JPH0312307A - Method for enriching oxygen - Google Patents

Method for enriching oxygen

Info

Publication number
JPH0312307A
JPH0312307A JP1145686A JP14568689A JPH0312307A JP H0312307 A JPH0312307 A JP H0312307A JP 1145686 A JP1145686 A JP 1145686A JP 14568689 A JP14568689 A JP 14568689A JP H0312307 A JPH0312307 A JP H0312307A
Authority
JP
Japan
Prior art keywords
oxygen
gas
membrane
separation device
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1145686A
Other languages
Japanese (ja)
Inventor
Minoru Morita
稔 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP1145686A priority Critical patent/JPH0312307A/en
Publication of JPH0312307A publication Critical patent/JPH0312307A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To easily obtain an oxygen-enriched gas having low contents of gaseous carbon dioxide and moisture and contg. >=40% oxygen by using a waste cleaning gas discharged from a pressure swing adsorption separator for recovering nitrogen from air using zeolite as the adsorbent as the raw gas for a membrane separator. CONSTITUTION:The following constitution is used in this method for enriching oxygen in air with air as the raw material. The membrane separator 30 provided with an oxygen enriching membrane 31 is arranged in the succeeding stage of the pressure swing adsorption separator 10 (e.g. adsorption towers 11a-11c) for recovering nitrogen PN from raw air GA using natural or synthetic zeolite as the adsorbent. The waste cleaning gas WG discharged from the separator 10 is compressed 37 to a specified pressure and supplied to the membrane separator 30. The waste gas MG discharged from the membrane separator 30 is preferably used as the gas for regenerating an adsorption tower (for removing H2O and CO2) of the device 12 for pretreating the raw gas GA to be supplied to the separator 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸素の濃縮方法に関し、詳しくは、膜分離装
置を用いて酸素濃度40%以上の酸素富化ガスを製造す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for concentrating oxygen, and more particularly to a method for producing oxygen-enriched gas with an oxygen concentration of 40% or more using a membrane separation device.

〔従来の技術〕[Conventional technology]

従来から、空気を膜分離装置に導入して酸素を濃縮する
ことが行われているが、通常の1段の膜分離では、40
%以上の酸素濃度を得ることが困難なため、膜分離装置
を2段以上直列に配置して酸素を濃縮する必要があった
Conventionally, air is introduced into a membrane separation device to concentrate oxygen, but in normal one-stage membrane separation, 40
Since it is difficult to obtain an oxygen concentration of more than %, it has been necessary to arrange two or more membrane separators in series to concentrate oxygen.

また、天然または合成ゼオライトを吸着剤として用いて
空気から窒素を得る圧力変動吸着分離装置から排出され
る排ガスは、該排ガス中に酸素が濃縮されているにも拘
らず、従来、そのまま放出排ガスとされていた。
In addition, the exhaust gas discharged from a pressure fluctuation adsorption separation device that uses natural or synthetic zeolite as an adsorbent to obtain nitrogen from air has conventionally been treated as discharged exhaust gas as it is, even though oxygen is concentrated in the exhaust gas. It had been.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記天然または合成ゼオライトを吸着剤
として用いて窒素を得る圧力変動吸着分離装置から排出
される排ガスは、酸素が濃縮されている上、炭酸ガスや
水分をほとんど含んでいない。従って、この排ガスを原
料として膜分離を行うと膜分離装置による酸素濃縮工程
が極めてスム−スに行なわれるばかりでなく、膜分離装
置から得られる酸素富化ガス中に炭酸ガスや水分を、殆
ど含んでいないため酸素富化ガスの使用目的によっては
非常に好ましい。
However, the exhaust gas discharged from a pressure fluctuation adsorptive separation device for obtaining nitrogen using the natural or synthetic zeolite as an adsorbent is enriched in oxygen and contains almost no carbon dioxide or water. Therefore, if membrane separation is performed using this exhaust gas as a raw material, not only will the oxygen concentration process by the membrane separator be performed extremely smoothly, but also carbon dioxide and moisture will be almost completely removed from the oxygen-enriched gas obtained from the membrane separator. Since it does not contain oxygen, it is very preferable depending on the intended use of the oxygen-enriched gas.

そこで、本発明は、炭酸ガスや水分の含有量が少なく、
酸素濃度が40%以上の酸素富化ガスを容易に得ること
のできる酸素の濃縮方法を提供することを目的としてい
る。
Therefore, the present invention has a low content of carbon dioxide gas and water, and
It is an object of the present invention to provide a method for concentrating oxygen that can easily obtain an oxygen-enriched gas having an oxygen concentration of 40% or more.

〔課題を解決するための手段〕[Means to solve the problem]

上記した目的を達成するために、本発明の酸素の濃縮方
法は、空気を原料として該空気中の酸素を濃縮する方法
において、天然又は合成ゼオライトを吸着剤に使用して
原料空気から窒素を回収する圧力変動吸着分離装置の後
段に酸素富化膜を設けた膜分離装置を配設し、前記圧力
変動吸着分離装置から排出される洗浄排ガスを所定圧力
に昇圧して前記膜分離装置に供給することを特徴として
いる。
In order to achieve the above object, the oxygen concentration method of the present invention uses natural or synthetic zeolite as an adsorbent to recover nitrogen from the raw air in a method of concentrating oxygen in the air using air as a raw material. A membrane separator equipped with an oxygen enrichment membrane is disposed downstream of the pressure fluctuation adsorption separation device, and the washed exhaust gas discharged from the pressure fluctuation adsorption separation device is pressurized to a predetermined pressure and supplied to the membrane separation device. It is characterized by

さらに本発明は、前記膜分離装置から排出される排ガス
を、前記圧力変動吸着分離装置に供給する原料空気の前
処理を行う前処理装置の吸着塔を再生する再生ガスに用
いることも含むものである。
Furthermore, the present invention includes using the exhaust gas discharged from the membrane separation device as a regeneration gas for regenerating an adsorption tower of a pretreatment device that pretreats the feed air to be supplied to the pressure fluctuation adsorption separation device.

〔作 用〕[For production]

上記のごとく、天然又は合成ゼオライトを吸着剤に使用
した窒素採取用の圧力変動吸着分離装置から排出される
洗浄排ガスは、酸素濃度が空気の2倍以上に濃縮されて
いるとともに、炭酸ガス。
As mentioned above, the cleaning exhaust gas discharged from a pressure fluctuation adsorption separation device for nitrogen collection that uses natural or synthetic zeolite as an adsorbent has an oxygen concentration more than twice that of air, and contains carbon dioxide gas.

水分の含有量が極めて少ない。従って、この洗浄排ガス
を膜分離装置の原料ガスとすることで、炭酸ガス、水分
の含有量が極めて少なく、酸素濃度が40%以上の酸素
富化ガスを容易に得ることができる。
Water content is extremely low. Therefore, by using this washed exhaust gas as the raw material gas for the membrane separation device, it is possible to easily obtain an oxygen-enriched gas with extremely low carbon dioxide and water contents and an oxygen concentration of 40% or more.

〔実施例〕〔Example〕

以下、本発明を図面に示す一実施例に基づいて、さらに
詳細に説明する。
Hereinafter, the present invention will be explained in more detail based on an embodiment shown in the drawings.

まず、天然又は合成ゼオライトを吸着剤に使用して原料
空気から窒素を回収する圧力変動吸着分離装置10は、
例えば、前記天然又は合成ゼオライトを充填した3基の
吸着塔11 a +  11− b 、  11cを並
列に接続し、各吸着塔1.1a、11b。
First, the pressure fluctuation adsorptive separation device 10 uses natural or synthetic zeolite as an adsorbent to recover nitrogen from feed air.
For example, three adsorption towers 11a + 11-b, 11c filled with the natural or synthetic zeolite are connected in parallel, and each adsorption tower 1.1a, 11b.

11cについて吸着、洗浄、脱着の各工程を順次切替え
て空気中の窒素を分離するものである。ここで、第1塔
11aが吸着工程、第2塔11bが洗浄工程、第3塔1
1cが脱着工程にある場合について説明する。
11c, nitrogen in the air is separated by sequentially switching the steps of adsorption, cleaning, and desorption. Here, the first column 11a is an adsorption process, the second column 11b is a washing process, and the third column 1
A case where 1c is in the desorption process will be explained.

まず吸着工程にある第1塔11Hには、水分や炭酸ガス
を除去する吸着剤を充填した吸着塔(図示せず)を有す
る前処理装置12から原料空気弁13を介して供給され
る所定圧力の原料空気GAが、該第1塔11aに附随す
る吸着塔人口側の導入弁14aから導入される。この原
料空気GA中の窒素は、塔内の吸着剤に吸着され、他の
酸素等の弱吸着成分が出口側に濃縮する。
First, the first column 11H in the adsorption step is supplied with a predetermined pressure via the raw air valve 13 from the pretreatment device 12 having an adsorption column (not shown) filled with an adsorbent for removing moisture and carbon dioxide. The feed air GA is introduced from the introduction valve 14a on the adsorption tower intake side attached to the first tower 11a. Nitrogen in this raw air GA is adsorbed by an adsorbent in the column, and other weakly adsorbed components such as oxygen are concentrated on the outlet side.

この時、洗浄工程にある第2塔11bにおいては、吸着
塔入口側の洗浄弁15bを開いて回収タンク16に回収
されている高濃度窒素を洗浄ガスFGとしてブロワ−1
7により所定の圧力で原料空気と同方向に導入するとと
もに、吸着塔出口側の導出弁18bから排気弁19を介
して前記弱吸着成分を洗浄排ガスWGとして導出する。
At this time, in the second tower 11b in the cleaning process, the cleaning valve 15b on the adsorption tower inlet side is opened and the high concentration nitrogen recovered in the recovery tank 16 is used as cleaning gas FG to be sent to the blower 1.
7, the weakly adsorbed components are introduced in the same direction as the raw material air at a predetermined pressure, and the weakly adsorbed components are led out as cleaning exhaust gas WG from the outlet valve 18b on the adsorption tower outlet side via the exhaust valve 19.

この洗浄排ガスWGは、前記吸着工程で吸着塔11bの
出口側に濃縮された酸素を含むものであり、通常は空気
の2倍程度にまで酸素が濃縮されている。
This cleaning exhaust gas WG contains oxygen concentrated on the outlet side of the adsorption tower 11b in the adsorption step, and usually the oxygen is concentrated to about twice that of air.

そして脱着工程にある第3塔11−Cは、吸着塔出口側
の回収弁20cを開き、真空ポンプ2]により吸着塔1
1c内を排気して吸着剤に吸着されている窒素を回収ガ
スGNとして回収タンク16に回収する。このようにし
て回収タンク16に回収された窒素は、その一部が製品
高濃度窒素PNとして弁22から導出され、残部が前記
洗浄工程に用いる洗浄ガスFGとして使用される。
The third column 11-C, which is in the desorption process, opens the recovery valve 20c on the outlet side of the adsorption column, and the vacuum pump 2]
The inside of 1c is evacuated and the nitrogen adsorbed by the adsorbent is recovered into the recovery tank 16 as recovery gas GN. Part of the nitrogen recovered in the recovery tank 16 in this way is led out from the valve 22 as product high concentration nitrogen PN, and the remainder is used as the cleaning gas FG used in the cleaning process.

以下、順次それぞれの弁を所定の順序で開閉することに
より、各吸着塔11a、llb、llcを上記吸着、洗
浄、脱着の各工程に切替えて製品高濃度窒素PNを採取
する。上記工程中、上記説明で挙げた以外の6弁は閉じ
状態である。尚、上記説明で挙げた以外の6弁について
は、対応する吸着塔に付した符号a、b、cをそれぞれ
の弁の符号に付して図示し、その詳細な説明を省略する
Thereafter, by sequentially opening and closing the respective valves in a predetermined order, each adsorption tower 11a, llb, llc is switched to each of the adsorption, washing, and desorption steps, and the product high concentration nitrogen PN is collected. During the above process, six valves other than those mentioned in the above explanation are in a closed state. It should be noted that the six valves other than those mentioned in the above description are illustrated with the symbols a, b, and c attached to the corresponding adsorption towers attached to the respective valve symbols, and detailed explanation thereof will be omitted.

一方、上記圧力変動吸着分離装置10の後段に配設され
る膜分離装置30は、酸素を濃縮するための分離膜31
として、高分子膜5 シリカベース膜、酢酸セルロース
膜、エチルセルロース膜2分子篩炭素膜等を備えたもの
で、−火室32の一側には原料ガス導入部33が設けら
れるとともに、他側には排ガス導出部34が設けられ、
分離膜31を介した二次室35には酸素富化ガスGOの
導出部36が設けられている。
On the other hand, a membrane separation device 30 disposed downstream of the pressure fluctuation adsorption separation device 10 has a separation membrane 31 for concentrating oxygen.
The polymer membrane 5 is equipped with a silica-based membrane, a cellulose acetate membrane, an ethyl cellulose membrane, a bimolecular sieve carbon membrane, etc. - A raw material gas introduction part 33 is provided on one side of the firebox 32, and a raw material gas introduction part 33 is provided on the other side of the firebox 32. An exhaust gas derivation section 34 is provided,
The secondary chamber 35 via the separation membrane 31 is provided with an outlet section 36 for the oxygen-enriched gas GO.

そして、上記圧力変動吸着分離装置10から排出される
洗浄排ガスWGは、前記弁1つを出た後で圧縮機37に
より、膜分離に必要な圧力、通常は数lag / cl
 Gまで昇圧され、前記原料ガス導入部33から一火室
32に導入される。分離膜31を透過して二次室35に
濃縮された酸素富化ガスGOは、前記導出部36から製
品として導出され、排ガスMGは一火室32の排ガス導
出部34から導出される。
The washed exhaust gas WG discharged from the pressure fluctuation adsorption separation device 10 is compressed by the compressor 37 after exiting the one valve to a pressure required for membrane separation, usually several lag/cl.
The pressure is increased to G, and the raw material gas is introduced into the first fire chamber 32 from the raw material gas introduction section 33. The oxygen-enriched gas GO that has passed through the separation membrane 31 and is concentrated in the secondary chamber 35 is led out as a product from the outlet section 36, and the exhaust gas MG is led out from the exhaust gas outlet section 34 of the first fire chamber 32.

このように、前記圧力変動吸着分離装置10から排出さ
れた洗浄排ガスWGを膜分離装置30の原料ガスとする
ので、該膜分離装置30から得られる酸素富化ガスGO
の酸素濃度を高めることができ、酸素濃度40%以上の
濃縮酸素を得ることができる。しかも原料ガスとなる洗
浄排ガスWGは、圧力変動吸着分離装置10の前処理装
置12で水分や炭酸ガスが除去されているので、これら
の不純物成分を含まない良質の酸素富化ガスG。
In this way, since the washed exhaust gas WG discharged from the pressure fluctuation adsorption separation device 10 is used as the raw material gas for the membrane separation device 30, the oxygen-enriched gas GO obtained from the membrane separation device 30
The oxygen concentration can be increased, and concentrated oxygen with an oxygen concentration of 40% or more can be obtained. Moreover, since the cleaning exhaust gas WG, which becomes the raw material gas, has moisture and carbon dioxide removed in the pretreatment device 12 of the pressure fluctuation adsorption separation device 10, it is a high-quality oxygen-enriched gas G that does not contain these impurity components.

を得ることができる。can be obtained.

また、上記排ガスMGは、上記のごとく水分や炭酸ガス
をほとんど含まないため、管38により前記前処理装置
12の吸着塔を再生するための再生ガスとして使用する
ことができる。さらに、前記圧縮機37の前段に、洗浄
排ガスWGを貯留するバッファタンクを設けることによ
り、膜分離装置30に導入するガスの組成を安定化する
とともに、圧縮機37の吸入圧力を安定化させることが
できる。
Furthermore, since the exhaust gas MG contains almost no moisture or carbon dioxide as described above, it can be used as a regeneration gas for regenerating the adsorption tower of the pretreatment device 12 through the pipe 38. Furthermore, by providing a buffer tank for storing the washed exhaust gas WG in the front stage of the compressor 37, the composition of the gas introduced into the membrane separation device 30 is stabilized, and the suction pressure of the compressor 37 is stabilized. I can do it.

ここで、前記のごとく構成した装置で酸素富化ガスを採
取する実験を行った結果を説明する。
Here, the results of an experiment in which oxygen-enriched gas was collected using the apparatus configured as described above will be explained.

まず、圧力変動吸着分離装置10の各吸着塔11a、l
lb、llcには、ゼオライト5A(東ソー■製)を充
填し、前記吸着、洗浄、脱着の各工程の切換え時間は3
分とした。また、膜分離装置30の分離膜31には、酸
素と窒素の透過係数比(PO2/PN2)が3.5の高
分子膜を用いた。さらに、原料空気GAは、乾燥剤と合
成ゼオライト13Xを積層充填した吸着塔を切替え使用
する前処理装置12に導入し、該原料空気GA中の水分
を10ppm、炭酸ガスを10ppm以下まで除去した
First, each adsorption tower 11a, l of the pressure fluctuation adsorption separation device 10
lb and llc are filled with zeolite 5A (manufactured by Tosoh ■), and the switching time for each of the adsorption, washing, and desorption steps is 3.
It was a minute. Further, as the separation membrane 31 of the membrane separation device 30, a polymer membrane having an oxygen to nitrogen permeability coefficient ratio (PO2/PN2) of 3.5 was used. Furthermore, the raw air GA was introduced into a pretreatment device 12 that alternately uses an adsorption tower filled with a desiccant and synthetic zeolite 13X, and the moisture and carbon dioxide in the raw air GA were removed to 10 ppm or less.

そして上記前処理装置12で精製した原料空気GA (
1000N)/h)を、脱着1回収の完了した第1吸着
塔11aに導入し、塔内圧力を0.2kg / at 
Gまで昇圧した。該第1吸着塔11aが吸着工程を終了
した後、第2塔11bから脱着回収されている純度99
.995%の窒素を、回収タンク16から洗浄ガスFG
としてブロワ−17により0 、 3 kg / c&
 Gに昇圧し、第1吸着塔11aに導入して塔内の洗浄
を行った。この時、該第1吸着塔11aから排出された
洗浄排ガスWG(532NJ/h)の酸素濃度は約39
.4%であり、水分は10ppm以下、炭酸ガスも10
ppm以下であった。
Then, the raw material air GA (
1000 N)/h) was introduced into the first adsorption tower 11a where desorption and recovery had been completed, and the pressure inside the tower was set to 0.2 kg/at.
Pressure increased to G. After the first adsorption tower 11a completes the adsorption step, the purity 99 is desorbed and recovered from the second tower 11b.
.. 995% of nitrogen is removed from the recovery tank 16 by cleaning gas FG.
0.3 kg/c& by blower 17 as
The pressure was raised to G and introduced into the first adsorption tower 11a to clean the inside of the tower. At this time, the oxygen concentration of the cleaning exhaust gas WG (532 NJ/h) discharged from the first adsorption tower 11a is approximately 39
.. 4%, water content is less than 10 ppm, and carbon dioxide gas is less than 10 ppm.
It was less than ppm.

次に、この洗浄排ガスWGを膜分離装置30に導入して
酸素を濃縮し、酸素富化ガスGo (266!l/h)
を得た。得られた酸素富化ガスGOの酸素濃度は約53
,8%であり、水分、炭酸ガスは、いずれも10ppm
以下であった。残り266N!/hは、前記圧力変動吸
着分離装置10の前処理塔の再生ガスとして用いた。
Next, this washed exhaust gas WG is introduced into the membrane separator 30 to concentrate oxygen, and the oxygen-enriched gas Go (266!l/h) is
I got it. The oxygen concentration of the obtained oxygen-enriched gas GO is approximately 53
, 8%, and moisture and carbon dioxide are both 10 ppm.
It was below. 266N remaining! /h was used as a regeneration gas for the pretreatment tower of the pressure fluctuation adsorption separation device 10.

また、前記圧力変動吸着分離装置10からは、純度9.
9.995%の製品高純度窒素PNが532Nノ/h得
られた。
Further, the purity of the pressure fluctuation adsorption separation device 10 is 9.
Product high purity nitrogen PN of 9.995% was obtained at 532 N/h.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の酸素の濃縮方法は、天然
又は合成ゼオライトを吸着剤に使用した窒素採取用の圧
力変動吸着分離装置から排出される洗浄排ガスを原料ガ
スとして膜分離装置に供給するから、水分、炭酸ガスの
含有量が極めて少ない酸素富化ガスを容易に得ることが
できる。また上記洗浄排ガスは、その酸素濃度が空気の
約2倍に濃縮されているため、膜分離装置1段のみで5
0%以上の濃縮酸素を得ることができた。
As explained above, in the oxygen concentration method of the present invention, the cleaning exhaust gas discharged from a pressure fluctuation adsorption separation device for nitrogen collection using natural or synthetic zeolite as an adsorbent is supplied as a raw material gas to a membrane separation device. From this, oxygen-enriched gas with extremely low moisture and carbon dioxide contents can be easily obtained. In addition, the oxygen concentration of the cleaning exhaust gas is approximately twice that of air, so only one stage of membrane separation equipment can
It was possible to obtain concentrated oxygen of 0% or more.

さらに、膜分離装置からの排ガスを、圧力変動吸着分離
装置の前処理装置の吸着塔を再生する再生ガスに用いる
ことにより、該前処理装置の再生用に他のガスを用意す
る必要がなくなり、運転コストを低減できる。
Furthermore, by using the exhaust gas from the membrane separation device as the regeneration gas for regenerating the adsorption tower of the pretreatment device of the pressure fluctuation adsorption separation device, there is no need to prepare other gas for regeneration of the pretreatment device. Operation costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示す系統図である。 10・・・圧力変動吸着分離装置  11a1.1b、
llc・・・吸着塔   12・・・前処理装置30・
・・膜分離装置  31・・・分離膜  37・・・圧
縮機  GO・・・酸素富化ガス  PN・・・製品高
純度窒素  WG・・・洗浄排ガス
The figure is a system diagram showing one embodiment of the present invention. 10... Pressure fluctuation adsorption separation device 11a1.1b,
llc...Adsorption tower 12...Pretreatment device 30.
...Membrane separation device 31...Separation membrane 37...Compressor GO...Oxygen enriched gas PN...Product high purity nitrogen WG...Cleaning exhaust gas

Claims (1)

【特許請求の範囲】 1、空気を原料として該空気中の酸素を濃縮する方法に
おいて、天然又は合成ゼオライトを吸着剤に使用して原
料空気から窒素を回収する圧力変動吸着分離装置の後段
に酸素富化膜を設けた膜分離装置を配設し、前記圧力変
動吸着分離装置から排出される洗浄排ガスを所定圧力に
昇圧して前記膜分離装置に供給することを特徴とする酸
素の濃縮方法。 2、前記膜分離装置から排出される排ガスを、前記圧力
変動吸着分離装置に供給する原料空気の前処理を行う前
処理装置の吸着塔を再生する再生ガスに用いることを特
徴とする請求項1記載の酸素の濃縮方法。
[Claims] 1. In a method for concentrating oxygen in air using air as a raw material, oxygen is added to the downstream stage of a pressure fluctuation adsorption separation device that uses natural or synthetic zeolite as an adsorbent to recover nitrogen from raw air. A method for concentrating oxygen, characterized in that a membrane separation device provided with an enrichment membrane is provided, and the washed exhaust gas discharged from the pressure fluctuation adsorption separation device is pressurized to a predetermined pressure and then supplied to the membrane separation device. 2. Claim 1, characterized in that the exhaust gas discharged from the membrane separation device is used as a regeneration gas for regenerating an adsorption tower of a pretreatment device that pretreats the feed air supplied to the pressure fluctuation adsorption separation device. Method for concentrating oxygen as described.
JP1145686A 1989-06-08 1989-06-08 Method for enriching oxygen Pending JPH0312307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1145686A JPH0312307A (en) 1989-06-08 1989-06-08 Method for enriching oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1145686A JPH0312307A (en) 1989-06-08 1989-06-08 Method for enriching oxygen

Publications (1)

Publication Number Publication Date
JPH0312307A true JPH0312307A (en) 1991-01-21

Family

ID=15390748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1145686A Pending JPH0312307A (en) 1989-06-08 1989-06-08 Method for enriching oxygen

Country Status (1)

Country Link
JP (1) JPH0312307A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447559A (en) * 1989-11-14 1995-09-05 Air Products And Chemicals, Inc. Hydrogen recovery by adsorbent membranes
WO2006013918A1 (en) * 2004-08-05 2006-02-09 Sumitomo Seika Chemicals Co., Ltd. Double separation method and double separation system for oxygen gas and nitrogen gas
KR100698168B1 (en) * 2000-09-18 2007-03-22 엘지전자 주식회사 Oxygen Generator
JP5027662B2 (en) * 2005-08-22 2012-09-19 住友精化株式会社 Method and system for parallel separation of oxygen gas and nitrogen gas
WO2015197418A1 (en) * 2014-06-25 2015-12-30 Krinner Drucklufttechnik Gmbh Air preparation method and device with a carbon dioxide adsorption and oxygen enrichment process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151304A (en) * 1982-02-27 1983-09-08 Nippon Sanso Kk Production of oxygen by pressure swing method
JPH01252502A (en) * 1988-04-01 1989-10-09 Hakko Seisakusho:Kk Production of high-purity oxygen gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151304A (en) * 1982-02-27 1983-09-08 Nippon Sanso Kk Production of oxygen by pressure swing method
JPH01252502A (en) * 1988-04-01 1989-10-09 Hakko Seisakusho:Kk Production of high-purity oxygen gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447559A (en) * 1989-11-14 1995-09-05 Air Products And Chemicals, Inc. Hydrogen recovery by adsorbent membranes
KR100698168B1 (en) * 2000-09-18 2007-03-22 엘지전자 주식회사 Oxygen Generator
WO2006013918A1 (en) * 2004-08-05 2006-02-09 Sumitomo Seika Chemicals Co., Ltd. Double separation method and double separation system for oxygen gas and nitrogen gas
JP2006043599A (en) * 2004-08-05 2006-02-16 Sumitomo Seika Chem Co Ltd Method and system for parallel separation of oxygen gas and nitrogen gas
JP4538275B2 (en) * 2004-08-05 2010-09-08 住友精化株式会社 Method and system for parallel separation of oxygen gas and nitrogen gas
KR101120992B1 (en) * 2004-08-05 2012-06-13 스미토모 세이카 가부시키가이샤 Double separation method and double separation system for oxygen gas and nitrogen gas
JP5027662B2 (en) * 2005-08-22 2012-09-19 住友精化株式会社 Method and system for parallel separation of oxygen gas and nitrogen gas
WO2015197418A1 (en) * 2014-06-25 2015-12-30 Krinner Drucklufttechnik Gmbh Air preparation method and device with a carbon dioxide adsorption and oxygen enrichment process

Similar Documents

Publication Publication Date Title
CA1313630C (en) Adsorptive separation utilizing multiple adsorption beds
EP0681859B1 (en) Vacuum swing adsorption process with mixed repressurization and provide product depressurization
US8128734B2 (en) Two stage pressure swing adsorption process for producing enriched-oxygen
CA1340000C (en) Enhance gas separation process
US5395427A (en) Two stage pressure swing adsorption process which utilizes an oxygen selective adsorbent to produce high purity oxygen from a feed air stream
JP2002191925A (en) Pressure swing adsorption method for separating feed gas
JPH0250041B2 (en)
JP2000354726A (en) Pressure swing adsorption process and device
JPS63126522A (en) Method of separating component of gas fluid
CA1305433C (en) Psa process and apparatus employing gaseous diffusion barriers
JPH09851A (en) Pressure swing adsorption method recirculating void gas
JP2000157828A (en) Method and apparatus for manufacture of oxygen using one adsorber and one blower
JPS5946651B2 (en) How to separate gas mixtures
JPH0312307A (en) Method for enriching oxygen
JPS61230715A (en) Method for concentrating and recovering gas by using psa apparatus
CN112744789A (en) Oxygen generation method and device based on coupling separation technology
JPH11267439A (en) Gas separation and gas separator for performing same
GB2161717A (en) Improved apparatus for the separation of a gaseous mixture
JP2019013883A (en) Gas separation system
KR102439732B1 (en) Method of Removing Argon and Concentrating Nitrogen by Adsorbing and Separating Nitrogen from Gas Mixture of Argon and Nitrogen
JPS62153388A (en) Concentration of methane
KR100559254B1 (en) Apparatus for concentrating an oxygen and method thereof
GB2163669A (en) Apparatus for the separation of a gaseous mixture by pressure swing adsorption (PSA)
CN114180529A (en) Medical oxygen purification device and method
JPH0372326B2 (en)