【0001】
【発明の属する技術分野】
本発明は、少なくとも酸素及び窒素を含有する原料ガスから吸着剤を充填した吸着塔での選択的な吸着分離により、高濃度酸素と高濃度窒素を製造する圧力変動吸着装置(以下、「PSA装置」と称す。)並びにこのPSA装置を用いた高濃度酸素及び高濃度窒素の製造方法に関する。
【0002】
【従来の技術】
従来の高濃度ガス製造装置としては、例えば深冷分離装置、膜分離装置及びPSA装置等が用いられている。深冷分離装置は、空気を断熱膨張で冷却して液化し、窒素や酸素等の沸点の違いを利用して分離し、高濃度酸素や高濃度窒素などを製造する装置である。深冷分離装置は大容量の高濃度ガスを製造する場合に適しているが、電力等の動力費が嵩むことや設備の設置面積が大きくなる等の問題があった。また、膜分離装置は、例えば酸素を選択的に透過する高分子有機膜を用い、空気中の窒素と酸素を分離し、高濃度酸素と高濃度窒素を製造する装置である。膜分離装置は小容量の高濃度ガスを製造する場合に適しているが、工業的に大容量を製造する場合には高価な膜分離モジュールを大量に必要となるため、設備費が嵩む問題がある。また、PSA装置は、比較的大容量の酸素や窒素等の高濃度ガスを製造する場合に適しており、設備費や動力費が低廉で、運転操作も容易であることから近年多く使用されている。
【0003】
PSA装置において、高濃度酸素の製造を主目的として、ゼオライト系等の酸素以外のガス成分を選択的に吸着する吸着剤を充填した吸着塔に、空気等の酸素含有ガスを供給し、窒素、炭酸ガス及び水分等のガス(以下、単に「不純物」と称す。)を吸着剤に吸着させて分離し、吸着し難い酸素を吸着塔から抜き出して高濃度酸素として回収し、吸着剤に吸着した不純物を、減圧工程及びパージ工程等の再生工程により脱着させ、オフガスとして系外に排出することにより、装置全体として連続的に高濃度酸素の製造を行うことができる装置が知られている。
【0004】
また、主に酸素を選択的に吸着する分子篩活性炭吸着剤を充填した吸着塔に、空気等の酸素含有ガスを供給し、吸着剤に酸素を選択的に吸着させて分離し、吸着し難い窒素を吸着塔から排出して高濃度窒素ガスとして回収し、吸着剤に吸着した酸素を、減圧工程等の再生工程により脱着させ、吸着剤を再生すると共に高濃度酸素として回収し、これらの工程を複数の吸着塔間でサイクリックに繰り返されることにより、装置全体として連続的に高濃度窒素及び高濃度酸素の製造を行なうことができる装置も知られている(例えば、特許文献1参照)。
【0005】
また、上記高濃度酸素製造における主に酸素を選択的に吸着する分子篩活性炭吸着剤を充填した吸着塔(以下、「活性炭吸着塔」と称す。)と酸素以外のガス成分を選択的に吸着するゼオライト系等の吸着剤を充填した吸着塔(以下、「ゼオライト吸着塔」と称す。)とを連結して同一装置とし、活性炭吸着塔で吸着した酸素を脱着してゼオライト吸着塔に供給し、残余の酸素以外のガス成分を選択的に吸着除去して高濃度酸素を製造するPSA装置も知られている(例えば、特許文献2及び特許文献3)。
【0006】
【特許文献1】
特開2001−269532号公報(特許請求の範囲)
【特許文献2】
特開昭54−132476号公報(特許請求の範囲)
【特許文献3】
特開平7−267612号公報(特許請求の範囲)
【0007】
【発明が解決しようとする課題】
しかしながら、従来のPSA装置として、ゼオライト系等の酸素以外のガス成分を選択的に吸着する吸着剤を用いた装置の場合には、空気から90容量%以上の高純度酸素を得ることはできるが、被吸着物質である窒素の分圧が高いため、吸着剤充填量は膨大になるという課題があった。また、特許文献1に記載のように分子篩活性炭を吸着剤として使用し、酸素を選択的に吸着する装置の場合には、吸着剤充填量を削減することはできるが、製造される酸素の濃度が低いという課題があった。特に、空気を分離して酸素を製造する場合には、不純物となる窒素の分圧が高いため、窒素の競合吸着量が多くなり、濃縮されたとしても40〜50容量%程度の酸素濃度であり、酸素濃度が低下するという課題があった。
【0008】
また、活性炭吸着塔とゼオライト吸着塔とを連結して同一装置としたPSA装置の場合には、酸素を高濃度に濃縮させるためには活性炭吸着塔において酸素が破過するまで吸着工程を継続させることが好ましく、また、窒素を高濃度に濃縮させるためには活性炭吸着塔において酸素が破過する前に脱着工程を行うことが好ましい。ところが、特許文献2、3に記載のPSA装置の場合には、これらの条件が考慮されていないため、回収される窒素の濃度が低いという課題があった。また、従来のPSA装置の場合には活性炭吸着塔とゼオライト吸着塔それぞれにおいて吸着されたガスを減圧により脱着する減圧ポンプがそれぞれの吸着塔毎に設けられているため、設備費が嵩むと共に運転が煩雑になるという課題があった。
【0009】
本発明は、上記課題を解決するためになされたもので、吸着塔を小型化して吸着剤の充填量を削減することができると共に設備費や運転経費を低減することができ、また、高濃度酸素及び高濃度窒素を同時に製造することができる圧力変動吸着装置並びにこの装置を用いた高濃度酸素及び高濃度窒素の製造方法を提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明の請求項1に記載の圧力変動吸着装置は、主に酸素を選択的に吸着する分子篩活性炭を充填した第1吸着塔及び第2吸着塔と、主に窒素を選択的に吸着するゼオライト吸着剤を充填した第3吸着塔と、上記第1吸着塔または第2吸着塔に少なくとも酸素及び窒素を含有する原料ガスを供給する原料ガス供給経路と、上記第1吸着塔と上記第2吸着塔とを直列に接続し且つガス流通方向を切替可能に構成した直列経路と、上記第1吸着塔または上記第2吸着塔で脱着された酸素を主に含有する脱着ガスを上記第3吸着塔に供給する濃縮酸素供給路と、上記第1吸着塔または上記第2吸着塔における酸素吸着の破過を確認する酸素濃度測定手段と、を備えたことを特徴とするものである。
【0011】
また、本発明の請求項2に記載の圧力変動吸着装置は、請求項1に記載の発明において、上記第1吸着塔、上記第2吸着塔及び上記第3吸着塔にそれぞれ吸着されたガスを減圧により脱着する共通の減圧ポンプを設けたこと特徴とするものである。
【0012】
また、本発明の請求項3に記載の圧力変動吸着装置を用いた高濃度酸素及び高濃度窒素の製造方法は、主に酸素を選択的に吸着する分子篩活性炭を充填した第1吸着塔及び第2吸着塔と、主に窒素を選択的に吸着するゼオライト吸着剤を充填した第3吸着塔と、上記第1吸着塔または第2吸着塔に少なくとも酸素及び窒素を含有する原料ガスを供給する原料ガス供給経路と、上記第1吸着塔と上記第2吸着塔に対して直列に接続し且つガス流通方向を切替可能に構成した直列経路と、上記第1吸着塔または上記第2吸着塔で脱着された酸素を主に含有する脱着ガスを第3吸着塔に供給する濃縮酸素供給路と、上記第1吸着塔または上記第2吸着塔における酸素吸着の破過を確認する酸素濃度測定手段と、を備えた圧力変動吸着装置を用いて高濃度酸素及び高濃度窒素を製造するに当たって、酸素及び窒素を含有するガスを原料ガスとして上記第1吸着塔に供給して主に酸素を吸着させる第1吸着工程と、第1吸着工程で吸着されないガスを第2吸着塔に供給して主に残余の酸素を吸着させる第2吸着工程と、第2吸着工程で吸着されないガスを高濃度窒素として回収する高濃度窒素回収工程と、上記第1吸着塔において酸素の吸着が破過したことを酸素濃度測定手段により確認した後に上記第1吸着塔における吸着ガスの脱着を行う第1脱着工程と、第1脱着工程からの脱着ガスを上記第3吸着塔に供給して主に残余の窒素を吸着させる第3吸着工程と、第3吸着工程で吸着されないガスを高濃度酸素として回収する高濃度酸素回収工程と、上記第3吸着塔における吸着ガスの脱着を行う第2脱着工程と、上記第1吸着塔と上記第2吸着塔のガス流通方向を逆向きに切り替える経路切替工程とを備え、上記第1吸着塔と上記第2吸着塔の間で上記各工程を繰り返すことを特徴とするものである。
【0013】
【発明の実施の形態】
以下、図1及び図2に示す実施形態に基づいて本発明を説明する。尚、各図中、図1は本発明の圧力変動吸着装置の一実施形態を示す系統図、図2は図1に示す圧力変動吸着装置を用いた高濃度酸素及び高濃度窒素の製造方法の一実施形態の運転サイクルとバルブ操作を説明するための説明図である。
【0014】
まず、本実施形態の圧力変動吸着装置(PSA装置)について説明する。本実施形態のPSA装置は、例えば図1に示すように、主に酸素を選択的に吸着する分子篩活性炭(CMS)を吸着剤層1A、2Aとして充填した第1、第2吸着塔1、2と、主に窒素を選択的に吸着するゼオライト吸着剤(ZMS)を吸着剤層3Aとして充填した第3吸着塔3とを備え、後述のように第1、第2吸着塔1、2の吸着剤層1A、2Aを介して少なくとも酸素と窒素を含有する原料ガス(例えば、空気)から酸素を選択的に吸着、分離して窒素を高濃度窒素として排出し、第3吸着塔3の吸着剤層3Aを介して第1、第2吸着塔1、2からの脱着ガスから窒素を選択的に吸着、分離して酸素を高濃度酸素として排出する。
【0015】
また、PSA装置は、原料ガス供給源(図示せず)に接続された原料ガス供給管4と、原料ガス供給管4に取り付けられ且つ第1吸着塔1または第2吸着塔2に空気を供給する空気ブロワ5と、第1、第2、第3吸着塔1、2、3を互いに連結する配管網と、配管網に取り付けられ且つ第1、第2、第3吸着塔1、2、3内を減圧してそれぞれの吸着ガスを脱着する減圧ポンプ6とを備え、後述するように配管網に配設された複数のバルブを開閉制御することによって空気等のガスの流通方向を適宜切り替えて空気から高濃度酸素及び高濃度酸素を製造する。
【0016】
次に、配管網及びバルブについて説明する。原料ガス供給管4は二方向に分岐し、一方の分岐管4Aが第1吸着塔1の底部に接続され、他方の分岐管4Bが第2吸着塔2の底部に接続されている。各分岐管4A、4BにはバルブV1、V2がそれぞれ配設され、これらのバルブV1、V2を開閉制御することにより第1、第2吸着塔1、2に対して空気を選択的に供給する。第1、第2吸着塔1、2の頂部には窒素排出管7、8が接続されていると共にこれらの窒素排出管7、8にはバルブV3、V4が配設され、これらのバルブV3、V4を開閉制御することにより第1、第2吸着塔1、2から高濃度窒素を排出する。第1、第2吸着塔1、2から排出された高濃度窒素は回収タンク(図示せず)においてそれぞれ貯留される。
【0017】
分岐管4A、4Bは第1、第2連結管9、10を介して互いに連結され、窒素排出管7、8は第3連結管11を介して互いに連結されている。また、第1、第3連結管9、11は第4連結管12を介して互いに連結されている。第1連結管9の第4連結管12との連結部両側にバルブV5、V6が配設され、第3連結部11の第4連結管12との連結部両側にバルブV7、V8が配設され、これらのバルブV5、V6、V7、V8を開閉制御することにより第1吸着塔1と第2吸着塔2を直列に接続すると共に第1吸着塔1と第2吸着塔2間のガスの流通方向を正逆に切り替える。つまり、バルブV7、V6を開くことにより第3、第4連結管11、12及び第1連結管9を介して第1、第2吸着塔1、2を直列に接続し、この順でガスを流通させ、また、バルブV5、V8を開くことにより第3、第4連結管11、12及び第1連結管9を介して第2、第1吸着塔2、1を直列に接続し、この順でガスを流通させる。また、第4連結管12には酸素濃度計13が配設され、この酸素濃度計13は第4連結管12を正逆方向に流れるガス中の酸素濃度を計測する。
【0018】
第2連結管10は第5連結管14を介して第3吸着塔3の底部に連結され、この第5連結管14に減圧ポンプ6が配設されている。第2連結管10の第5連結管14との連結部両側にバルブV9、V10が配設されている。バルブV9、V10を開閉制御すると共に減圧ポンプ6を駆動することにより第1吸着塔1内または第2吸着塔2内を減圧し、それぞれの吸着剤層1A、2Aから主に酸素を含有する吸着ガス(濃縮酸素)を脱着し、濃縮酸素を第3吸着塔3に供給する。尚、以下では第5連結管14を濃縮酸素供給管14として説明する。また、濃縮酸素供給管14にはバルブV11が減圧ポンプ6と直列に配設され、濃縮酸素を第3吸着塔に供給する場合にはバルブV11を開く。第3吸着塔3の頂部には酸素排出管15が連結され、この酸素排出管15にはバルブV12が配設されている。そして、バルブV12を開くことにより第3吸着塔3から高濃度酸素を排出する。第3吸着塔3から排出された高濃度酸素は回収タンク(図示せず)において貯留される。
【0019】
また、濃縮酸素供給管14には減圧ポンプ6及びバルブV11を迂回するバイパス管16が連結され、このバイパス管16にバルブV13が配設されている。更に、濃縮酸素供給管14には減圧ポンプ6とバルブV11の間に位置する排気管17が連結され、この排気管17にバルブV14が配設されている。従って、第3吸着塔3の吸着剤層3Aの吸着ガス(主に窒素)を脱着し、吸着剤層3Aを再生する場合には、バルブV13、V14を開くと共に減圧ポンプ6を駆動することにより第3吸着塔3内を減圧し、吸着剤層3Aからの脱着ガスを排気管17から排出する。また、濃縮酸素供給管14のバルブ11と第3吸着塔3と間にはガス供給管18が連結され、このガス供給管18にはバルブV15が配設されている。そして、第3吸着塔3の吸着剤層3Aからガスを脱着した後、バルブV15を開き、加圧空気、加圧高濃度酸素等を第3吸着塔3内に供給する。
【0020】
次に、上述の圧力変動吸着装置を用いた本発明の高濃度酸素及び高濃度窒素の製造方法の一実施形態について説明する。
【0021】
まず、高濃度窒素回収工程を行う。高濃度窒素回収工程では、バルブV1、V7、V6、V4を開いて第1吸着塔1と第2吸着塔2とを直列に接続し、他のバルブを閉じた状態で空気ブロワ5を駆動し、原料ガス供給管4から分岐管4Aを介して第1吸着塔1内へ空気を供給すると、第1吸着塔1内の吸着剤層1Aが主に酸素を選択的に吸着し、濃縮窒素が残余の酸素と一緒に第1吸着塔1から流出した後、第3、第4連結管11、12を経由して第2吸着塔2内へ濃縮窒素を供給する。第2吸着塔2内では吸着剤層2Aが残余の酸素を選択的に吸着し、窒素を更に濃縮して高濃度窒素として窒素排出管8を介して排出し、回収タンク内に貯留する。第1、第2吸着塔1、2における吸着を継続し、回収タンクでの高濃度窒素の回収を継続すると、第1吸着塔1内の吸着剤層1Aが酸素に対する吸着平衡点に達し、それ以上の酸素の吸着作用がなくなり破過する。酸素の吸着が破過したことは第4連結管12の酸素濃度計13によって確認することができる。尚、この時点では第2吸着塔2内の吸着剤層2Aは酸素の破過点に到達していないため、酸素を吸着できる。このようにして高濃度窒素回収工程を終了すると、第1吸着塔1内の吸着剤層1Aに吸着された酸素を主体とするガスを脱着し高濃度酸素回収工程に移る。
【0022】
高濃度酸素回収工程では、バルブV1、V7、V6、V4を閉じると共にバルブV9、V11、V12を開き、第1吸着塔1と第3吸着塔3を連通させた状態で減圧ポンプ6を駆動すると、第1吸着塔1内を減圧して吸着剤層1Aから酸素を主体とするガスを脱着し、濃縮酸素を残余の窒素と一緒に第1吸着塔1内から抜き出し、濃縮酸素供給管14から第3吸着塔3に供給する。第3吸着塔3内では吸着剤層3Aが主に窒素を選択的に吸着し、更に濃縮された高濃度酸素が第3吸着塔3から酸素排出管15を介して高濃度酸素として排出し、回収タンク内に貯留する。このようにして高濃度酸素回収工程を終了すると、第3吸着塔3内の吸着剤層3Aの再生工程に移る。
【0023】
第3吸着塔3の再生工程では、バルブV9、V11、V12を閉じると共にバルブV13、V14を開いた状態で減圧ポンプ6を駆動すると、第3吸着塔3内を減圧して吸着剤層3Aから窒素を主体とするガスを脱着し、排出管17から排ガスとして大気中に放出し、吸着剤層3Aを再生する。このようにして再生工程を終了すると、第3吸着塔3の昇圧工程に移る。
【0024】
昇圧工程では、バルブV13、V14を閉じると共にバルブV15を開き、加圧された空気や高濃度酸素等のガスを第3吸着塔3内に供給し、第3吸着塔3内を所定圧力まで昇圧し、バルブV15を閉じて次の高濃度酸素回収工程に備える。第3吸着塔3が待機する状態で、第1、第2吸着塔1、2のガス流通方向を切り替えるガス流通方向切替工程を経由して2回目の高濃度窒素回収工程及び高濃度酸素回収工程に移る。
【0025】
即ち、第1吸着塔1から第2吸着塔2へ空気を流した時にはバルブV1、V7、V6、V4を開いたが、ガス流通方向切替工程では、バルブV2、V8、V5、V3を開き、空気の流通方向を第2吸着塔2から第1」吸着塔1の方向へ逆転させる。ガス流通方向切替工程を終了すると、2回目の高濃度窒素回収工程に移る。この高濃度窒素回収工程では、バルブV2、V8、V5、V3を開いて第2吸着塔2と第1吸着塔1とを直列に接続し、空気ブロワ5の駆動により原料ガス供給管4から分岐管4Bを介して第2吸着塔2内へ空気を供給する。これにより第2吸着塔2内の吸着剤層2Aが主に酸素を選択的に吸着し、濃縮窒素が残余の酸素と一緒に第2吸着塔2から流出した後、第3、第4連結管11、12を経由して第1吸着塔1内へ濃縮窒素を供給する。第1吸着塔1内では吸着剤層1Aが残余の酸素を選択的に吸着し、窒素を更に濃縮して高濃度窒素として窒素排出管7を介して排出し、回収タンク内に貯留する。第1、第2吸着塔1、2における吸着を継続し、回収タンクでの高濃度窒素の回収を継続すると、前述したように第2吸着塔2内の吸着剤層2Aにおける酸素の吸着作用がなくなり破過する。酸素の吸着が破過したことは第4連結管12の酸素濃度計13によって確認することができる。このようにして高濃度窒素回収工程を終了すると、第2吸着塔2内の吸着剤層2Aに吸着された酸素を主体とするガスを脱着し2回目の高濃度酸素回収工程に移る。
【0026】
2回目の高濃度酸素回収工程では、バルブV2、V8、V5、V3を閉じると共にバルブV10、V11、V12を開き、第2吸着塔2と第3吸着塔3を連通させた状態で減圧ポンプ6を駆動すると、第2吸着塔2内を減圧して吸着剤層2Aから酸素を主体とするガスを脱着し、濃縮酸素を残余の窒素と一緒に第2吸着塔2内から抜き出し、濃縮酸素を残余の窒素と一緒に濃縮酸素供給管14から第3吸着塔3に供給する。第3吸着塔3内では吸着剤層3Aが主に窒素を選択的に吸着し、更に濃縮された高濃度酸素が第3吸着塔3から酸素排出管15を介して高濃度酸素として排出し、回収タンク内に貯留する。このようにして2回目の高濃度酸素回収工程を終了すると、上述の場合と同様に第3吸着塔3内の吸着剤層3Aの再生工程に移る。
【0027】
上述の各工程は、図2に示す運転サイクルとバルブ操作を繰り返し行って高濃度窒素及び高濃度酸素の製造を行う。
【0028】
【実施例】
以下、具体的な実施例に基づいて本発明を更に説明する。
実施例1
本実施例では下記仕様のPSA装置を用い、下記製造条件で空気を供給して高濃度酸素及び高濃度窒素を製造した結果、下記に示す結果が得られた。下記結果によれば、極めて効率的に高濃度窒素及び高濃度酸素を製造することができた。[PSA装置の仕様]
第1吸着塔の容量:500cm3
分子篩活性炭の充填量:275g
第2吸着塔の容量:500cm3
分子篩活性炭の充填量:275g
第3吸着塔の容量:500cm3
ゼオライトの充填量:380g
[製造条件]
原料空気流量:1083Ncm3/サイクル
吸着圧力:0.05MPaG
脱着圧力:250Torr
サイクル時間:130秒
[製品]
窒素量:433Ncm3/サイクル(窒素:99.1モル%)
酸素量:436Ncm3/サイクル(酸素:93.5モル%)
【0029】
以上説明したように本実施形態によれば、PSA装置は、第1、第2、第3吸着塔1、2、3と、第1、第2、第3吸着塔1、2、3を連結する配管網と、配管網に配設された一台ずつの空気ブロワ5及び減圧ポンプ6を備えて構成されているため、PSA装置自体がコンパクトで設備費を低減することができる。また、コンパクトなPSA装置を用いる場合には、運転操作としては、高濃度窒素回収工程、高濃度酸素回収工程、第3吸着塔3の再生、昇圧工程、第1、第2吸着塔1、2間のガス流通方向の切替工程、切替工程後の2回目の高濃度窒素回収工程及び2回目の高濃度酸素回収工程からなる運転サイクルを繰り返して行うだけ、空気から高濃度酸素及び高濃度窒素を同時に製造することができ、しかも、その他の複雑な操作工程がないため、運転経費を削減することができる。
【0030】
尚、本発明は上記実施形態に何等制限されるものではないことは云うまでもない。
【0031】
【発明の効果】
本発明の請求項1〜請求項3に記載の発明によれば、吸着塔を小型化して吸着剤の充填量を削減することができると共に設備費や運転経費を低減することができ、また、高濃度酸素及び高濃度窒素を同時に製造することができる圧力変動吸着装置並びにこの装置を用いた高濃度酸素及び高濃度窒素の製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の圧力変動吸着装置の一実施形態を示す系統図である。
【図2】図1に示す圧力変動吸着装置を用いた高濃度酸素及び高濃度窒素の製造方法の一実施形態の運転サイクルとバルブ操作を説明するための説明図である。
【符号の説明】
1 第1吸着塔
1A 吸着剤層(分子篩活性炭)
2 第2吸着塔
2A 吸着剤層(分子篩活性炭)
3 第3吸着塔
3A 吸着剤層(ゼオライト吸着剤)
4 原料ガス供給管(原料ガス供給経路)
5 空気ブロワ
6 減圧ポンプ
13 酸素濃度計(酸素濃度測定手段)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pressure fluctuation adsorption apparatus (hereinafter, referred to as “PSA apparatus”) for producing high-concentration oxygen and high-concentration nitrogen by selective adsorption separation in an adsorption tower filled with an adsorbent from a raw material gas containing at least oxygen and nitrogen. And a method for producing high-concentration oxygen and high-concentration nitrogen using the PSA apparatus.
[0002]
[Prior art]
As a conventional high-concentration gas production apparatus, for example, a cryogenic separation apparatus, a membrane separation apparatus, a PSA apparatus, and the like are used. A cryogenic separation device is a device that cools and liquefies air by adiabatic expansion, separates the air using the difference in boiling points of nitrogen, oxygen, and the like, and produces high-concentration oxygen, high-concentration nitrogen, and the like. Although the cryogenic separation device is suitable for producing a large-capacity, high-concentration gas, it has problems such as an increase in power costs such as electric power and an increase in the installation area of the equipment. The membrane separation device is a device that uses a polymer organic membrane that selectively transmits oxygen, separates nitrogen and oxygen in the air, and produces high-concentration oxygen and high-concentration nitrogen. Membrane separation equipment is suitable for producing small-volume, high-concentration gas.However, when producing large-capacity industrially, a large amount of expensive membrane separation modules are required. is there. In addition, PSA devices are suitable for producing relatively large volumes of high-concentration gases such as oxygen and nitrogen, and have been widely used in recent years because of their low equipment and power costs and easy operation. I have.
[0003]
In a PSA apparatus, an oxygen-containing gas such as air is supplied to an adsorption tower filled with an adsorbent for selectively adsorbing a gas component other than oxygen, such as zeolite, for the purpose of producing high-concentration oxygen. Gases such as carbon dioxide gas and moisture (hereinafter simply referred to as "impurities") are adsorbed and separated by an adsorbent, and oxygen that is hardly adsorbed is extracted from the adsorption tower, recovered as high-concentration oxygen, and adsorbed by the adsorbent. There is known an apparatus capable of continuously producing high-concentration oxygen as a whole apparatus by desorbing impurities by a regeneration step such as a pressure reduction step and a purge step and discharging the impurities as an off-gas outside the system.
[0004]
In addition, an oxygen-containing gas such as air is supplied to an adsorption tower filled with a molecular sieve activated carbon adsorbent that mainly adsorbs oxygen selectively. Is discharged from the adsorption tower and recovered as high-concentration nitrogen gas, and the oxygen adsorbed on the adsorbent is desorbed by a regeneration step such as a decompression step, and the adsorbent is regenerated and recovered as high-concentration oxygen. There is also known an apparatus capable of continuously producing high-concentration nitrogen and high-concentration oxygen as a whole by repeating cyclically between a plurality of adsorption towers (for example, see Patent Document 1).
[0005]
Further, in the high-concentration oxygen production, an adsorption tower (hereinafter, referred to as an “activated carbon adsorption tower”) packed with a molecular sieve activated carbon adsorbent that mainly adsorbs oxygen selectively and a gas component other than oxygen are selectively adsorbed. An adsorption tower filled with a zeolite-based adsorbent (hereinafter referred to as a "zeolite adsorption tower") is connected to the same apparatus, and oxygen adsorbed by the activated carbon adsorption tower is desorbed and supplied to the zeolite adsorption tower. There are also known PSA apparatuses that selectively adsorb and remove the remaining gas components other than oxygen to produce high-concentration oxygen (for example, Patent Documents 2 and 3).
[0006]
[Patent Document 1]
JP 2001-269532 A (Claims)
[Patent Document 2]
JP-A-54-132476 (Claims)
[Patent Document 3]
JP-A-7-267612 (Claims)
[0007]
[Problems to be solved by the invention]
However, in the case of a conventional PSA device using an adsorbent such as zeolite, which selectively adsorbs gas components other than oxygen, high-purity oxygen of 90% by volume or more can be obtained from air. However, since the partial pressure of nitrogen as the substance to be adsorbed is high, there has been a problem that the amount of adsorbent charged becomes enormous. Also, in the case of an apparatus that selectively adsorbs oxygen using molecular sieve activated carbon as an adsorbent as described in Patent Document 1, although the amount of adsorbent charged can be reduced, the concentration of oxygen produced Was low. In particular, when oxygen is produced by separating air, the partial pressure of nitrogen, which is an impurity, is high, so that the amount of competitive adsorption of nitrogen increases, and even when the oxygen is concentrated, the oxygen concentration is about 40 to 50% by volume. There is a problem that the oxygen concentration decreases.
[0008]
In the case of a PSA apparatus in which the activated carbon adsorption tower and the zeolite adsorption tower are connected to each other to form the same apparatus, in order to concentrate oxygen to a high concentration, the adsorption step is continued until oxygen breaks down in the activated carbon adsorption tower. In order to concentrate nitrogen at a high concentration, it is preferable to perform a desorption step before oxygen breaks through in the activated carbon adsorption tower. However, in the case of the PSA devices described in Patent Documents 2 and 3, since these conditions are not taken into consideration, there is a problem that the concentration of the recovered nitrogen is low. Further, in the case of the conventional PSA apparatus, a decompression pump for desorbing the gas adsorbed in each of the activated carbon adsorption tower and the zeolite adsorption tower by decompression is provided for each of the adsorption towers. There was a problem that it became complicated.
[0009]
The present invention has been made in order to solve the above-mentioned problems, and it is possible to reduce the amount of adsorbent by reducing the size of an adsorption tower, reduce equipment costs and operating costs, An object of the present invention is to provide a pressure fluctuation adsorption apparatus capable of simultaneously producing oxygen and high-concentration nitrogen, and a method for producing high-concentration oxygen and high-concentration nitrogen using this apparatus.
[0010]
[Means for Solving the Problems]
The pressure fluctuation adsorption apparatus according to claim 1 of the present invention comprises a first adsorption tower and a second adsorption tower packed with a molecular sieve activated carbon mainly for selectively adsorbing oxygen, and a zeolite mainly for selectively adsorbing nitrogen. A third adsorption tower filled with an adsorbent, a source gas supply path for supplying a source gas containing at least oxygen and nitrogen to the first adsorption tower or the second adsorption tower, the first adsorption tower and the second adsorption tower, And a series path configured to connect the towers in series and to switch the gas flow direction, and a desorption gas mainly containing oxygen desorbed in the first adsorption tower or the second adsorption tower to the third adsorption tower. And an oxygen concentration measuring means for confirming breakthrough of oxygen adsorption in the first adsorption tower or the second adsorption tower.
[0011]
Further, the pressure fluctuation adsorption device according to claim 2 of the present invention is the pressure fluctuation adsorption device according to claim 1, wherein the gas adsorbed by the first adsorption tower, the second adsorption tower, and the third adsorption tower respectively is used. It is characterized in that a common decompression pump is provided which is detached by decompression.
[0012]
In addition, the method for producing high-concentration oxygen and high-concentration nitrogen using the pressure fluctuation adsorption apparatus according to claim 3 of the present invention is characterized in that the first adsorption tower and the first adsorption tower packed with molecular sieve activated carbon that mainly selectively adsorbs oxygen are provided. (2) an adsorption tower, a third adsorption tower filled with a zeolite adsorbent mainly for selectively adsorbing nitrogen, and a raw material for supplying a raw material gas containing at least oxygen and nitrogen to the first adsorption tower or the second adsorption tower A gas supply path, a series path connected in series to the first adsorption tower and the second adsorption tower and configured to switch the gas flow direction, and desorption by the first adsorption tower or the second adsorption tower. A concentrated oxygen supply path for supplying a desorbed gas mainly containing the supplied oxygen to the third adsorption tower, an oxygen concentration measuring means for confirming breakthrough of oxygen adsorption in the first adsorption tower or the second adsorption tower, Using a pressure fluctuation adsorption device equipped with In producing oxygen and high-concentration nitrogen, a gas containing oxygen and nitrogen is supplied as a raw material gas to the first adsorption tower to mainly adsorb oxygen, and is not adsorbed in the first adsorption step. A second adsorption step of supplying gas to the second adsorption tower to mainly adsorb residual oxygen, a high-concentration nitrogen recovery step of recovering gas not adsorbed in the second adsorption step as high-concentration nitrogen; A first desorption step of desorbing the adsorbed gas in the first adsorption tower after confirming that oxygen adsorption in the tower has passed through the oxygen concentration measuring means, and a third adsorption step of desorbing gas from the first desorption step in the third adsorption tower. A third adsorption step in which the remaining nitrogen is mainly adsorbed by supplying the gas to the tower, a high-concentration oxygen recovery step in which gas not adsorbed in the third adsorption step is recovered as high-concentration oxygen, Desorption Performing a second desorption step, and a path switching step of switching a gas flow direction of the first adsorption tower and the second adsorption tower in opposite directions. It is characterized by repeating the steps.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on the embodiment shown in FIGS. In each of the drawings, FIG. 1 is a system diagram showing an embodiment of the pressure fluctuation adsorption apparatus of the present invention, and FIG. 2 is a diagram of a method for producing high concentration oxygen and high concentration nitrogen using the pressure fluctuation adsorption apparatus shown in FIG. It is an explanatory view for explaining an operation cycle and valve operation of one embodiment.
[0014]
First, a pressure fluctuation adsorption device (PSA device) of the present embodiment will be described. As shown in FIG. 1, for example, the PSA apparatus of the present embodiment includes first and second adsorption towers 1 and 2 in which molecular sieve activated carbon (CMS) mainly for selectively adsorbing oxygen is packed as adsorbent layers 1A and 2A. And a third adsorption tower 3 filled with a zeolite adsorbent (ZMS) for selectively adsorbing nitrogen as an adsorbent layer 3A, and adsorb the first and second adsorption towers 1 and 2 as described later. Oxygen is selectively adsorbed and separated from a raw material gas (for example, air) containing at least oxygen and nitrogen through the agent layers 1A and 2A, and nitrogen is discharged as high-concentration nitrogen. Nitrogen is selectively adsorbed and separated from the desorbed gas from the first and second adsorption towers 1 and 2 through the layer 3A, and oxygen is discharged as high-concentration oxygen.
[0015]
The PSA apparatus supplies air to the source gas supply pipe 4 connected to the source gas supply source (not shown) and the first adsorption tower 1 or the second adsorption tower 2 attached to the source gas supply pipe 4. An air blower 5, a piping network connecting the first, second, and third adsorption towers 1, 2, and 3 to each other; a first, second, and third adsorption towers 1, 2, and 3 attached to the piping network. A decompression pump 6 for depressurizing the inside and desorbing each adsorbed gas, and by appropriately controlling the opening and closing of a plurality of valves arranged in a piping network as described later, appropriately switching the flow direction of gas such as air. Produce high concentration oxygen and high concentration oxygen from air.
[0016]
Next, the piping network and the valve will be described. The source gas supply pipe 4 branches in two directions, one branch pipe 4A is connected to the bottom of the first adsorption tower 1, and the other branch pipe 4B is connected to the bottom of the second adsorption tower 2. Valves V1 and V2 are provided in the branch pipes 4A and 4B, respectively, and air is selectively supplied to the first and second adsorption towers 1 and 2 by opening and closing these valves V1 and V2. . Nitrogen discharge pipes 7 and 8 are connected to the tops of the first and second adsorption towers 1 and 2, and valves V3 and V4 are arranged in these nitrogen discharge pipes 7 and 8, respectively. High-concentration nitrogen is discharged from the first and second adsorption towers 1 and 2 by controlling the opening and closing of V4. The high-concentration nitrogen discharged from the first and second adsorption towers 1 and 2 is stored in a recovery tank (not shown).
[0017]
The branch pipes 4A and 4B are connected to each other via first and second connection pipes 9 and 10, and the nitrogen discharge pipes 7 and 8 are connected to each other via a third connection pipe 11. The first and third connecting pipes 9 and 11 are connected to each other via a fourth connecting pipe 12. Valves V5 and V6 are provided on both sides of the first connecting pipe 9 connected to the fourth connecting pipe 12, and valves V7 and V8 are provided on both sides of the connecting part of the third connecting section 11 and the fourth connecting pipe 12. By controlling the opening and closing of these valves V5, V6, V7, V8, the first adsorption tower 1 and the second adsorption tower 2 are connected in series, and the gas between the first adsorption tower 1 and the second adsorption tower 2 is exchanged. Switch the distribution direction to forward or reverse. That is, by opening the valves V7 and V6, the first and second adsorption towers 1 and 2 are connected in series via the third and fourth connection pipes 11 and 12 and the first connection pipe 9, and the gas is supplied in this order. The second and first adsorption towers 2 and 1 are connected in series via the third and fourth connection pipes 11 and 12 and the first connection pipe 9 by flowing the valves and opening the valves V5 and V8. To distribute gas. Further, an oxygen concentration meter 13 is provided in the fourth connection pipe 12, and the oxygen concentration meter 13 measures the oxygen concentration in the gas flowing in the forward and reverse directions through the fourth connection pipe 12.
[0018]
The second connection pipe 10 is connected to the bottom of the third adsorption tower 3 via the fifth connection pipe 14, and the decompression pump 6 is provided in the fifth connection pipe 14. Valves V9 and V10 are arranged on both sides of the connection portion of the second connection tube 10 with the fifth connection tube 14. By controlling the opening and closing of the valves V9 and V10 and driving the decompression pump 6, the pressure in the first adsorption tower 1 or the second adsorption tower 2 is reduced, and the adsorption mainly containing oxygen from the respective adsorbent layers 1A and 2A. The gas (concentrated oxygen) is desorbed and the concentrated oxygen is supplied to the third adsorption tower 3. Hereinafter, the fifth connection pipe 14 will be described as the concentrated oxygen supply pipe 14. Further, a valve V11 is disposed in series with the decompression pump 6 in the concentrated oxygen supply pipe 14, and when supplying concentrated oxygen to the third adsorption tower, the valve V11 is opened. An oxygen discharge pipe 15 is connected to the top of the third adsorption tower 3, and a valve V12 is provided in the oxygen discharge pipe 15. Then, high-concentration oxygen is discharged from the third adsorption tower 3 by opening the valve V12. The high-concentration oxygen discharged from the third adsorption tower 3 is stored in a recovery tank (not shown).
[0019]
The concentrated oxygen supply pipe 14 is connected to a decompression pump 6 and a bypass pipe 16 that bypasses the valve V11. The bypass pipe 16 is provided with a valve V13. Further, an exhaust pipe 17 located between the decompression pump 6 and the valve V11 is connected to the concentrated oxygen supply pipe 14, and the exhaust pipe 17 is provided with a valve V14. Therefore, when the adsorbent gas (mainly nitrogen) of the adsorbent layer 3A of the third adsorption tower 3 is desorbed and the adsorbent layer 3A is regenerated, the valves V13 and V14 are opened and the decompression pump 6 is driven. The pressure inside the third adsorption tower 3 is reduced, and the desorbed gas from the adsorbent layer 3A is discharged from the exhaust pipe 17. Further, a gas supply pipe 18 is connected between the valve 11 of the concentrated oxygen supply pipe 14 and the third adsorption tower 3, and a valve V15 is provided in the gas supply pipe 18. Then, after the gas is desorbed from the adsorbent layer 3A of the third adsorption tower 3, the valve V15 is opened, and pressurized air, pressurized high-concentration oxygen and the like are supplied into the third adsorption tower 3.
[0020]
Next, an embodiment of the method for producing high-concentration oxygen and high-concentration nitrogen of the present invention using the above-described pressure fluctuation adsorption apparatus will be described.
[0021]
First, a high-concentration nitrogen recovery step is performed. In the high-concentration nitrogen recovery step, the valves V1, V7, V6, and V4 are opened to connect the first adsorption tower 1 and the second adsorption tower 2 in series, and the air blower 5 is driven with the other valves closed. When air is supplied from the raw material gas supply pipe 4 into the first adsorption tower 1 through the branch pipe 4A, the adsorbent layer 1A in the first adsorption tower 1 mainly selectively adsorbs oxygen, and the concentrated nitrogen is removed. After flowing out of the first adsorption tower 1 together with the remaining oxygen, concentrated nitrogen is supplied into the second adsorption tower 2 via the third and fourth connection pipes 11 and 12. In the second adsorption tower 2, the adsorbent layer 2A selectively adsorbs the remaining oxygen, further concentrates nitrogen, discharges it as high-concentration nitrogen through the nitrogen discharge pipe 8, and stores it in the recovery tank. When the adsorption in the first and second adsorption towers 1 and 2 is continued and the high concentration nitrogen is continuously collected in the collection tank, the adsorbent layer 1A in the first adsorption tower 1 reaches the adsorption equilibrium point for oxygen. The oxygen adsorbing action described above is lost, and breakthrough occurs. The breakthrough of the adsorption of oxygen can be confirmed by the oxygen concentration meter 13 of the fourth connection pipe 12. At this time, since the adsorbent layer 2A in the second adsorption tower 2 has not reached the oxygen breakthrough point, it can adsorb oxygen. When the high-concentration nitrogen recovery step is completed in this way, the gas mainly containing oxygen adsorbed on the adsorbent layer 1A in the first adsorption tower 1 is desorbed, and the process proceeds to the high-concentration oxygen recovery step.
[0022]
In the high-concentration oxygen recovery step, when the valves V1, V7, V6, and V4 are closed and the valves V9, V11, and V12 are opened, and the decompression pump 6 is driven in a state where the first adsorption tower 1 and the third adsorption tower 3 are communicated with each other. The pressure in the first adsorption tower 1 is reduced to desorb a gas mainly composed of oxygen from the adsorbent layer 1A, and the concentrated oxygen is extracted from the first adsorption tower 1 together with the remaining nitrogen from the first adsorption tower 1; It is supplied to the third adsorption tower 3. In the third adsorption tower 3, the adsorbent layer 3A mainly selectively adsorbs nitrogen, and further concentrated high-concentration oxygen is discharged from the third adsorption tower 3 as high-concentration oxygen through the oxygen discharge pipe 15, Store in collection tank. When the high-concentration oxygen recovery step is completed in this way, the process proceeds to the step of regenerating the adsorbent layer 3A in the third adsorption tower 3.
[0023]
In the regeneration step of the third adsorption tower 3, when the decompression pump 6 is driven with the valves V9, V11, V12 closed and the valves V13, V14 open, the pressure in the third adsorption tower 3 is reduced and the adsorbent layer 3A is discharged. The gas mainly composed of nitrogen is desorbed and released into the atmosphere as exhaust gas from the discharge pipe 17 to regenerate the adsorbent layer 3A. When the regeneration step is completed in this way, the process proceeds to the pressure increasing step of the third adsorption tower 3.
[0024]
In the pressure increasing step, the valves V13 and V14 are closed and the valve V15 is opened to supply a gas such as pressurized air or high-concentration oxygen into the third adsorption tower 3, and to increase the pressure in the third adsorption tower 3 to a predetermined pressure. Then, the valve V15 is closed to prepare for the next high-concentration oxygen recovery step. In a state where the third adsorption tower 3 is on standby, a second high-concentration nitrogen recovery step and a high-concentration oxygen recovery step via a gas flow direction switching step of switching the gas flow direction of the first and second adsorption towers 1 and 2 Move on to
[0025]
That is, when air was flowed from the first adsorption tower 1 to the second adsorption tower 2, the valves V1, V7, V6, and V4 were opened. In the gas flow direction switching step, the valves V2, V8, V5, and V3 were opened. The direction of air flow is reversed from the second adsorption tower 2 to the first "first adsorption tower 1". When the gas flow direction switching step is completed, the process proceeds to the second high concentration nitrogen recovery step. In this high-concentration nitrogen recovery step, the valves V2, V8, V5 and V3 are opened to connect the second adsorption tower 2 and the first adsorption tower 1 in series, and the air blower 5 is driven to branch off from the raw material gas supply pipe 4. Air is supplied into the second adsorption tower 2 via the pipe 4B. Thereby, the adsorbent layer 2A in the second adsorption tower 2 mainly selectively adsorbs oxygen, and after the concentrated nitrogen flows out of the second adsorption tower 2 together with the remaining oxygen, the third and fourth connection pipes Concentrated nitrogen is supplied into the first adsorption tower 1 via 11 and 12. In the first adsorption tower 1, the adsorbent layer 1A selectively adsorbs the remaining oxygen, further concentrates the nitrogen, discharges it as high-concentration nitrogen through the nitrogen discharge pipe 7, and stores it in the recovery tank. When the adsorption in the first and second adsorption towers 1 and 2 is continued and the recovery of high-concentration nitrogen in the recovery tank is continued, the adsorbing action of oxygen in the adsorbent layer 2A in the second adsorption tower 2 is increased as described above. It breaks through. The breakthrough of the adsorption of oxygen can be confirmed by the oxygen concentration meter 13 of the fourth connection pipe 12. When the high-concentration nitrogen recovery step is completed as described above, the gas mainly containing oxygen adsorbed on the adsorbent layer 2A in the second adsorption tower 2 is desorbed, and the process proceeds to the second high-concentration oxygen recovery step.
[0026]
In the second high-concentration oxygen recovery step, the valves V2, V8, V5, and V3 are closed, and the valves V10, V11, and V12 are opened, and the decompression pump 6 is connected with the second adsorption tower 2 and the third adsorption tower 3 in communication. Is driven, the inside of the second adsorption tower 2 is depressurized to desorb a gas mainly composed of oxygen from the adsorbent layer 2A, and the concentrated oxygen is extracted from the second adsorption tower 2 together with the remaining nitrogen to remove the concentrated oxygen. The remaining nitrogen is supplied to the third adsorption tower 3 from the concentrated oxygen supply pipe 14 together with the remaining nitrogen. In the third adsorption tower 3, the adsorbent layer 3A mainly selectively adsorbs nitrogen, and further concentrated high-concentration oxygen is discharged from the third adsorption tower 3 as high-concentration oxygen through the oxygen discharge pipe 15, Store in collection tank. When the second high-concentration oxygen recovery step is completed in this manner, the process proceeds to the step of regenerating the adsorbent layer 3A in the third adsorption tower 3 as in the case described above.
[0027]
In each of the above steps, the operation cycle and valve operation shown in FIG. 2 are repeated to produce high-concentration nitrogen and high-concentration oxygen.
[0028]
【Example】
Hereinafter, the present invention will be further described based on specific examples.
Example 1
In this example, high-concentration oxygen and high-concentration nitrogen were produced by using a PSA apparatus having the following specifications and supplying air under the following production conditions. As a result, the following results were obtained. According to the following results, highly concentrated nitrogen and highly concentrated oxygen could be produced very efficiently. [Specification of PSA device]
Capacity of the first adsorption tower: 500 cm 3
Filling amount of molecular sieve activated carbon: 275 g
Capacity of the second adsorption tower: 500 cm 3
Filling amount of molecular sieve activated carbon: 275 g
Capacity of the third adsorption tower: 500 cm 3
Zeolite filling amount: 380 g
[Manufacturing conditions]
Raw material air flow rate: 1083 Ncm 3 / cycle adsorption pressure: 0.05 MPaG
Desorption pressure: 250 Torr
Cycle time: 130 seconds [product]
Nitrogen amount: 433 Ncm 3 / cycle (nitrogen: 99.1 mol%)
Oxygen amount: 436 Ncm 3 / cycle (oxygen: 93.5 mol%)
[0029]
As described above, according to the present embodiment, the PSA device connects the first, second, and third adsorption towers 1, 2, and 3 with the first, second, and third adsorption towers 1, 2, and 3. Since it is configured to include a piping network to be provided and one air blower 5 and one decompression pump 6 disposed in the piping network, the PSA device itself is compact and the equipment cost can be reduced. When a compact PSA device is used, the high-concentration nitrogen recovery step, the high-concentration oxygen recovery step, the regeneration of the third adsorption tower 3, the pressure increase step, the first and second adsorption towers 1, 2 The high-concentration oxygen and high-concentration nitrogen are removed from the air only by repeating the operation cycle consisting of the switching step of the gas flow direction between the second step and the second high-concentration nitrogen recovery step after the switching step and the second high-concentration oxygen recovery step. Since it can be manufactured at the same time and there are no other complicated operation steps, the operating cost can be reduced.
[0030]
Needless to say, the present invention is not limited to the above embodiment.
[0031]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the invention as described in claim 1 to claim 3 of the present invention, the adsorption tower can be reduced in size, the amount of adsorbent to be charged can be reduced, and equipment costs and operation costs can be reduced. A pressure fluctuation adsorption device capable of simultaneously producing high-concentration oxygen and high-concentration nitrogen and a method for producing high-concentration oxygen and high-concentration nitrogen using this device can be provided.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a pressure fluctuation adsorption device of the present invention.
FIG. 2 is an explanatory diagram for explaining an operation cycle and a valve operation of one embodiment of a method for producing high-concentration oxygen and high-concentration nitrogen using the pressure fluctuation adsorption apparatus shown in FIG.
[Explanation of symbols]
1 1A adsorption tower 1A adsorbent layer (molecular sieve activated carbon)
2 Second adsorption tower 2A Adsorbent layer (molecular sieve activated carbon)
3 3rd adsorption tower 3A adsorbent layer (zeolite adsorbent)
4 Source gas supply pipe (source gas supply path)
5 Air blower 6 Pressure reducing pump 13 Oxygen concentration meter (Oxygen concentration measuring means)