JPH0517133Y2 - - Google Patents

Info

Publication number
JPH0517133Y2
JPH0517133Y2 JP1986105497U JP10549786U JPH0517133Y2 JP H0517133 Y2 JPH0517133 Y2 JP H0517133Y2 JP 1986105497 U JP1986105497 U JP 1986105497U JP 10549786 U JP10549786 U JP 10549786U JP H0517133 Y2 JPH0517133 Y2 JP H0517133Y2
Authority
JP
Japan
Prior art keywords
pipe
gas
cleaning
adsorption tower
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986105497U
Other languages
Japanese (ja)
Other versions
JPS6313220U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986105497U priority Critical patent/JPH0517133Y2/ja
Publication of JPS6313220U publication Critical patent/JPS6313220U/ja
Application granted granted Critical
Publication of JPH0517133Y2 publication Critical patent/JPH0517133Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は高純度ガスの製造に利用される圧力ス
イング吸着装置(以下単にPSA装置という)に
関し、特に脱着回収されるべき製品ガス中の不純
成分を極力排除し、高純度製品ガスとして回収す
るためのPSA装置に関するものである。以下に
はその代表例としてO2及びN2の混合ガスからN2
を高純度回収するPSA装置について説明するが
本考案装置の適用対象はこれによつて限定解釈さ
れてはならない。
[Detailed description of the invention] [Field of industrial application] The present invention relates to a pressure swing adsorption device (hereinafter simply referred to as a PSA device) used in the production of high-purity gas. This relates to a PSA device that removes as many components as possible and recovers high-purity product gas. Below is a representative example of how to convert N 2 from a mixed gas of O 2 and N 2.
A description will be given of a PSA device that recovers high-purity water, but this should not be construed as limiting the scope of application of the device of the present invention.

[従来の技術] 加圧空気をPSA装置に導入しN2ガスを濃縮回
収する方法を大別すると、O2ガスを吸着剤に吸
着させる方法とN2ガスを吸着剤に吸着させる方
法の2つに分類される。このうち後者はゼオライ
ト系の吸着剤を使用し、N2ガスの吸着後、該吸
着塔を真空ポンプ等によつて減圧することにより
高純度N2ガスを脱着回収する方法であり、以下
にはこの方法に利用されるPSA装置について説
明する。
[Prior Art] Methods of introducing compressed air into a PSA unit to concentrate and recover N2 gas can be roughly divided into two categories: a method of adsorbing O2 gas onto an adsorbent and a method of adsorbing N2 gas onto an adsorbent. The latter method uses a zeolite adsorbent, adsorbs N2 gas, and then depressurizes the adsorption tower with a vacuum pump or the like to desorb and recover high-purity N2 gas. The PSA unit used in this method is described below.

第2図は3塔式のPSA装置を示す概略説明図
であつて、前処理装置から接続されてくる原料ガ
ス(加圧空気)供給管1には自動開閉弁(以下単
に弁という)V1〜V3を介して吸着塔3a,3b,
3cが接続され、各塔の底部には弁V4〜V6を介
して排ガス廃棄管4が連結される。また排ガス廃
棄管4の途中(弁V4〜V6介設点より上流側)か
らは脱着用管5a,5b,5cが分岐され、夫々
弁V7〜V9を介してそれより下流側で合流される。
そして合流された脱着用管5には真空ポンプ6が
設けられて製品ガスホルダ9に連結される。製品
ガスホルダ9には製品ガス回収管2が設けられる
と共に、製品ガスの一部を洗浄用として抜き出す
洗浄用管8が配設され、該洗浄用管8は分岐され
た後弁V13〜V15を介して吸着塔3a,3b,3
cの各頂部に連結される。尚各吸着塔3a,3
b,3cを直列結合する均圧配管10a,10
b,10cが弁V10〜V12を介して夫々設けられ
る。
FIG. 2 is a schematic explanatory diagram showing a three-column type PSA device, and the raw material gas (pressurized air) supply pipe 1 connected from the pretreatment device is equipped with an automatic on-off valve (hereinafter simply referred to as valve) V 1 〜V 3 to adsorption towers 3a, 3b,
3c is connected to the bottom of each column, and an exhaust gas waste pipe 4 is connected to the bottom of each column via valves V4 to V6 . In addition, desorption pipes 5a, 5b, and 5c are branched from the middle of the exhaust gas waste pipe 4 (upstream of the valves V4 to V6 intervening points), and are branched from the exhaust gas disposal pipes 5a, 5b, and 5c on the downstream side via the valves V7 to V9, respectively. be merged.
A vacuum pump 6 is provided in the merged desorption tube 5 and connected to a product gas holder 9. The product gas holder 9 is provided with a product gas recovery pipe 2 as well as a cleaning pipe 8 for extracting a part of the product gas for cleaning, and the cleaning pipe 8 is branched and then connected to valves V 13 to V 15 . Adsorption towers 3a, 3b, 3
connected to each top of c. In addition, each adsorption tower 3a, 3
Pressure equalizing pipes 10a and 10 connecting b and 3c in series
b and 10c are provided via valves V 10 to V 12 , respectively.

[考案が解決しようとする問題点] 第3図は、吸着塔3a,3b,3cにおける1
塔の作動工程を示すタイムスケジユールであり、
吸着工程開始時から次回の吸着工程開始時までに
行なわれる作動工程を1工程サイクルとしたと
き、1工程サイクルは吸着工程、回収工程、洗浄
工程及び脱着工程より構成される。まず吸着工程
では脱着された吸着塔内を加圧すると共に、原料
ガスを供給管1から加圧供給し、回収目的成分の
N2ガスを吸着剤に吸着させ不純成分ガス(主に
O2ガス)を排ガス廃棄管4から放出させる。又
脱着工程では吸着塔と製品ガスホルダ9を真空ポ
ンプ6及び脱着用管5を介して連通し、吸着塔内
を減圧して脱着剤に吸着されたN2を脱着して製
品ホルダ9に貯留する。
[Problems to be solved by the invention] FIG.
It is a time schedule showing the operation process of the tower,
When the operation steps performed from the start of the adsorption step to the start of the next adsorption step are defined as one step cycle, one step cycle is composed of an adsorption step, a recovery step, a washing step, and a desorption step. First, in the adsorption process, the interior of the desorbed adsorption tower is pressurized, and the raw material gas is supplied under pressure from the supply pipe 1 to remove the target components.
N2 gas is adsorbed on an adsorbent and impure component gas (mainly
O 2 gas) is released from the exhaust gas waste pipe 4. In the desorption process, the adsorption tower and the product gas holder 9 are communicated via the vacuum pump 6 and the desorption pipe 5, and the pressure inside the adsorption tower is reduced to desorb the N 2 adsorbed by the desorbent and store it in the product holder 9. .

また回収工程及び洗浄工程は、吸着塔3aの場
合を例に挙げて説明すると第4図a及びbによつ
て示される。即ち第4図aの状態においては、製
品ガスホルダ9から供給される高純度N2ガスは
洗浄用管8を通つて吸着塔3c内の残留O2を追
放し、吸着工程の終了した吸着塔3aへ均圧配管
10cを介して送り込まれる。その結果吸着塔3
aでは回収工程が行なわれ、吸着塔3cは洗浄工
程が行なわれる。次いで第4図bの状態では、吸
着塔3aは洗浄工程を行ない、吸着塔3bは回収
工程を行なう。
Further, the recovery step and the washing step will be explained using the adsorption tower 3a as an example, as shown in FIGS. 4a and 4b. That is, in the state shown in FIG. 4a, the high-purity N 2 gas supplied from the product gas holder 9 passes through the cleaning pipe 8 to expel the residual O 2 in the adsorption tower 3c, and the adsorption tower 3a after the adsorption process is completed. It is sent to via the pressure equalization piping 10c. As a result, adsorption tower 3
In a, a recovery process is performed, and in the adsorption tower 3c, a cleaning process is performed. Next, in the state shown in FIG. 4b, the adsorption tower 3a performs a cleaning process, and the adsorption tower 3b performs a recovery process.

そして第4図bに示す洗浄工程の終了した吸着
塔3aは、次に脱着工程が行なわれることになる
が、このとき吸着塔3aは真空ポンプによつて減
圧されるため吸着塔3a中のガスはもとより吸着
塔3aに連接される管内(ただし弁によつて遮断
される位置まで)に残存するガスをも一緒に引込
んでしまう(第2図の矢印X1に示す)。従つて上
記管内に低純度のN2ガスが残存する場合には、
製品ガスホルダ9に回収される製品N2ガスの純
度が低下されるという不具合を生じる。特に回収
工程時において使用される均圧配管10a〜10
cに残存する低純度N2ガスは、量も多いうえに
洗浄工程において浄化排除されるものではないた
め、製品N2ガスの純度を低下させる大きな要因
となつている。
The adsorption tower 3a that has undergone the cleaning process shown in FIG. Not only that, but the gas remaining in the pipe connected to the adsorption tower 3a (up to the point where it is shut off by the valve) is also drawn in (as shown by arrow X1 in FIG. 2). Therefore, if low-purity N2 gas remains in the pipe,
This causes a problem in that the purity of the product N 2 gas collected in the product gas holder 9 is reduced. Pressure equalizing pipes 10a to 10 used especially during the recovery process
The low-purity N 2 gas remaining in c is a large amount and is not purified and eliminated in the cleaning process, so it is a major factor in reducing the purity of the product N 2 gas.

そこで本考案者は吸着塔脱着工程時に低純度
N2ガスを混入して回収させることがない様な装
置を開発すべく種々研究を積み重ねた結果、本考
案のPSA装置を完成させるに至つた。
Therefore, the inventor of the present invention attempted to remove low-purity substances during the adsorption tower desorption process.
As a result of various research efforts to develop a device that does not contain and recover N 2 gas, we have completed the PSA device of this invention.

[問題点を解決するための手段] 上記目的を達成し得た本考案PSA装置は、均
圧配管の自動開閉弁下流側直下には、一端を前記
洗浄用管に連結して上記均圧配管内を洗浄ガスに
置換える浄化管を接続し、該浄化管の前記均圧配
管との接続部近傍に自動開閉弁を設けた点に要旨
を有するものである。
[Means for Solving the Problems] The PSA device of the present invention, which has achieved the above object, has one end of the pressure equalizing pipe connected to the cleaning pipe immediately below the automatic opening/closing valve downstream of the pressure equalizing pipe. The main feature is that a purifying pipe for replacing the inside with cleaning gas is connected, and an automatic opening/closing valve is provided near the connection part of the purifying pipe with the pressure equalizing pipe.

[作用] 本考案では、均圧配管の自動開閉弁下流側直下
を洗浄用管に連結する為の浄化管を配設し、該浄
化管の下流側位置に当たる均圧配管側に自動開閉
弁を設ける。そして吸着塔の洗浄工程開始時(回
収工程完了後)に浄化管に設けた自動開閉弁を開
放し、均圧配管内に残留している低純度ガスを、
これから洗浄工程に移行しようとする吸着塔内へ
追放することによつて均圧配管内を高純度の洗浄
ガスに置換えてしまう。従つて脱着工程時に吸着
塔及びこれに連通する配管が減圧されたときに低
純度ガスが製品ガスに混入して製品ホルダ側へ回
収されることがなくなり、この結果回収される製
品ガスは高純度を達成することが可能となる。な
お各吸着塔内は、洗浄用管を介して送り込まれる
高純度ガスによつて不純成分が除去される。
[Function] In the present invention, a purification pipe is installed to connect the downstream side of the automatic on-off valve of the pressure equalization pipe to the cleaning pipe, and an automatic on-off valve is installed on the pressure equalization pipe side, which is the downstream position of the purification pipe. establish. Then, at the start of the adsorption tower cleaning process (after the recovery process is completed), the automatic on-off valve installed in the purification pipe is opened, and the low-purity gas remaining in the pressure equalization pipe is removed.
By expelling the gas into the adsorption tower that is about to proceed to the cleaning step, the pressure equalizing pipe is replaced with high-purity cleaning gas. Therefore, when the adsorption tower and the piping connected to it are depressurized during the desorption process, low-purity gas will not mix with the product gas and be recovered to the product holder, and as a result, the recovered product gas will have high purity. It becomes possible to achieve this. Note that impurity components are removed from the inside of each adsorption tower by high-purity gas sent through a cleaning pipe.

[実施例] 第1図は本考案の代表的なPSA装置例を示す
概略説明図であり、第2図に示す従来のPSA装
置と相違する点は次に示す通りである。即ち吸着
塔3a,3b,3cを各々2つずつ直列接続する
均圧配管10a,10b,10cの弁V10〜V12
の下流側直下位置に浄化管11a〜11cを夫々
接続し(均圧配管10a〜10c使用時のガス流
方向は矢印Y1〜Y3に示す通りである)、該浄化管
11a〜11cの他端側は洗浄用管8に連結し、
該浄化管11a〜11cには弁V13〜V15を配設
する。
[Example] FIG. 1 is a schematic explanatory diagram showing a typical example of a PSA device of the present invention, and the differences from the conventional PSA device shown in FIG. 2 are as follows. That is, the valves V 10 to V 12 of the pressure equalizing pipes 10a, 10b, 10c connect two adsorption towers 3a, 3b, 3c in series.
The purifying pipes 11a to 11c are connected to the downstream side of the pipes 11a to 11c (the gas flow direction when using the pressure equalizing pipes 10a to 10c is as shown by arrows Y1 to Y3 ), and the purifying pipes 11a to 11c and other The end side is connected to the cleaning pipe 8,
Valves V13 to V15 are arranged in the purification pipes 11a to 11c.

第5図はこの様なPSA装置を使用する場合の
タイムスケジュールを示す。即ち回収工程の終了
後であつて且つ洗浄工程の開始前に浄化工程を設
ける。該浄化工程は単独工程として独立して行な
つても良いし、或は洗浄工程の初期の間に併行的
に実施しても構わない。
FIG. 5 shows a time schedule for using such a PSA device. That is, a purification step is provided after the recovery step and before the start of the cleaning step. The cleaning step may be performed independently as a single step, or may be performed concurrently during the initial stage of the cleaning step.

第6図は吸着塔3aにおける浄化工程を洗浄工
程と同時に行なつた時の概略説明図である。洗浄
工程のための洗浄N2ガスは洗浄用管8から直接
吸着塔3aへ導入され、一方洗浄N2ガスの一部
は洗浄用管8から浄化管11cを通つて均圧配管
10cに至り、該均圧配管10cから吸着塔3a
へ導かれる。このとき均圧配管10c内に滞留し
ていた低純度N2ガスは吸着塔3a、均圧配管1
0aを通つて吸着塔3bに至り、該吸着塔3bで
吸着されなかつたガスは排ガス廃棄管4から放出
される。
FIG. 6 is a schematic explanatory diagram when the purification process in the adsorption tower 3a is performed simultaneously with the washing process. The cleaning N 2 gas for the cleaning process is directly introduced into the adsorption tower 3a from the cleaning pipe 8, while a part of the cleaning N 2 gas passes from the cleaning pipe 8 to the purification pipe 11c and reaches the pressure equalization pipe 10c. From the pressure equalization pipe 10c to the adsorption tower 3a
be led to. At this time, the low-purity N2 gas remaining in the pressure equalization pipe 10c is transferred to the adsorption tower 3a and the pressure equalization pipe 1
The gas that passes through the adsorption tower 3b and is not adsorbed in the adsorption tower 3b is discharged from the exhaust gas waste pipe 4.

実施例 第1図に示す構造のPSA装置を試作し、第5
図に示す工程に沿つて、N2ガス(79%)、O2ガス
(21%)からなる混合ガスよりN2ガスを選択回収
する実験を行なつた。吸着塔の大きさは内径450
mm、高さ2000mmのものを使用し、吸着剤は合成ゼ
オライト5A型を使用した。
Example A PSA device with the structure shown in Fig. 1 was prototyped, and
An experiment was conducted to selectively recover N 2 gas from a mixed gas consisting of N 2 gas (79%) and O 2 gas (21%) according to the process shown in the figure. The size of the adsorption tower is 450 mm in inner diameter.
mm, height 2000 mm, and synthetic zeolite type 5A adsorbent was used.

原料ガスは吸着圧力4.0Kg/cm2Gとし70Nm3
hで吸着塔側へ供給し、脱着圧力は0.1Kg/cm2
に設定して吸着塔の1工程サイクル時間(吸着開
始から次回の吸着開始までの時間)を3分とし
た。
The raw material gas has an adsorption pressure of 4.0Kg/cm 2 G and 70Nm 3 /
h, and the desorption pressure is 0.1Kg/cm 2 G.
The one-step cycle time of the adsorption tower (the time from the start of adsorption to the start of the next adsorption) was set to 3 minutes.

この結果第2図に示した従来のPSA装置では
N2ガス純度99.997%であつたものが99.999%を達
成できる様になり、空気の深冷分離装置を使つて
N2ガスの回収をはかるのと同等純度のものが得
られた。また本考案PSA装置を使つたときのN2
ガス回収率は40%強であり、従来のPSA装置を
使用するときの回収率とほとんど変らなかつた。
As a result, the conventional PSA device shown in Figure 2
N2 gas purity of 99.997% can now be achieved at 99.999%, using cryogenic air separation equipment.
The same purity as that used for N 2 gas recovery was obtained. Also, when using the PSA device of this invention, N 2
The gas recovery rate was over 40%, which was almost the same as the recovery rate when using a conventional PSA device.

上記した例ではN2ガスの濃縮回収の例を示し
て説明したきたが、本考案はN2ガス回収の他H2
ガス回収やCOガス回収等にも適用される。
The above example has been explained by showing an example of N 2 gas concentration recovery, but the present invention is also applicable to H 2 gas recovery in addition to N 2 gas recovery.
It is also applied to gas recovery, CO gas recovery, etc.

[考案の効果] 本考案のPSA装置を使用することによつて回
収目的成分の回収率を低下させることなく、高純
度の回収目的成分ガスが得られる様になつた。
[Effects of the invention] By using the PSA device of the present invention, it has become possible to obtain a highly purified target component gas without reducing the recovery rate of the target component.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の代表的な実施例を示す概略説
明図、第2図は従来のPSA装置を示す概略説明
図、第3図は従来のPSA装置を使つた場合の工
程を示す模式説明図、第4図a,bは吸着塔3a
の回収工程及び洗浄工程を示す説明図、第5図は
本考案PSA装置を使つた場合の工程を示す模式
説明図、第6図は第1図PSA装置を使つた浄化
工程の状態を示す説明図である。 1……原料ガス供給管、2……製品ガス取出
管、4……排ガス廃棄管、5……脱着用管、6…
…真空ポンプ、8……洗浄用管、9……製品ガス
ホルダ、10a,10b,10c……均圧配管、
11a,11b,11c……浄化管、V1〜V19
…自動開閉弁。
Fig. 1 is a schematic explanatory diagram showing a typical embodiment of the present invention, Fig. 2 is a schematic explanatory diagram showing a conventional PSA device, and Fig. 3 is a schematic explanatory diagram showing the process when using the conventional PSA device. Figure 4a and b are the adsorption tower 3a.
Fig. 5 is a schematic illustration showing the process when using the PSA device of the present invention, and Fig. 6 is an explanation showing the state of the purification process using the PSA device shown in Fig. 1. It is a diagram. 1... Raw material gas supply pipe, 2... Product gas extraction pipe, 4... Exhaust gas disposal pipe, 5... Desorption pipe, 6...
...Vacuum pump, 8...Cleaning pipe, 9...Product gas holder, 10a, 10b, 10c...Pressure equalization piping,
11a, 11b, 11c...Purification pipe, V1 to V19 ...
...Automatic on-off valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数の吸着塔を並設すると共に、各吸着塔には
高純度ガスを送り込むための洗浄用管を接続し、
これら吸着塔群から選択される2つずつの吸着塔
同士を、洗浄排ガスを流通する均圧配管によつて
連結し、該均圧配管に自動開閉弁を設けてなる圧
力スイング吸着装置であつて、前記均圧配管の自
動開閉弁下流側直下には、一端を前記洗浄用管に
連結して上記均圧配管内を洗浄ガスに置換える浄
化管を接続し、該浄化管における前記均圧配管と
の接続部近傍に自動開閉弁を設けてなることを特
徴とする圧力スイング吸着装置。
In addition to installing multiple adsorption towers in parallel, each adsorption tower is connected to a cleaning pipe to feed high-purity gas.
A pressure swing adsorption device in which two adsorption towers selected from the group of adsorption towers are connected to each other by a pressure equalization pipe through which washed exhaust gas flows, and the pressure equalization pipe is provided with an automatic opening/closing valve. , a purification pipe is connected to the cleaning pipe at one end thereof to replace the inside of the pressure equalization pipe with cleaning gas, directly below the automatic opening/closing valve downstream of the pressure equalization pipe, and the pressure equalization pipe in the purification pipe is A pressure swing adsorption device characterized in that an automatic opening/closing valve is provided near the connection part with the pressure swing adsorption device.
JP1986105497U 1986-07-09 1986-07-09 Expired - Lifetime JPH0517133Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986105497U JPH0517133Y2 (en) 1986-07-09 1986-07-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986105497U JPH0517133Y2 (en) 1986-07-09 1986-07-09

Publications (2)

Publication Number Publication Date
JPS6313220U JPS6313220U (en) 1988-01-28
JPH0517133Y2 true JPH0517133Y2 (en) 1993-05-10

Family

ID=30979984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986105497U Expired - Lifetime JPH0517133Y2 (en) 1986-07-09 1986-07-09

Country Status (1)

Country Link
JP (1) JPH0517133Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168513A (en) * 1983-12-15 1985-09-02 ベルクヴエルクスフエルバント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Separation and recovery of gas relatively strongly adsorbable by adsorbent from gaseous mixture of said gas and other gas relatively weakly adsorbable by adsorbent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168513A (en) * 1983-12-15 1985-09-02 ベルクヴエルクスフエルバント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Separation and recovery of gas relatively strongly adsorbable by adsorbent from gaseous mixture of said gas and other gas relatively weakly adsorbable by adsorbent

Also Published As

Publication number Publication date
JPS6313220U (en) 1988-01-28

Similar Documents

Publication Publication Date Title
US4013429A (en) Fractionation of air by adsorption
KR960004606B1 (en) Process for producing high purity oxygen gas from air
US4171207A (en) Separation of multicomponent gas mixtures by pressure swing adsorption
US5620501A (en) Recovery of trace gases from gas streams
KR19980086952A (en) Pressure swing adsorption method using single adsorption bed
DE3267066D1 (en) Adsorption process for the separation of hydrocarbons
JPS6245315A (en) Pressure swing adsorbing method
JPH0517133Y2 (en)
KR102018322B1 (en) Adsorber system for adsorption process and method of separating mixture gas using its adsorption process
JP3101225B2 (en) Pressure fluctuation adsorption type high purity carbon dioxide production method
JPS61230715A (en) Method for concentrating and recovering gas by using psa apparatus
JPH0372326B2 (en)
JPS63147516A (en) Pressure swing adsorbing method and its device
KR100228239B1 (en) Apparatus and process for producing nitrogen using psa system depending on nitrogen concentration in the product
JPH0687935B2 (en) Pressure swing adsorption device
JPS61136419A (en) Selective desorption in pressure swing adsorption
JPH07110328B2 (en) Pressure swing adsorption type high-purity nitrogen production method and apparatus
JPH0691925B2 (en) Pressure swing adsorption method and device
JPS61149224A (en) Pressure swing adsorbing method
JPH0221285B2 (en)
KR19990039543A (en) Three tower pressure circulating adsorption system and separation method of raw material gas
JPS6365928A (en) Pressure swing adsorbing method
JPS58167410A (en) Peparation of argon
JPS6362521A (en) Pressure swing adsorption apparatus
JP3031797B2 (en) Pressure fluctuation adsorption separation method