JPH07110328B2 - Pressure swing adsorption type high-purity nitrogen production method and apparatus - Google Patents

Pressure swing adsorption type high-purity nitrogen production method and apparatus

Info

Publication number
JPH07110328B2
JPH07110328B2 JP63215927A JP21592788A JPH07110328B2 JP H07110328 B2 JPH07110328 B2 JP H07110328B2 JP 63215927 A JP63215927 A JP 63215927A JP 21592788 A JP21592788 A JP 21592788A JP H07110328 B2 JPH07110328 B2 JP H07110328B2
Authority
JP
Japan
Prior art keywords
exhaust gas
pretreatment
adsorption
tower
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63215927A
Other languages
Japanese (ja)
Other versions
JPH0264004A (en
Inventor
一郎 船田
信之 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63215927A priority Critical patent/JPH07110328B2/en
Publication of JPH0264004A publication Critical patent/JPH0264004A/en
Publication of JPH07110328B2 publication Critical patent/JPH07110328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、空気から高純度の窒素(N2)を分離回収す
るための圧力スイング吸着式高純度窒素製造方法および
その装置(以下単にN2−PSA方法および装置という)に
関するものである。
The present invention relates to a pressure swing adsorption type high-purity nitrogen production method and apparatus for separating and recovering high-purity nitrogen (N 2 ) from air (hereinafter simply referred to as “N”). 2- PSA method and apparatus).

〔従来の技術〕[Conventional technology]

従来、例えば3塔式に構成したN2−PSA装置としては第
3図に示すようなものが知られている。合成ゼオライト
を吸着材とする3つの吸着塔11,12,13の入口には、原料
空気供給管路2の下流端が弁21,22,23を介して、また洗
浄用ガス供給管路3の下流端が弁31,32,33を介してそれ
ぞれ接続されている。一方、上記吸着塔11,12,13の出口
には、排ガス排出管路4の上流端が弁41,42,43を介して
また脱着ガス回収管路5の上流端が弁51,52,53を介して
それぞれ接続されている。上記原料空気供給管路2の上
流端と、排ガス排出管路4の下流端とは前処理部7に接
続され、また上記洗浄用ガス供給管路3の上流端と、脱
着ガス回収管路5の下流端とは製品N2ホルダー6に接続
されている。さらに3つの吸着塔11,12,13は連絡管路1
4,15,16によって弁141,151,161を介して互いに連絡され
ている。
Conventionally, for example, as shown in FIG. 3, an N 2 -PSA device configured in a three-column type is known. At the inlets of the three adsorption towers 11, 12, and 13 that use synthetic zeolite as an adsorbent, the downstream end of the raw material air supply pipe line 2 is connected via valves 21, 22, and 23, and also to the cleaning gas supply pipe line 3. The downstream ends are connected via valves 31, 32 and 33, respectively. On the other hand, at the outlets of the adsorption towers 11, 12, and 13, the upstream ends of the exhaust gas discharge conduits 4 are connected via valves 41, 42, 43, and the upstream ends of the desorption gas recovery conduit 5 are connected to valves 51, 52, 53. Are respectively connected via. The upstream end of the raw material air supply conduit 2 and the downstream end of the exhaust gas discharge conduit 4 are connected to the pretreatment unit 7, and the upstream end of the cleaning gas supply conduit 3 and the desorption gas recovery conduit 5 are connected. Is connected to the product N 2 holder 6. In addition, the three adsorption towers 11, 12, 13 are connecting pipes 1
4,15,16 are in communication with one another via valves 141,151,161.

上記前処理部7は、2つの前処理塔71,72と、空気ホル
ダー73とから構成され、上記2つの前処理塔71,72は原
料空気圧縮機10と空気ホルダー73との間に並列に配置さ
れている。上記原料空気圧縮機10と前処理塔71,72とは
弁701,702を介して、また前処理塔71,72と空気ホルダー
73とは弁731,732を介してそれぞれ接続されている。ま
た上記前処理塔71,72と排ガス排出管路4とは弁741,742
を介して接続されている。
The pretreatment unit 7 is composed of two pretreatment towers 71 and 72 and an air holder 73, and the two pretreatment towers 71 and 72 are arranged in parallel between the raw air compressor 10 and the air holder 73. It is arranged. The raw material air compressor 10 and the pretreatment towers 71 and 72 are connected via valves 701 and 702, and the pretreatment towers 71 and 72 and the air holder are also provided.
73 is connected through valves 731 and 732, respectively. Further, the pretreatment towers 71 and 72 and the exhaust gas discharge pipeline 4 are provided with valves 741 and 742.
Connected through.

上記前処理部7では、原料空気が原料空気圧縮機10によ
って加圧され、この原料空気が前処理塔71に通されるこ
とにより水分(H2O)と炭酸ガス(CO2)とが吸着され、
残りの主として酸素(O2)と窒素(N2)との混合ガスで
ある原料空気が上記空気ホルダー73に蓄えられる。この
空気ホルダー73と原料空気供給管路2の上流端とが接続
され、上記原料空気は3つの弁21,22,23の開閉操作によ
って3つの吸着塔11,12,13に選択的に供給される。
In the pretreatment unit 7, the raw material air is pressurized by the raw material air compressor 10, and the raw material air is passed through the pretreatment tower 71 to adsorb moisture (H 2 O) and carbon dioxide gas (CO 2 ). Is
The remaining raw material air which is a mixed gas of mainly oxygen (O 2 ) and nitrogen (N 2 ) is stored in the air holder 73. The air holder 73 is connected to the upstream end of the raw material air supply pipe line 2, and the raw material air is selectively supplied to the three adsorption towers 11, 12, 13 by opening / closing the three valves 21, 22, 23. It

3つの吸着塔11,12,13では、第4図に示すように昇圧,
吸着工程と、回収工程と、休止工程と、洗浄工程と、脱
着工程とで構成される1サイクルが3つの吸着塔11,12,
13で1/3サイクルずつずらせて連続運転され、各管路2,
3,4,5と吸着塔11,12,13とを互いに接続する弁が自動的
に開閉操作されて製品N2ホルダー6に脱着回収された高
純度のN2ガスが連続的に蓄えられるようにしている。
In the three adsorption towers 11, 12, and 13, as shown in FIG.
One cycle consisting of an adsorption step, a recovery step, a rest step, a washing step, and a desorption step has three adsorption towers 11, 12,
It is operated continuously by shifting 1/3 cycle by 13 and each pipeline 2,
The valves that connect the 3,4,5 and the adsorption towers 11,12,13 to each other are automatically opened and closed so that the desorbed and recovered high-purity N 2 gas is continuously stored in the product N 2 holder 6. I have to.

上記1サイクルを第3図および第4図に基づいて第1吸
着塔11を中心にして説明する。まず前工程で減圧状態と
なった第1吸着塔11に空気ホルダー73から弁20,21を介
して原料空気が供給され、この原料空気によって第1吸
着塔11内が昇圧される。そして上記原料空気内のN2成分
が上記第1吸着塔11内の吸着材に優先的に吸着される
(昇圧,吸着工程)。
The above one cycle will be described with reference to FIGS. 3 and 4 centering on the first adsorption tower 11. First, the raw material air is supplied from the air holder 73 through the valves 20 and 21 to the first adsorption tower 11 which is in the depressurized state in the previous step, and the pressure inside the first adsorption tower 11 is increased by the raw material air. Then, the N 2 component in the raw material air is preferentially adsorbed by the adsorbent in the first adsorption tower 11 (pressurization, adsorption step).

つぎに、弁41が開状態にされるとともに、第3吸着塔13
から洗浄排ガスが連絡管路16を通して第1吸着塔11に供
給され、これにより上記洗浄排ガス中のN2成分が第1吸
着塔11内の吸着材に吸着回収され、残りのO2リッチガス
からなる洗浄排ガスが排ガス排出管路4を通して前処理
塔72に導かれる(回収工程)。
Next, the valve 41 is opened and the third adsorption tower 13 is opened.
The cleaning exhaust gas from the cleaning exhaust gas is supplied to the first adsorption tower 11 through the communication pipe line 16, whereby the N 2 component in the cleaning exhaust gas is adsorbed and recovered by the adsorbent in the first adsorption tower 11 and consists of the remaining O 2 rich gas. The cleaning exhaust gas is guided to the pretreatment tower 72 through the exhaust gas discharge conduit 4 (collection step).

この洗浄排ガスによって前処理部71,72に吸着されたH2O
とCO2とが脱着され、このH2OやCO2は弁751,752を介して
大気に排出される。
H 2 O adsorbed on the pretreatment units 71 and 72 by this cleaning exhaust gas
And CO 2 are desorbed, and the H 2 O and CO 2 are discharged to the atmosphere via valves 751 and 752.

これにより第1吸着塔11での昇圧,吸着工程および回収
工程が終了する。これらの間、第2吸着塔12では脱着工
程、第3吸着塔13では休止工程および洗浄工程がそれぞ
れ行なわれている。
This completes the pressurization, adsorption process and recovery process in the first adsorption tower 11. During these periods, the desorption process is performed in the second adsorption tower 12, and the resting process and the cleaning process are performed in the third adsorption tower 13.

つぎに、第1吸着塔11は第2吸着塔12での昇圧,吸着工
程が終了するまで休止した後、第1吸着塔11には製品N2
ホルダー6から洗浄用ガス供給管路3を通して製品N2
ある高純度N2ガスが洗浄用ガスとして弁31の開操作によ
って導かれる。この洗浄用ガス中のN2成分によって第1
吸着塔11内の吸着材に一部吸着されていたO2が置換脱着
されるとともに、この洗浄排ガスは連絡管路14を通して
第2吸着塔12に送られる。この連絡管路14を通る洗浄排
ガスのN2濃度を検出し、このN2濃度が所定の値になれば
弁141が閉じられる。これによって第1吸着塔11内は高
純度のN2成分ガスにより充満される(洗浄工程)。この
間、第3吸着塔13では脱着工程が行なわれている。
Next, the first adsorption tower 11 pauses until the pressurization and adsorption steps in the second adsorption tower 12 are completed, and then the product N 2 is fed into the first adsorption tower 11.
High-purity N 2 gas, which is the product N 2 , is introduced from the holder 6 through the cleaning gas supply line 3 as the cleaning gas by opening the valve 31. Depending on the N 2 component in this cleaning gas,
O 2 partially adsorbed by the adsorbent in the adsorption tower 11 is replaced and desorbed, and the cleaning exhaust gas is sent to the second adsorption tower 12 through the communication pipe line 14. The N 2 concentration of the cleaning exhaust gas passing through this communication line 14 is detected, and when this N 2 concentration reaches a predetermined value, the valve 141 is closed. As a result, the first adsorption tower 11 is filled with high-purity N 2 component gas (cleaning step). During this time, the desorption process is performed in the third adsorption tower 13.

この後、弁51を開いて脱着ガス回収管路5に設けられた
真空ポンプ54を作動させることにより、第1吸着塔11内
が減圧されて吸着材からN2成分が脱着されるとともに、
この脱着されたN2成分が製品N2ホルダー6に回収され
る。この間、第2吸着塔12では休止工程および洗浄工
程、第3吸着塔13では昇圧,吸着工程および回収工程が
それぞれ行なわれている。
Thereafter, by opening the valve 51 and operating the vacuum pump 54 provided in the desorption gas recovery pipe line 5, the inside of the first adsorption tower 11 is decompressed and the N 2 component is desorbed from the adsorbent,
The desorbed N 2 component is collected in the product N 2 holder 6. During this period, the resting step and the washing step are performed in the second adsorption tower 12, and the pressurization, the adsorption step and the recovery step are performed in the third adsorption tower 13, respectively.

そして第1吸着塔11では、再び昇圧,吸着工程から上記
各工程が順次繰返され、他の吸着塔12,13も対応する各
工程が繰返される。これによって製品N2ホルダー6に連
続的に高純度のN2成分ガスが製品N2として蓄えられる。
Then, in the first adsorption tower 11, the above steps from the pressure increasing step and the adsorption step are repeated again in sequence, and the corresponding steps in the other adsorption towers 12 and 13 are also repeated. As a result, high-purity N 2 component gas is continuously stored in the product N 2 holder 6 as product N 2 .

上記各工程の内、各吸着塔11,12,13の回収工程では洗浄
排ガスが排ガスとして排ガス排出管路4を通して前処理
塔71,72の一方に送られ、この排ガスによってその前処
理塔の再生が行われる。上記2つの前処理塔71,72の
内、一方が原料空気中のH2OおよびCO2を吸着する吸着工
程の間、他方は上記H2OおよびCO2を脱着して再生させる
再生工程が行われる。
In the recovery process of the adsorption towers 11, 12, and 13 among the above-mentioned steps, the cleaning exhaust gas is sent as exhaust gas to one of the pretreatment towers 71, 72 through the exhaust gas discharge pipe 4, and the exhaust gas is regenerated in the pretreatment tower. Is done. Of the two pretreatment towers 71, 72, one is an adsorption step for adsorbing H 2 O and CO 2 in the feed air, and the other is a regeneration step for desorbing and regenerating the H 2 O and CO 2. Done.

例えば第1前処理塔71が吸着工程の場合には弁701と弁7
31とが開状態、弁741と弁751とが閉状態にそれぞれ設定
され、第2前処理塔72では弁702と弁732とが閉状態、弁
742と弁752とが開状態にそれぞれ設定されて再生工程が
行われる。これらの弁は自動開閉弁によって構成され、
所定時間毎に互いに逆の状態に自動的に切換えられ、こ
れにより吸着工程にある前処置塔内の吸着材が破過状態
となる前に再生工程に切換えられるようにされている。
For example, when the first pretreatment tower 71 is an adsorption process, the valve 701 and the valve 7
31 is set to an open state, valves 741 and 751 are set to a closed state, and in the second pretreatment tower 72, a valve 702 and a valve 732 are closed,
742 and valve 752 are set to the open state, respectively, and the regeneration process is performed. These valves consist of automatic on-off valves,
The states are automatically switched to the opposite states at predetermined time intervals, so that the adsorbent in the pretreatment tower in the adsorption process is switched to the regeneration process before the breakthrough condition occurs.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記従来のN2−PSA方法および装置において、前処理部
7の2つの前処理塔71,72の切換えに際して、例えば第
1前処理塔71が吸着工程にある場合、弁741を挟んで第
1前処理塔71側の管路内には原料空気圧縮機10によって
加圧された比較的高圧の原料空気、吸着塔11,12,13側の
管路4内には比較的低圧の洗浄排ガスがそれぞれ存在し
ているために、上記弁741と弁751とを開作動すると、弁
751を通して圧力が抜けるわずかな時間に、弁741を通し
て原料空気が圧力差により排ガス排出管路4内を逆流し
て吸着塔11,12,13内に入込むという問題がある。
In the above-mentioned conventional N 2 -PSA method and apparatus, when switching the two pretreatment towers 71, 72 of the pretreatment section 7, for example, when the first pretreatment tower 71 is in the adsorption step, the valve 741 is sandwiched between the first pretreatment tower 71 and the first pretreatment tower 71. Relatively high pressure raw material air pressurized by the raw material air compressor 10 is provided in the pretreatment tower 71 side, and relatively low pressure cleaning exhaust gas is provided in the adsorption towers 11, 12, 13 side pipeline 4. Since the valves 741 and 751 are actuated because they exist respectively,
There is a problem that the raw material air flows back through the exhaust gas discharge pipe line 4 through the valve 741 due to the pressure difference and enters the adsorption towers 11, 12, 13 in a short time when the pressure is released through the 751.

これを防止するために上記排ガス排出管路4との接続部
である弁741,742を逆止弁によって構成することが考え
られる。ところが、この場合においても原料空気と洗浄
排ガスとの圧力差が比較的大きいために再生工程と吸着
工程との切換え時に瞬間的に原料空気が排ガス排出管路
4内に漏れ、吸着塔11,12,13に入るおそれがある。この
漏れた原料空気は製品N2の純度を低下させ、この純度低
下に対する上記原料空気の影響は得ようとする製品N2
純度が高いほど大きくなる傾向にあり、製品N2の純度向
上を阻害する原因となる。
In order to prevent this, it is conceivable that the valves 741 and 742, which are the connecting portions with the exhaust gas discharge pipeline 4, are configured as check valves. However, even in this case, since the pressure difference between the raw material air and the cleaning exhaust gas is relatively large, the raw material air instantaneously leaks into the exhaust gas discharge pipe line 4 at the time of switching between the regeneration process and the adsorption process, and the adsorption towers 11, 12 There is a risk of entering 13, The leaked air feed reduces the purity of the product N 2, tends to product purity N 2 is increased higher to be obtained the effect of the feed air for the decreased purity, the purity improve product N 2 It causes the inhibition.

この発明は、このような従来の問題を解決するためにな
されたものであり、排ガス排出管路を通して原料空気が
吸着塔内に逆流することを確実に防止して製品N2の純度
を向上させることができるN2−PSA方法および装置を提
供することを目的としている。
The present invention has been made to solve such a conventional problem, and improves the purity of the product N 2 by reliably preventing the raw material air from flowing back into the adsorption tower through the exhaust gas discharge pipeline. It is an object of the present invention to provide an N 2 -PSA method and device capable of performing the same.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するために、この発明の請求項1では前
処理部で水分などを吸着除去することにより原料空気を
前処理し、この前処理した原料空気を原料空気供給管路
によって吸着塔に供給してこの吸着塔で原料空気中の窒
素成分を吸着回収し、この吸着塔からの排ガスを排ガス
排出管路によって上記前処理部に通し、この排ガスによ
って前処理部の脱着再生を行う圧力スイング吸着式高純
度窒素製造方法において、上記前処理部は複数の前処理
塔によって構成され、複数の前処理塔の内の一部では吸
着除去工程、他部では脱着再生工程がそれぞれ行われる
とともに、これらの工程は弁の開閉操作によって互いに
切換えられ、この切換えに伴い上記弁を介して排ガス排
出管路内に逆流する原料空気をこの排ガス排出管路に設
けた捕捉用ホルダーによって溜めるように構成した。
In order to achieve the above object, in claim 1 of the present invention, the raw material air is pretreated by adsorbing and removing water and the like in the pretreatment section, and the pretreated raw material air is fed to the adsorption tower through the raw material air supply pipe line. A pressure swing in which the nitrogen component in the raw material air is adsorbed and recovered in this adsorption tower, and the exhaust gas from this adsorption tower is passed through the pretreatment section through the exhaust gas discharge pipe, and the desorption regeneration of the pretreatment section is performed by this exhaust gas. In the adsorption-type high-purity nitrogen production method, the pretreatment section is composed of a plurality of pretreatment towers, part of the plurality of pretreatment towers is adsorbed and removed, and the other part is desorbed and regenerated. These steps are switched by the opening / closing operation of the valve, and in accordance with this switching, the raw material air that flows back into the exhaust gas discharge line via the valve is provided in the exhaust gas discharge line. It was configured to store by.

また請求項2では、請求項1の構成に加え、排ガス排出
管路の吸着塔側に回収用ホルダーを設け、この回収用ホ
ルダーに吸着塔から排出される排ガスの内のN2濃度の比
較的高い排ガスを溜め、この排ガスを吸着塔が脱着工程
終了後、昇圧,吸着工程の前にこの吸着塔に入れてN2
分を吸着させるように構成した。
Further, in claim 2, in addition to the structure of claim 1, a recovery holder is provided on the side of the adsorption tower of the exhaust gas discharge pipe, and the recovery holder has a relatively low N 2 concentration in the exhaust gas discharged from the adsorption tower. High exhaust gas was stored, and after the adsorption tower completed the desorption process, this exhaust gas was put into this adsorption tower before the pressurization and adsorption processes to adsorb the N 2 component.

さらに上記製造方法を実施するための装置として、請求
項3では原料空気から水分などを吸着除去して前処理す
る複数の前処理塔と、この前処理塔によって前処理され
た原料空気からN2成分を吸着する吸着塔とを有し、前処
理塔と吸着塔とは、この吸着塔からの排ガスが前処理塔
へ送給可能に排ガス排出管路によって互いに接続される
とともに、上記前処理塔からの原料空気が吸着塔へ供給
可能に原料空気供給管路によって互いに接続され、これ
ら2つの管路と前処理塔とは弁によって互いに切換え可
能に接続され、上記排ガス排出管路には前処理塔と上記
2つの管路との切換え時に上記排ガス排出管路内に流入
する原料空気を溜める捕捉用ホルダーが設けられている
ように構成した。
Further, as an apparatus for carrying out the above-mentioned manufacturing method, in claim 3, a plurality of pretreatment towers for adsorbing and removing water and the like from the raw material air to pretreat, and N 2 from the raw material air pretreated by the pretreatment tower. A pretreatment tower and an adsorption tower having an adsorption tower for adsorbing components, the exhaust gas from the adsorption tower being connected to each other by an exhaust gas discharge pipeline so that the exhaust gas can be sent to the pretreatment tower, and the pretreatment tower Raw material air from the above is connected to each other by a raw material air supply pipeline so as to be able to supply to the adsorption tower, these two pipelines and the pretreatment tower are switchably connected to each other by a valve, and the exhaust gas discharge pipeline is pretreated. A trapping holder for accumulating the raw material air flowing into the exhaust gas discharge pipe when the tower and the two pipes are switched is provided.

請求項4では請求項3の構成に加え、排ガス排出管路に
その吸着塔側に回収用ホルダーと、この回収用ホルダー
をバイパスするバイパス管路とが設けられているように
構成した。
In the fourth aspect, in addition to the configuration of the third aspect, the exhaust gas discharge pipeline is provided with a recovery holder on the adsorption tower side and a bypass pipeline that bypasses the recovery holder.

請求項5では請求項4における回収ホルダーに吸着材を
充填した。
In claim 5, the recovery holder in claim 4 is filled with an adsorbent.

〔作用〕[Action]

上記請求項1および請求項3の構成によれば、前処理塔
の切換えに際して弁から原料空気が漏れても、捕捉用ホ
ルダーに溜められるので、上記原料空気が排ガス排出管
路を通して吸着塔内に流入することはない。
According to the configurations of claims 1 and 3, even if the raw material air leaks from the valve when the pretreatment tower is switched, the raw material air is stored in the trapping holder, so that the raw material air is introduced into the adsorption tower through the exhaust gas discharge pipeline. There is no inflow.

また請求項2および請求項4の構成によれば、排ガス排
出管路を通して前処理塔に供給される排ガスは通常はバ
イパス管路に通され、回収工程の終わり頃に排ガス排出
管路に排出されるN2濃度の比較的高い排ガスを回収用ホ
ルダーに溜め、このN2濃度の比較的高い排ガスを脱着工
程終了後で昇圧,吸着工程開始前の吸着塔に入れて上記
排ガスのN2成分を吸着材に吸着させることにより、N2
分の回収率の向上をも図ることができる。
Further, according to the configurations of claims 2 and 4, the exhaust gas supplied to the pretreatment tower through the exhaust gas discharge pipeline is normally passed through the bypass pipeline and discharged to the exhaust gas discharge pipeline near the end of the recovery process. The exhaust gas with a relatively high N 2 concentration is stored in the recovery holder, and the exhaust gas with a relatively high N 2 concentration is put into the adsorption tower before pressurization and before the adsorption process after the desorption process is completed and the N 2 component of the exhaust gas is removed. By adsorbing on the adsorbent, the recovery rate of the N 2 component can be improved.

さらに請求項5の構成によれば回収用ホルダー内の吸着
材に排ガス中の例えばN2成分を吸着させ、この吸着させ
たN2成分を吸着塔に入れることによりN2成分の回収率を
効率よく向上させることができる。
Further adsorbing the example N 2 components in the exhaust gas to the adsorbent constituent to the collecting holder according to claim 5, efficiency recovery of N 2 components by putting the N 2 component is this adsorbed by the adsorption tower Can be improved well.

〔実施例〕 第1図はこの発明の製造方法を実施するためのN2−PSA
装置を示している。この装置は第3図に示す従来のN2
PSA装置における吸着塔11,12,13、これらの吸着塔11,1
2,13に接続された各管路2,3,4,5、および前処理部7な
どの構成と基本的には同様の構成を有し、その排ガス排
出管路4に捕捉用ホルダー8と、吸着材91として合成ゼ
オライトが充填された回収用ホルダー9と、バイパス管
路4aとが付設されたものである。
[Embodiment] FIG. 1 shows N 2 -PSA for carrying out the manufacturing method of the present invention.
The device is shown. This device is a conventional N 2 − shown in FIG.
Adsorption towers 11,12,13 in PSA equipment, these adsorption towers 11,1
The exhaust gas exhaust pipe 4 has a trapping holder 8 in the exhaust gas exhaust pipe 4, which has basically the same structure as the pipes 2, 3, 4, 5 connected to the pipes 2, 13 and the pretreatment unit 7. The recovery holder 9 filled with synthetic zeolite as the adsorbent 91 and the bypass conduit 4a are additionally provided.

すなわち上記排ガス排出管路4にはその前処理塔71,72
側に捕捉用ホルダー8、吸着塔11,12,13側に回収用ホル
ダー9がそれぞれ設けられ、この回収用ホルダー9をバ
イパスするバイパス管路4aが設けられている。このバイ
パス管路4aは上記回収用ホルダー9の入口弁44の上流側
と出口弁45の下流側との間に接続され、このバイパス管
路4aには開閉弁46が設けられている。また排ガス排出管
路4と前処理塔71,72とを接続する弁761,762は逆止弁に
よって構成されている。
That is, the exhaust gas discharge line 4 has its pretreatment towers 71, 72
The holding holder 8 is provided on the side, the collection holders 9 are provided on the adsorption towers 11, 12, and 13, respectively, and the bypass conduit 4a that bypasses the collection holder 9 is provided. The bypass conduit 4a is connected between the upstream side of the inlet valve 44 and the downstream side of the outlet valve 45 of the recovery holder 9, and an opening / closing valve 46 is provided in the bypass conduit 4a. Further, the valves 761 and 762 that connect the exhaust gas discharge conduit 4 and the pretreatment towers 71 and 72 are configured as check valves.

上記構成のN2−PSA装置の運転方法も第2図に示すよう
に昇圧,吸着工程、回収工程、休止工程、洗浄工程およ
び脱着工程によって1サイクルが構成される点は従来の
運転方法と基本的に同じであるが、上記昇圧,吸着工程
と回収工程とにおいて吸着塔11,12,13と前処理部7との
ガスの受渡しが従来方法と異なっている。このN2−PSA
装置の運転方法について排ガス排出管路4を中心にして
第1図および第2図に基づいて第1吸着塔11の回収工程
の開始時点から説明する。なお、上記時点では前処理部
7では第1前処理塔71が吸着工程、第2前処理塔72が再
生工程にあるものとして説明する。
As shown in Fig. 2, the operating method of the N 2 -PSA device with the above-mentioned configuration is basically the same as the conventional operating method in that one cycle is composed of pressurization, adsorption step, recovery step, rest step, washing step and desorption step. However, the delivery of gas between the adsorption towers 11, 12, and 13 and the pretreatment section 7 is different from the conventional method in the pressurization / adsorption step and the recovery step. This N 2 -PSA
The operation method of the apparatus will be described from the start of the recovery step of the first adsorption tower 11 based on FIGS. 1 and 2 centering on the exhaust gas discharge pipe 4. It is assumed that at the above-mentioned time point, in the pretreatment section 7, the first pretreatment tower 71 is in the adsorption step and the second pretreatment tower 72 is in the regeneration step.

第1吸着塔11の回収工程は、洗浄工程にある第3吸着塔
13からの洗浄排ガスが連絡管路16を通して第1吸着塔11
導入され、この洗浄排ガス中のN2成分が第1吸着塔11内
の吸着材に吸着回収され、残りの洗浄排ガスが排ガス排
出管路4を通して前処理塔72に送られる。
The recovery process of the first adsorption tower 11 is the third adsorption tower in the cleaning process.
Cleaning exhaust gas from 13 passes through connecting line 16 to the first adsorption tower 11
The introduced N 2 component in the cleaning exhaust gas is adsorbed and collected by the adsorbent in the first adsorption tower 11, and the remaining cleaning exhaust gas is sent to the pretreatment tower 72 through the exhaust gas discharge pipe 4.

この際、排ガス排出管路4では弁41および弁46が開状
態、弁42、弁43、弁44および弁45が閉状態にそれぞれ設
定されている。したがって上記洗浄排ガスはバイパス管
路4aを通して前処理塔72に送られる。
At this time, in the exhaust gas discharge conduit 4, the valve 41 and the valve 46 are set to the open state, and the valve 42, the valve 43, the valve 44 and the valve 45 are set to the closed state. Therefore, the cleaning exhaust gas is sent to the pretreatment tower 72 through the bypass line 4a.

上記洗浄排ガスは、回収工程の進行にしたがってその中
のN2成分の回収が行なわれなくなり、そのN2濃度は徐々
に洗浄用ガスである製品N2のN2濃度に近付いてN2濃度の
比較的高いガスとなる。このため上記回収工程の終わり
頃(例えば回収工程の40sec経過時)からこの回収工程
の終了時までの間には、バイパス管路4aの弁46を閉状態
にするとともに、弁44と弁45とを開状態にし、これによ
り上記N2濃度の比較的高い洗浄排ガスを回収用ホルダー
9内に導き、回収用ホルダー9内の吸着材91に上記洗浄
排ガス中のN2成分を吸着させる。
The cleaning exhaust gas according to the progress of the recovery process will not take place recovery of N 2 components therein, the N 2 concentration in the N 2 concentration approaching the N 2 concentration in the product N 2 is gradually cleaning gas It becomes a relatively high gas. Therefore, between the end of the recovery process (for example, when 40 seconds elapses in the recovery process) and the end of the recovery process, the valve 46 of the bypass conduit 4a is closed and the valve 44 and the valve 45 are connected. Is opened, whereby the cleaning exhaust gas with a relatively high N 2 concentration is introduced into the recovery holder 9, and the adsorbent 91 in the recovery holder 9 adsorbs the N 2 component in the cleaning exhaust gas.

上記回収工程の終了後、弁46を閉状態、弁44を開状態に
それぞれ保ったまま、所定時間(例えば1〜2sec間)だ
け弁41と弁45とを閉状態にするとともに、弁42を開状態
にする。これにより脱着工程が終わって内部が減圧状態
となった第2吸着塔12と、回収用ホルダー9とを連通さ
せる。この結果、回収用ホルダー9の内部が減圧されて
吸着材91からN2成分が脱着され、この脱着ガスが第2吸
着塔12内に入り、この第2吸着塔12は上記脱着ガスによ
ってこの分だけ昇圧されるとともに、そのN2成分が第2
吸着塔12の吸着材に吸着される。
After completion of the recovery step, while keeping the valve 46 in the closed state and the valve 44 in the open state, the valve 41 and the valve 45 are closed for a predetermined time (for example, 1 to 2 seconds), and the valve 42 is opened. Make it open. As a result, the second adsorption tower 12 whose internal pressure has been reduced after the desorption process is completed is brought into communication with the recovery holder 9. As a result, the inside of the recovery holder 9 is decompressed and the N 2 component is desorbed from the adsorbent 91, this desorbed gas enters the second adsorption tower 12, and this second adsorption tower 12 is separated by this desorbed gas. Is boosted only and its N 2 component is the second
Adsorbed on the adsorbent of the adsorption tower 12.

これによって、従来、前処理部7を通して大気中に廃棄
していた洗浄排ガスからN2成分を有効に回収することが
できるので、装置に取入れる原料空気からのN2成分の回
収率を向上することができる。
As a result, the N 2 component can be effectively recovered from the cleaning exhaust gas that was conventionally discarded into the atmosphere through the pretreatment unit 7, so the recovery rate of the N 2 component from the raw material air taken into the device is improved. be able to.

この後、弁42と弁44とを閉状態にすることにより、第2
吸着塔には原料空気供給管路2を通して従来方法と同様
に原料空気が供給され、この原料空気によって第2吸着
塔12内が昇圧されるとともに、この原料空気中のN2成分
が吸着される。
After that, by closing the valves 42 and 44, the second
Raw material air is supplied to the adsorption tower through the raw material air supply pipe line 2 in the same manner as in the conventional method, and the inside of the second adsorption tower 12 is pressurized by the raw material air, and the N 2 component in the raw material air is adsorbed. .

そしてこの第2吸着塔12の昇圧,吸着工程が終了して回
収工程開始時点で弁42と弁46とを開状態にする。これに
より第2吸着塔12からの洗浄排ガスは、第1吸着塔11の
回収工程と同様に、バイパス管路4aを通して第2前処理
塔72に送られる。そしてこの第2吸着塔12の回収工程の
終わり頃に、弁46を閉状態にするとともに、弁44と弁45
とを開状態にしてN2濃度が比較的高くなった洗浄排ガス
を回収用ホルダー9内に通し、そのN2成分を吸着材91に
吸着させる。そして、第2吸着塔12の回収工程終了後、
上記回収用ホルダー9と、脱着工程の終了した第3吸着
塔13とを連通させることにより、上記回収用ホルダー9
内の吸着材91からN2成分を脱着させるとともに、この脱
着ガスを第3吸着塔13に入れる。
Then, the valve 42 and the valve 46 are opened at the time when the pressure raising and adsorption steps of the second adsorption tower 12 are completed and the recovery step is started. As a result, the cleaning exhaust gas from the second adsorption tower 12 is sent to the second pretreatment tower 72 through the bypass pipe line 4a as in the recovery step of the first adsorption tower 11. At the end of the recovery process of the second adsorption tower 12, the valve 46 is closed and the valves 44 and 45 are closed.
The cleaning exhaust gas having a relatively high N 2 concentration is passed through the recovery holder 9 and the N 2 component is adsorbed by the adsorbent 91. Then, after the recovery step of the second adsorption tower 12,
By connecting the recovery holder 9 and the third adsorption tower 13 that has completed the desorption process, the recovery holder 9
The N 2 component is desorbed from the adsorbent 91 inside and the desorbed gas is put into the third adsorption tower 13.

以後、同様に第3吸着塔13の回収工程の終わり頃に排出
される洗浄排ガスを回収用ホルダー9に通し、この洗浄
排ガス中のN2成分を吸着回収してこのN2成分を第1吸着
塔11の昇圧,吸着工程の開始前に第1吸着塔11に入れ
る。
Thereafter, similarly, the cleaning exhaust gas discharged toward the end of the recovery process of the third adsorption tower 13 is passed through the recovery holder 9, and the N 2 component in the cleaning exhaust gas is adsorbed and recovered to make the first adsorption of the N 2 component. It is put into the first adsorption tower 11 before the pressure rising and adsorption steps of the tower 11 are started.

一方、前処理部7において吸着工程にある第1前処理塔
71内の吸着材が破過状態となる前に、第1前処理部71側
では弁731と弁701とが閉状態、弁751が開状態にそれぞ
れ作動され、第2前処理塔72側では弁732と弁702とが開
状態、弁752が閉状態にそれぞれ作動され、これにより
第1前処理塔71が吸着工程から再生工程、第2前処理塔
72が再生工程から吸着工程にそれぞれ切換えられる。
On the other hand, the first pretreatment tower in the adsorption step in the pretreatment section 7
Before the adsorbent in 71 enters the breakthrough state, the valves 731 and 701 are operated in the closed state and the valve 751 is operated in the open state on the first pretreatment section 71 side, and on the second pretreatment tower 72 side. The valves 732 and 702 are operated in the open state and the valve 752 in the closed state, whereby the first pretreatment tower 71 is changed from the adsorption step to the regeneration step and the second pretreatment tower.
72 is switched from the regeneration process to the adsorption process.

この切換えの際に、弁761,762を通して瞬間的に加圧下
の原料空気が漏れ、この漏れた原料空気(以下リーク原
料空気という)が圧力差により排ガス排出管路4を逆流
しても、このリーク原料空気は捕捉用ホルダー8に溜め
られて捕捉されるために、上記リーク原料空気が吸着塔
11,12,13内に流入することはない。これにより製品N2
純度低下を防止することができ、従来よりも製品N2のN2
純度を向上させることができる。
At the time of this switching, the raw material air under pressure momentarily leaks through the valves 761 and 762, and even if the leaked raw material air (hereinafter referred to as leak raw material air) flows backward in the exhaust gas discharge pipe line 4 due to the pressure difference, Since the air is stored and captured in the capture holder 8, the leaked raw material air is absorbed in the adsorption tower.
It does not flow into 11,12,13. This makes it possible to prevent a decrease in purity of the product N 2, product N 2 than the conventional N 2
The purity can be improved.

なお上記実施例においては、回収用ホルダー9内に吸着
材91が充填されている場合を示したが、これに限らず、
例えば吸着材91が充填されていなくてもよい。この場合
には、回収工程の終わり頃に排出されるN2濃度の比較的
高い洗浄排ガスを弁45を閉状態にして回収用ホルダー9
内に溜め、この溜めた洗浄排ガスを脱着工程終了後の吸
着塔に導入すればよい。
In the above embodiment, the case where the adsorbent 91 is filled in the recovery holder 9 is shown, but the present invention is not limited to this.
For example, the adsorbent 91 may not be filled. In this case, the cleaning exhaust gas having a relatively high N 2 concentration discharged near the end of the recovery process is closed by the valve 45 and the recovery holder 9 is used.
It is only necessary to store the gas inside and to introduce the collected cleaning exhaust gas into the adsorption tower after the desorption process.

また上記実施例においては、排ガス排出管路4に捕捉用
ホルダー8と回収用ホルダー9とを併置した場合を示し
たが、これに限らず、例えば排ガス排出管路に捕捉用ホ
ルダー8のみを設けてN2−PSA装置を構成してもよい。
この場合においても、前処理塔71,72の工程の切換えに
伴う原料空気の吸着塔11,12,13への逆流を確実に防止す
ることができ、これにより製品N2の純度の向上を図るこ
とができる。
Further, in the above-described embodiment, the case where the trapping holder 8 and the recovery holder 9 are arranged side by side in the exhaust gas discharge conduit 4 is shown, but the present invention is not limited to this, and for example, only the trapping holder 8 is provided in the exhaust gas discharge conduit. it may constitute the N 2-PSA apparatus Te.
Even in this case, it is possible to reliably prevent the backflow of the raw material air to the adsorption towers 11, 12, 13 due to the switching of the steps of the pretreatment towers 71, 72, thereby improving the purity of the product N 2. be able to.

〔具体例〕〔Concrete example〕

第1図に示すN2−PSA装置を用いた上記実施例の方法
と、第3図に示すN2−PSA装置を用いた従来の方法とに
より、原料空気量60Nm3/h、圧力4.0Kg/cm2、の原料空気
を前処理塔に供給し、3分間毎に前処理塔の吸着工程と
再生工程とを切換え、20Nm3/hの製品N2を取出すように
それぞれ運転した。
By the method of the above-mentioned embodiment using the N 2 -PSA apparatus shown in FIG. 1 and the conventional method using the N 2 -PSA apparatus shown in FIG. 3, the raw material air amount is 60 Nm 3 / h, the pressure is 4.0 Kg. The raw material air of / cm 2 was supplied to the pretreatment tower, the adsorption step and the regeneration step of the pretreatment tower were switched every 3 minutes, and the operation was performed so as to take out 20 Nm 3 / h of product N 2 .

この結果、従来の方法による場合には製品N2の純度は9
9.95%であったのに対して、この発明による場合にはN2
純度として99.999%まで向上させることができた。
As a result, the purity of the product N 2 is 9 when the conventional method is used.
In the case of the present invention, N 2
The purity could be improved to 99.999%.

〔発明の効果〕〔The invention's effect〕

この発明の請求項1および請求項3のN2−PSA方法およ
び装置によれば、前処理塔の切換えに際して弁から原料
空気が漏れても、捕捉用ホルダーに溜められるので、上
記原料空気が排ガス排出管路を通して吸着塔内に逆流す
ることはない。これにより製品N2の純度を向上させるこ
とができる。
According to the N 2 -PSA method and apparatus of claims 1 and 3 of the present invention, even if the raw material air leaks from the valve when the pretreatment tower is switched, it is stored in the trapping holder, so the raw material air is exhaust gas. There is no backflow into the adsorption tower through the discharge line. This can improve the purity of the product N 2 .

また請求項2および請求項4の方法および装置によれ
ば、回収工程の終わり頃に排ガス排出管路に排出される
N2濃度の比較的高い排ガスを回収用ホルダーに溜め、こ
のN2濃度の比較的高い排ガスを脱着工程終了後で昇圧,
吸着工程開始前の吸着塔に入れて上記排ガスのN2成分を
吸着材に吸着させることにより、上記請求項1および請
求項3における製品N2の純度向上という効果に加えて、
N2成分の回収率の向上をも図ることができる。
Further, according to the method and the apparatus of claims 2 and 4, the exhaust gas is discharged to the exhaust gas discharge pipeline at the end of the recovery step.
Exhaust gas with a relatively high N 2 concentration is stored in a recovery holder, and this exhaust gas with a relatively high N 2 concentration is pressurized after the desorption process,
In addition to the effect of improving the purity of the product N 2 in the above-mentioned claim 1 and claim 3, by adsorbing the N 2 component of the exhaust gas into the adsorbent by putting it in the adsorption tower before the start of the adsorption step,
It is also possible to improve the recovery rate of the N 2 component.

さらに請求項5の構成によれば回収用ホルダー内の吸着
材に排ガス中の例えばN2成分を吸着させ、この吸着させ
たN2成分を吸着塔に入れることによりN2成分の回収率を
効率よく向上させることができる。
Further adsorbing the example N 2 components in the exhaust gas to the adsorbent constituent to the collecting holder according to claim 5, efficiency recovery of N 2 components by putting the N 2 component is this adsorbed by the adsorption tower Can be improved well.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明に係るN2−PSA装置の実施例の説明
図、第2図は第1図の装置を用いた高純度N2の製造方法
の工程説明図、第3図は従来のN2−PSA装置の説明図、
第4図は従来のN2−PSA装置を用いた高純度N2の製造方
法の工程説明図である。 2……原料空気供給管路、3……洗浄用ガス供給管路、
4……排ガス排出管路、5……脱着ガス回収管路、6…
…製品N2ホルダー、7……前処理部、8……捕捉用ホル
ダー、9……回収用ホルダー、11,12,13……吸着塔、7
1,72……前処理塔、761,762……前処理塔と排ガス排出
管路とを接続する弁。
FIG. 1 is an explanatory view of an embodiment of an N 2 -PSA device according to the present invention, FIG. 2 is a process explanatory view of a method for producing high purity N 2 using the device of FIG. 1, and FIG. Explanatory drawing of N 2 -PSA device,
FIG. 4 is a process explanatory diagram of a method for producing high-purity N 2 using a conventional N 2 -PSA apparatus. 2 ... Raw material air supply line, 3 ... Cleaning gas supply line,
4 ... Exhaust gas discharge pipeline, 5 ... Desorption gas recovery pipeline, 6 ...
… Product N 2 holder, 7 …… Pretreatment section, 8 …… Capture holder, 9 …… Recovery holder, 11,12,13 …… Adsorption tower, 7
1,72 …… Pretreatment tower, 761,762 …… Valve connecting the pretreatment tower and the exhaust gas discharge line.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】前処理部で水分などを吸着除去することに
より原料空気を前処理し、この前処理した原料空気を原
料空気供給管路によって吸着塔に供給してこの吸着塔で
原料空気中の窒素成分を吸着回収し、この吸着塔からの
排ガスを排ガス排出管路によって上記前処理部に通し、
この排ガスによって前処理部の脱着再生を行う圧力スイ
ング吸着式高純度窒素製造方法において、上記前処理部
は複数の前処理塔によって構成され、複数の前処理塔の
内の一部では吸着除去工程、他部では脱着再生工程がそ
れぞれ行われるとともに、これらの工程は弁の開閉操作
によって互いに切換えられ、この切換えに伴い上記弁を
介して排ガス排出管路内に逆流する原料空気をこの排ガ
ス排出管路に設けた捕捉用ホルダーによって溜めるよう
にしたことを特徴とする圧力スイング吸着式高純度窒素
製造方法。
1. A raw material air is pretreated by adsorbing and removing water and the like in a pretreatment section, and the pretreated raw material air is supplied to an adsorption tower through a raw material air supply pipe line, and the raw material air is fed into the adsorption tower. The nitrogen component of is adsorbed and recovered, and the exhaust gas from this adsorption tower is passed through the pretreatment section through an exhaust gas discharge pipe line,
In the pressure swing adsorption type high-purity nitrogen production method of performing desorption regeneration of the pretreatment section by this exhaust gas, the pretreatment section is composed of a plurality of pretreatment towers, and an adsorption removal step is performed in a part of the plurality of pretreatment towers. The desorption / regeneration process is performed in other parts, and these processes are switched to each other by the opening / closing operation of the valve. Along with this switching, the raw material air that flows backward into the exhaust gas exhaust pipe through the valve is exhausted from the exhaust gas exhaust pipe. A pressure swing adsorption type high-purity nitrogen production method characterized in that it is stored by a trapping holder provided in a passage.
【請求項2】排ガス排出管路の吸着塔側に回収用ホルダ
ーを設け、この回収用ホルダーに吸着塔から排出される
排ガスの内のN2濃度の比較的高い排ガスを溜め、この排
ガスを吸着塔が脱着工程終了後、昇圧,吸着工程の前に
この吸着塔に入れてN2成分を吸着させるようにしたこと
を特徴とする請求項1記載の圧力スイング吸着式高純度
窒素製造方法。
2. A recovery holder is provided on the adsorption tower side of the exhaust gas discharge pipe, and the exhaust gas discharged from the adsorption tower has a relatively high concentration of N 2 and is adsorbed on the recovery holder. The pressure swing adsorption type high-purity nitrogen production method according to claim 1, wherein the column is placed in the adsorption column after the desorption step and before the pressurization and adsorption steps to adsorb the N 2 component.
【請求項3】原料空気から水分などを吸着除去して前処
理する複数の前処理塔と、この前処理塔によって前処理
された原料空気からN2成分を吸着する吸着塔とを有し、
前処理塔と吸着塔とは、この吸着塔からの排ガスが前処
理塔へ送給可能に排ガス排出管路によって互いに接続さ
れるとともに、上記前処理塔からの原料空気が吸着塔へ
供給可能に原料空気供給管路によって互いに接続され、
これら2つの管路と前処理塔とは弁によって互いに切換
え可能に接続され、上記排ガス排出管路には前処理塔と
上記2つの管路との切換え時に上記排ガス排出管路内に
流入する原料空気を溜める捕捉用ホルダーが設けられて
いることを特徴とする圧力スイング吸着式高純度窒素製
造装置。
3. A plurality of pretreatment towers for pretreatment by adsorbing and removing water and the like from the raw material air, and an adsorption tower for adsorbing N 2 component from the raw material air pretreated by the pretreatment tower,
The pretreatment tower and the adsorption tower are connected to each other by an exhaust gas discharge pipeline so that the exhaust gas from this adsorption tower can be sent to the pretreatment tower, and the raw material air from the pretreatment tower can be supplied to the adsorption tower. Connected to each other by a raw air supply line,
These two pipes and the pretreatment tower are connected by a valve so that they can be switched to each other, and the raw material flowing into the exhaust gas discharge pipeline when the pretreatment tower and the two pipelines are switched to each other. A pressure swing adsorption type high-purity nitrogen manufacturing device, characterized in that a trapping holder for accumulating air is provided.
【請求項4】排ガス排出管路にその吸着塔側に回収用ホ
ルダーと、この回収用ホルダーをバイパスするバイパス
管路とが設けられていることを特徴とする請求項3記載
の圧力スイング吸着式高純度窒素製造装置。
4. The pressure swing adsorption system according to claim 3, wherein the exhaust gas discharge pipe line is provided with a recovery holder on the adsorption tower side and a bypass pipe line that bypasses the recovery holder. High-purity nitrogen production equipment.
【請求項5】回収用ホルダーには吸着材が充填されてい
ることを特徴とする請求項4記載の圧力スイング吸着式
高純度窒素製造装置。
5. The pressure swing adsorption type high-purity nitrogen producing apparatus according to claim 4, wherein the recovery holder is filled with an adsorbent.
JP63215927A 1988-08-29 1988-08-29 Pressure swing adsorption type high-purity nitrogen production method and apparatus Expired - Lifetime JPH07110328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63215927A JPH07110328B2 (en) 1988-08-29 1988-08-29 Pressure swing adsorption type high-purity nitrogen production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63215927A JPH07110328B2 (en) 1988-08-29 1988-08-29 Pressure swing adsorption type high-purity nitrogen production method and apparatus

Publications (2)

Publication Number Publication Date
JPH0264004A JPH0264004A (en) 1990-03-05
JPH07110328B2 true JPH07110328B2 (en) 1995-11-29

Family

ID=16680567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63215927A Expired - Lifetime JPH07110328B2 (en) 1988-08-29 1988-08-29 Pressure swing adsorption type high-purity nitrogen production method and apparatus

Country Status (1)

Country Link
JP (1) JPH07110328B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101428763B (en) * 2008-11-26 2011-01-19 翁兆国 Adsorption column top cover integration of oxygen generator
CN101869797B (en) * 2010-07-30 2012-10-03 上海穗杉实业有限公司 Method and apparatus for extracting high-purity nitrogen from air
CN102588860B (en) * 2011-01-07 2014-05-14 北京联合大学 Method for cleaning solar streetlight photovoltaic panel

Also Published As

Publication number Publication date
JPH0264004A (en) 1990-03-05

Similar Documents

Publication Publication Date Title
US5632803A (en) Enhanced helium recovery
KR100199226B1 (en) Method of recovering oxygen-rich gas
US5536300A (en) Natural gas enrichment process
KR100838166B1 (en) Method And System for Separating Gas
US5620501A (en) Recovery of trace gases from gas streams
EP1101522A1 (en) Pressure swing adsorption process
JPH0321207B2 (en)
JP2014205138A (en) Gas purification method
JP2719661B2 (en) Adsorption separation method and apparatus for separating argon and hydrogen from ammonia plant purge gas at high concentration
JP5647388B2 (en) Blast furnace gas separation method and blast furnace gas separation apparatus
JPH07110328B2 (en) Pressure swing adsorption type high-purity nitrogen production method and apparatus
JPH10272332A (en) Gas separation device and its operation method
KR0173399B1 (en) Method for manufacturing carbon dioxide by pressure swing absorption
JPH09187622A (en) Method for separating and recovering concentrated carbon dioxide
JPS61230715A (en) Method for concentrating and recovering gas by using psa apparatus
JP2529929B2 (en) Method for separating and recovering carbon monoxide gas
KR100862080B1 (en) Pressure Swing Adsorption Method And Apparatus thereof
RU2773664C1 (en) Gas separation unit and gas separation method
CA2183832A1 (en) Enhanced helium recovery
JP2004148270A (en) Pressure swing adsorption equipment and production method of high concentration oxygen and high concentration nitrogen using the same
JPS6362521A (en) Pressure swing adsorption apparatus
JPH0517133Y2 (en)
JPH048086B2 (en)
JPH0938443A (en) Gas separator
JP2529928B2 (en) Method for separating and recovering carbon monoxide gas