example, oxygen and nitrogen in the air.
[0013]
Hereinafter, a first embodiment of the oxygen generating method of the present invention will be described with reference to a process chart shown in FIG. 2 using the above-described oxygen PSA apparatus.
First, step 1 is a stage in which the adsorption cylinder A has entered the adsorption step, and the adsorption cylinders B and C remove the relatively oxygen-rich gas remaining in the adsorption cylinder B after the adsorption cylinder B completes the adsorption step. This is a stage in which a pressure equalizing process of supplying the adsorbent C that has completed the purge evacuation stage in the regeneration process is being performed, and oxygen and nitrogen are being separated in the adsorbent A.
[0014]
That is, the raw material air pressurized by the blower 1 to a predetermined pressure, for example, 500 mmAq (about 800 Torr) is introduced into the adsorption column A through the inlet valve 11a, and the zeolite filled in the column adsorbs nitrogen in the air. Oxygen that is separated from oxygen and is a non-adsorbed component is led out from the outlet valve 12a as product oxygen and sent to the product storage tank 3.
[0015]
Further, the adsorption cylinder B having an in-cylinder pressure of 500 mmAq after completion of the adsorption process, and the adsorption cylinder C having an in-cylinder pressure of 200 Torr after completing the purging and evacuation step are connected to the respective product discharge side and raw material supply side. Then, the gas in the adsorption cylinder B is introduced into the adsorption cylinder C from both the upper part and the lower part. That is, the gas in the upper part of the adsorption cylinder B flows out of the equalizing valve 14b, the flow rate is controlled by the flow control valve 5, and is introduced into the upper part of the adsorption cylinder C from the pressurizing valve 13c of the adsorption cylinder C. The gas flows from the exhaust valve 15b to the exhaust pipe 17, and is introduced into the lower part of the adsorption cylinder C via the exhaust valve 15c of the adsorption cylinder C.
[0016]
At this time, the exhaust valve 15c of the adsorption cylinder C is fully opened continuously from the purge exhaust stage of the previous stage, but the exhaust valve 15b of the adsorption cylinder B is gradually opened from the fully closed state of the adsorption process of the previous stage. To be fully open. Therefore, the gas in the upper part of the cylinder moves while being controlled to a predetermined flow rate by the flow control valve 5, and the gas in the lower part of the cylinder moves while the flow rate gradually increases in accordance with the opening speed of the exhaust valve 15b. Further, the vacuum pump 2 is operating from the previous stage, and a part of the gas moving from the lower part of the adsorption cylinder B to the lower part of the adsorption cylinder C via the exhaust pipe 17 is exhausted by the vacuum pump 2.
[0017]
In the step 2, the adsorption cylinder A is in an adsorption step of continuously receiving pressurized raw material air from the lower part of the cylinder and generating product oxygen from the cylinder top, and the adsorption cylinder B remains in the cylinder by the vacuum pump 2. The process enters a vacuum regeneration stage in which gas is exhausted through the exhaust valve 15b and the exhaust pipe 17, and nitrogen adsorbed on the adsorbent in the cylinder is desorbed and exhausted. Further, the adsorption cylinder C enters the oxygen pressurization stage, and the exhaust valve 15c is closed and the pressurization source valve 16 is opened, so that a part of the product oxygen gas in the product storage tank 3 is flow-controlled by the flow control valve 4. Then, it is introduced into the adsorption column C from the pressure valve 13c.
[0018]
In step 3, the adsorption cylinder A is in the adsorption step, and in the adsorption cylinder B, the pressurizing valve 13b is opened while continuing the evacuation of the vacuum pump 2 from the lower part of the cylinder, and one of the product oxygen gas in the product storage tank 3 is opened. The section enters a purge exhaust stage where it is introduced from the top of the cylinder via the flow control valve 4 and the pressure source valve 16. By evacuating the raw material supply side while introducing the product oxygen gas from the product discharge side in this way, the desorption of nitrogen proceeds remarkably as compared with the case where only the vacuum exhaustion is performed. Further, the adsorption cylinder C is subjected to an oxygen pressurization step by a part of the product oxygen gas subsequent to the step 2, and is finally pressurized to 500 mmAq substantially equal to the adsorption operation pressure.
[0019]
In step 4, the adsorption cylinder A performs the same pressure equalizing step on the same gas discharge side as the adsorption cylinder B in step 1, the adsorption cylinder B performs the same gas receiving side as the adsorption cylinder C in step 1, and the adsorption cylinder C performs the same. This is the same adsorption step as that of the adsorption column A in step 1. Hereinafter, in step 5, the adsorption cylinder A is in the vacuum regeneration stage, and the adsorption cylinder B is in the oxygen pressurization stage. In step 6, the adsorption cylinder A is in the purge exhaust stage.
[0020]
Further, in Steps 7, 8, and 9, the state of the adsorption cylinder A in Steps 1 to 3 is performed by the adsorption cylinder B, the state of the adsorption cylinder B is performed by the adsorption cylinder C, and the state of the adsorption cylinder C is performed by the adsorption cylinder A. After step 9, the process returns to step 1. As described above, Steps 1 to 9 are performed in each adsorption column, and the process is returned from Step 9 to Step 1 and repeated, whereby product oxygen is continuously collected from the adsorption column in the adsorption step.
[0021]
The above-described method performs a pressure equalization step of recovering a relatively rich gas present in the adsorption cylinder after the adsorption step into the adsorption cylinder after the regeneration step (purge exhaust step). The product recovery rate can be improved, and the amount of product gas generated per agent of the adsorbent can be increased by adjusting the equalizing amount in the equalizing step. Further, by performing the evacuation operation even during the pressure equalization step, the idle time of the vacuum pump can be eliminated.
[0022]
However, in the movement of the pressure-equalizing gas on the raw material supply side (inlet side) in the above-mentioned pressure equalization step, simply opening the exhaust valve and starting the movement of the gas causes the adsorption cylinder on the gas release side to move to the adsorption cylinder on the gas receiving side. Since the gas moves at an extremely high flow velocity toward the gas, nitrogen, which is an adsorbing component, flows to the upper part of the adsorption column on the gas receiving side to deteriorate the performance, or the adsorbent is blown up to cause powdering of the adsorbent. Sometimes. Similarly, in the pressure equalizing operation on the product discharge side, there is a problem such as a flow of nitrogen gas into the gas receiving side adsorption column.
[0023]
On the other hand, if the flow rate of the equalizing gas is excessively limited in order to avoid the above problem, sufficient gas cannot be collected within the specified equalizing step time, and the expected product recovery rate cannot be achieved. become. Thus, too much or too little gas recovery in the pressure equalization step has a significant effect on the performance of the device.
[0024]
When the pressure equalizing operation is performed simultaneously on the upper and lower sides of the adsorption column, it is necessary to consider the balance between the upper and lower pressure equalized gases (recovered gas). The range is preferably 1/2 to 3/4, and most preferably about 3/5. Conversely, the amount of gas recovered at the lower pressure equalization is preferably in the range of 1/4 to 1/2 of the total recovered gas amount, and most preferably about 2/5.
[0025]
Note that, here, the ratio of the recovered gas is represented by a quantitative ratio, but in an actual adjustment operation, this ratio can be known from a pressure change in the adsorption cylinder. For example, when the equalizing operation is performed by connecting the cylinder that has completed the adsorption process at 800 Torr and the cylinder that has completed the regeneration process at 200 Torr, if the equalizing pressure is maximized, both cylinders have the same pressure at 500 Torr. . Actually, the curve is lower than 500 Torr because the curve of the adsorption isotherm of the adsorbent is involved. Further, the equalizing operation may be stopped before the pressure is consciously increased.
[0026]
In this case, the pressure of 300 Torr is recovered, and it is preferable that 3/5, that is, 180 Torr is recovered by the upper pressure equalization and 120 Torr is recovered by the lower pressure equalization. Such distribution of the recovered gas amount is performed by maintaining the flow rate substantially constant by the flow control valve 5 provided in the middle of the pipe in the upper pressure equalization, and adjusting the opening speed of the automatic valve in the lower pressure equalization. It is preferred to do so by gradually increasing the flow rate.
[0027]
Adjustment of the opening speed of the automatic valve can be performed by, for example, providing a speed controller in an instrumentation air system supplied for opening and closing the automatic valve and delaying the operation of the automatic valve in the opening direction. .
[0028]
3 and 4 show the relationship between the valve opening and the gas flow rate at the upper and lower pressure equalizations, respectively. The flow rate in FIG. The flow rate (point X in FIG. 1) of the flowing gas and the flow rate (point Y in FIG. 1) on the side that flows into the adsorption column C on the gas receiving side are shown.
[0029]
In the upper pressure equalization shown in FIG. 3, the pressure equalizing valve 14b of the adsorption cylinder B is fully opened at the same time as the start of the pressure equalization step (the pressure valve 13c of the adsorption cylinder C is already fully opened from the previous step). The flow rate is controlled by the flow control valve 5.
[0030]
On the other hand, in the lower pressure equalization shown in FIG. 4, the exhaust valve 15b of the adsorption cylinder B gradually opens fully from the start to the end of the pressure equalization process. It is particularly preferable to set the opening operation of the exhaust valve 15b so that the exhaust valve 15b is fully opened by using all of the equalizing process time. However, the opening time until the exhaust valve 15b is fully opened is set to be 80% of the equalizing process time. Is preferred. The flow rate of the gas increases with the opening operation of the exhaust valve 15b. At this time, since the vacuum pump 2 is operating and a part of the gas flowing out of the adsorption column B is exhausted from the vacuum pump 2, The amount of gas flowing into the adsorption cylinder C decreases accordingly.
[0031]
Then, the flow control valve 5 and the exhaust valves 15a, 15b, 15c are adjusted so that the area of the hatched portion in FIGS. 3 and 4, that is, the gas amount is distributed as described above. Alternatively, the valves 14a, 14b, and 14c are provided with a flow rate adjusting mechanism, and the adjustment is performed by this.
[0032]
As described above, when equalizing the pressure at the upper and lower sides of the adsorption cylinder at the same time, the gas flow rate of the lower equalizing pressure is gradually increased as described above, and the evacuation is performed at the same time, so that the gas is suddenly moved from the gas discharging side to the gas receiving side. The gas can be prevented from flowing into the gas receiving portion, and the excess nitrogen (easy adsorbable component) does not flow into the gas receiving side, so that the oxygen recovery rate and the amount of oxygen generated per agent can be improved.
[0033]
In this embodiment, the lower pressure equalization is performed by using the exhaust pipe 17 to simplify the equipment. However, a lower pressure equalization pipe and a valve may be separately provided, and the flow rate control is also performed by a dedicated valve. May be performed. Further, the number of suction cylinders used is not limited to three, and the present invention can be applied to an apparatus using two or four or more suction cylinders. As the adsorbent used in the oxygen PSA, a zeolite that preferentially adsorbs a large amount of nitrogen as compared with oxygen, for example, so-called MS-5A, MS-10X, MS-13X, mordenite, and other nitrogen-sufficient materials can be used. It is possible to use zeolite or the like obtained by ion-exchanging metals in zeolite so as to have a pore diameter that can be adsorbed at the adsorption speed. The mixed gas containing oxygen and nitrogen as main components is not limited to air, but can be any mixture of any composition. Gas can be used.
[0034]
Further, the present invention can be applied to an apparatus for separating various easily adsorbable component gases and hardly adsorbable component gases by appropriately selecting an adsorbent.
[0035]
Next, using the apparatus having the above-described configuration, the amount of generated oxygen and the oxygen recovery rate in the case where the flow rate of the lower equalization was adjusted according to the present invention (Experiment 1) and in the case where the flow rate was not adjusted (Experiment 2) are described. The measured experimental results will be described.
[0036]
The adsorption cylinder had an inner diameter of 155 mm and a height of 1.6 m, and a 1.6 mm diameter pellet of Molecular Sieves 5A was used as the adsorbent. The operating conditions were an adsorption pressure of 500 mmAq and a vacuum regeneration pressure of 200 Torr. The cycle time was 60 seconds, and the pressure equalizing step time was 5 seconds. The experimental results are shown below. The obtained product oxygen concentration was 93% in both cases.
[0037]
Figure 0003561886
[0038]
【The invention's effect】
As described above, the pressure fluctuation adsorption separation method of the present invention connects the respective product discharge side and raw material supply side of the adsorption cylinder after the adsorption step and the adsorption cylinder after the regeneration step, and performs the adsorption step. In performing the pressure equalizing operation of recovering the gas in the adsorption cylinder that has been completed into the adsorption cylinder that has completed the regeneration process, the flow rate of the collected gas on the raw material supply side is maintained while continuing the exhaust operation in the adsorption cylinder that has completed the regeneration process. , So that the gas can be prevented from suddenly flowing into the gas receiving side from the gas discharging side, and the excess easily adsorbed components do not flow into the gas receiving side. In addition, the amount of product generated per agent can be improved.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an example of a pressure fluctuation adsorption / separation apparatus for carrying out the method of the present invention.
FIG. 2 is a process chart showing one embodiment when carrying out the present invention using the apparatus of FIG.
FIG. 3 is a diagram showing a relationship between a valve opening degree and a gas flow rate at an upper pressure equalization.
FIG. 4 is a diagram showing a relationship between a valve opening and a gas flow rate at a lower pressure equalization.
[Explanation of symbols]
A, B, C: adsorption cylinder, 1: blower, 2: vacuum pump, 3: product storage tank, 4, 5, 6 ... flow control valve, 17: exhaust pipe

Claims (2)

混合ガス中の易吸着成分ガスを優先的に吸着する吸着剤を充填した複数の吸着筒を、吸着工程と再生工程とに順次切換えることにより、連続的に難吸着成分ガスを製品として分離する圧力変動吸着分離方法において、前記吸着工程を終了した吸着筒と前記再生工程を終了した吸着筒の互いの製品吐出側と原料供給側とをそれぞれ連結し、吸着工程を終了した吸着筒内のガスを再生工程を終了した吸着筒内に回収する均圧操作を行うにあたり、再生工程を終了した吸着筒内の排気操作を継続しながら、原料供給側における回収ガスの流量を徐々に増加させることを特徴とする圧力変動吸着分離方法。Pressure for continuously separating hardly adsorbable component gas as a product by sequentially switching a plurality of adsorption columns filled with an adsorbent that preferentially adsorbs easily adsorbable component gas in the mixed gas to the adsorption process and the regeneration process In the variable adsorption separation method, the product discharge side and the raw material supply side of the adsorption cylinder after the adsorption step and the adsorption cylinder after the regeneration step are connected to each other, and the gas in the adsorption cylinder after the adsorption step is separated. In performing the pressure equalizing operation for collecting the gas in the adsorption cylinder after the regeneration step, the flow rate of the recovered gas on the raw material supply side is gradually increased while continuing the exhaust operation in the adsorption cylinder after the regeneration step. Pressure fluctuation adsorption separation method. 前記均圧操作における原料供給側のガスの回収は、前記吸着筒の排気用配管を用いて行うことを特徴とする請求項1記載の圧力変動吸着分離方法。The pressure fluctuation adsorption separation method according to claim 1, wherein the gas recovery on the raw material supply side in the equalizing operation is performed using an exhaust pipe of the adsorption column.
JP32645394A 1994-12-27 1994-12-27 Pressure fluctuation adsorption separation method Expired - Fee Related JP3561886B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP32645394A JP3561886B2 (en) 1994-12-27 1994-12-27 Pressure fluctuation adsorption separation method
US08/578,224 US5704964A (en) 1994-12-27 1995-12-26 Pressure swing adsorption process
CN95109999A CN1091630C (en) 1994-12-27 1995-12-27 Pressure swing adsorptions eparating method
CNB011435305A CN1200759C (en) 1994-12-27 2001-12-07 Pressure variation adsorption separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32645394A JP3561886B2 (en) 1994-12-27 1994-12-27 Pressure fluctuation adsorption separation method

Publications (2)

Publication Number Publication Date
JPH08173746A JPH08173746A (en) 1996-07-09
JP3561886B2 true JP3561886B2 (en) 2004-09-02

Family

ID=18187987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32645394A Expired - Fee Related JP3561886B2 (en) 1994-12-27 1994-12-27 Pressure fluctuation adsorption separation method

Country Status (1)

Country Link
JP (1) JP3561886B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5537208B2 (en) * 2010-03-24 2014-07-02 大阪瓦斯株式会社 Flammable gas concentration method

Also Published As

Publication number Publication date
JPH08173746A (en) 1996-07-09

Similar Documents

Publication Publication Date Title
JP3232003B2 (en) Reflux in pressure swing adsorption method
US4070164A (en) Adsorption-desorption pressure swing gas separation
JP3492869B2 (en) Single bed pressure swing adsorption method for oxygen recovery from air
JP2744596B2 (en) Method for selectively separating relatively strong adsorbent components from relatively weak adsorbent components of feed gas mixture
KR100254295B1 (en) Pressure swing adsorption process with a single adsorbent bed
KR930012040B1 (en) Pressure swing adsorption for dividing gas mixtures
CA2162346C (en) Pressure swing adsorption process
EP1371407A2 (en) Vacuum swing adsorption process with controlled waste gas withdrawal
JP3310249B2 (en) Oxygen production method and apparatus using one adsorber and one blower
EP1018359A2 (en) Pressure swing adsorption process and system with product storage tank(s)
US5906674A (en) Process and apparatus for separating gas mixtures
JP3073917B2 (en) Simultaneous pressure change adsorption method
JPH0244569B2 (en)
JP2002191925A (en) Pressure swing adsorption method for separating feed gas
US6045603A (en) Two phase pressure swing adsorption process
JP3050881B2 (en) How to separate oxygen from air
EP1175934A2 (en) Improved oxygen production
JPH01104325A (en) Adsorption molecular sieve for pressure swing of auxiliary bed
JPH07745A (en) Gas separation
JPH0239294B2 (en)
JPH0577604B2 (en)
JP2005504626A (en) PSA process for co-production of nitrogen and oxygen
JPS5946651B2 (en) How to separate gas mixtures
GB2109266A (en) Pressure swing process for the separation of gas mixtures by adsorption
JP3654658B2 (en) Pressure fluctuation adsorption type oxygen production method and apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040521

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees