JPH0691925B2 - Pressure swing adsorption method and device - Google Patents

Pressure swing adsorption method and device

Info

Publication number
JPH0691925B2
JPH0691925B2 JP63193596A JP19359688A JPH0691925B2 JP H0691925 B2 JPH0691925 B2 JP H0691925B2 JP 63193596 A JP63193596 A JP 63193596A JP 19359688 A JP19359688 A JP 19359688A JP H0691925 B2 JPH0691925 B2 JP H0691925B2
Authority
JP
Japan
Prior art keywords
adsorption
gas
adsorption tower
pipe
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63193596A
Other languages
Japanese (ja)
Other versions
JPH0243916A (en
Inventor
一郎 船田
信之 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63193596A priority Critical patent/JPH0691925B2/en
Publication of JPH0243916A publication Critical patent/JPH0243916A/en
Publication of JPH0691925B2 publication Critical patent/JPH0691925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高純度ガスの製造に利用される圧力スイング吸
着方法及び装置(以下単にPSA方法及びPSA装置という)
に関し、詳細には吸着塔内における不純成分の残存を極
力抑制して製品ガスをより高純度に得ることのできるPS
A方法及びPSA装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a pressure swing adsorption method and apparatus (hereinafter simply referred to as PSA method and PSA apparatus) used for producing high-purity gas.
Regarding, in detail, PS that can obtain the product gas in higher purity by suppressing the residual of the impure component in the adsorption tower as much as possible
A method and PSA device.

以下においてはその代表例として原料空気からN2ガスを
高純度に回収するPSA装置及びPSA方法について説明する
が、本発明の適用対象はこれによって限定解釈されては
ならない。
Hereinafter, a PSA apparatus and a PSA method for recovering N 2 gas from a raw material air to a high purity will be described as a typical example thereof, but the application target of the present invention should not be limitedly interpreted by this.

[従来の技術] 原料空気をPSA装置に導入してN2ガスを濃縮回収する方
法を大別すると、O2ガスを吸着剤に吸着させて除去する
方法、及びN2ガスを吸着剤に吸着させ更に脱着回収する
方法の2つに分類される。このうち後者はゼオライト系
の吸着剤を吸着塔内に装填し、N2ガス吸着後の吸着塔を
減圧することにより、高純度のN2ガスを脱着回収する方
法である。以下この方法に利用されるPSA装置について
説明する。
[Prior art] The method of introducing raw material air into the PSA device and concentrating and recovering N 2 gas is roughly divided into a method of adsorbing O 2 gas to an adsorbent and a method of adsorbing N 2 gas to an adsorbent. It is further classified into two methods of desorption and recovery. Among the latter the adsorbent zeolite system was loaded into the adsorption tower, by depressurizing the adsorption tower after the N 2 gas adsorption, a method of desorbing recover high-purity N 2 gas. The PSA device used in this method will be described below.

第3図は前処理装置2によってH2OとCO2を除去した後
のO2/N2混合ガスを3塔式のPSA装置に供給してN2ガス
を選択的に回収する装置の概略説明図である。
Figure 3 is a schematic of an apparatus for selectively recovering O 2 / N 2 mixed gas 3 is supplied to the tower of the PSA unit N 2 gas after the removal of H 2 O and CO 2 by the preprocessing unit 2 FIG.

圧縮機9によって加圧された空気は前処理装置2に送給
され、吸着剤にH2O及びCO2成分を吸着させて除去し、
これを通過したO2/N2混合ガスをPSA装置の原料ガス供
給管1aへ送り込む。原料ガス供給管1aは自動開閉弁(以
下単に弁という)V1〜V3を介して吸着塔3a,3b,3c頂部に
接続され、各々吸着塔の底部には弁V4〜V6を介して排ガ
ス廃棄管4aが連結される。また各吸着塔3a,3b,3cの底部
には吸着用管5a,5b,5cが配設され、夫々弁V7〜V9を介し
てそれより下流側で合流される。合流された脱着用管5
には真空ポンプ6が設けられて製品ガスホルダ20に連結
され、吸着塔3a,3b,3cより脱着回収された高純度N2ガス
を貯留する。前記製品ガスホルダ20には、製品ガスの一
部を吸着塔の洗浄のために抜き出す洗浄用管8が配設さ
れ、該洗浄用管8は分岐された後弁V13〜V15を介して吸
着塔3a,3b,3cの各頂部に連結される。尚各吸着塔3a,3b,
3cは連結配管10a,10b,10cによって直列的に連結され、
各連結管には弁V10〜V12が設けられる。
The air pressurized by the compressor 9 is sent to the pretreatment device 2, and the H 2 O and CO 2 components are adsorbed and removed by the adsorbent,
The O 2 / N 2 mixed gas that has passed through this is fed into the raw material gas supply pipe 1a of the PSA device. Source gas supply pipe 1a adsorption tower 3a via the automatic opening and closing valve (hereinafter simply referred to as a valve) V 1 ~V 3, 3b, connected to 3c top, via the valve V 4 ~V 6 are each in the bottom of the adsorption tower The exhaust gas disposal pipe 4a is connected. Also each of the adsorption columns 3a, 3b, 3c of the bottom pipe adsorbing the section 5a, 5b, 5c are arranged, are merged from it via respective valves V 7 ~V 9 downstream. Desorption tube 5 merged
Is provided with a vacuum pump 6 and is connected to a product gas holder 20 to store the high-purity N 2 gas desorbed and collected from the adsorption towers 3a, 3b, 3c. Adsorption wherein the product gas holder 20, cleaning pipe 8 for extracting a portion of the product gas for the cleaning of the adsorption tower is disposed, the cleaning tube 8 via the Koben V 13 ~V 15 which is branched It is connected to the tops of the towers 3a, 3b, 3c. Each adsorption tower 3a, 3b,
3c is connected in series by connecting pipes 10a, 10b, 10c,
Valves V 10 to V 12 are provided in each connecting pipe.

第4図は、吸着塔3a,3b,3cのうち1塔の作動工程を示す
タイムスケジュール(時間は左から右方向に進む)であ
り、吸着工程開始時から脱着工程終了時までの作動工程
を1工程サイクルとしている。この1工程サイクルは図
示の如く吸着工程、回収工程、洗浄工程及び脱着工程よ
り構成される。まず吸着工程では脱着工程で減圧された
吸着塔内を昇圧する操作として、O2/N2混合ガスを供給
管1aから加圧供給し、回収目的成分のN2ガスを吸着剤に
吸着させ不純成分ガス(主にO2ガス)を排ガス廃棄管4a
を介して放出させる。又脱着工程では吸着塔を真空ポン
プ6によって減圧し、塔内の吸着剤に吸着されたN2成分
を脱着し、脱着用管5を通して製品ガスホルダ20に回収
貯留する。
FIG. 4 is a time schedule (the time progresses from left to right) showing the operation process of one of the adsorption towers 3a, 3b, 3c, showing the operation process from the start of the adsorption process to the end of the desorption process. It is a one-step cycle. This one-step cycle is composed of an adsorption step, a recovery step, a washing step and a desorption step as shown in the figure. First, in the adsorption step, as an operation to increase the pressure inside the adsorption tower depressurized in the desorption step, an O 2 / N 2 mixed gas is pressure-supplied from the supply pipe 1a to adsorb N 2 gas as a recovery target component to the adsorbent and impure. Exhaust gas waste pipe 4a for component gas (mainly O 2 gas)
To be released via. In the desorption process, the pressure of the adsorption tower is reduced by the vacuum pump 6, the N 2 component adsorbed by the adsorbent in the tower is desorbed, and collected and stored in the product gas holder 20 through the desorption tube 5.

次に回収工程及び洗浄工程を、第3図の吸着塔3aの場合
を例に挙げて説明する。
Next, the recovery process and the cleaning process will be described by taking the case of the adsorption tower 3a in FIG. 3 as an example.

即ち製品ガスホルダ20側からの高純度N2ガスは矢印Aに
示す様に洗浄用管8を通って吸着塔3c内へ導入され、該
吸着塔3a内に残留する不純成分をN2成分と置換し、これ
によって追放されたガスは矢印Bに示す様に吸着工程の
終了した吸着塔3bへ連結配管10aを介して送り込まれ
る。従ってこのとき吸着塔3aでは洗浄工程が行なわれ、
吸着塔3bではN2の回収工程が行なわれる。
That is, the high-purity N 2 gas from the product gas holder 20 side is introduced into the adsorption tower 3c through the cleaning pipe 8 as shown by arrow A, and the impure component remaining in the adsorption tower 3a is replaced with the N 2 component. Then, the gas expelled by this is sent to the adsorption tower 3b, for which the adsorption process has been completed, through the connecting pipe 10a as shown by the arrow B. Therefore, at this time, the washing step is performed in the adsorption tower 3a,
In the adsorption tower 3b, a N 2 recovery process is performed.

[発明が解決しようとする課題] 第5図(a)〜(d)は吸着塔3aの各工程におけるN2
ス吸着状態を示す模式説明図である。尚斜線部はN2の高
純度吸着部分を示す。図の様に吸着塔3aの頂部側から原
料ガス及び洗浄ガス等が供給される場合は、該吸着塔の
上方側よりN2成分の吸着又は置換が進行し、下方部分に
おいては不純成分であるO2成分が脱着工程の開始時まで
残存することになる(吸着剤中のO2成分はN2成分と置換
されずに吸着されたまま残っていたり、或は吸着剤の装
填隙間に残存していたりする)。特に上記の様に吸着工
程においてO2/N2混合ガスが吸着塔の頂部側より供給さ
れると、N2成分の吸着は装填吸着剤の上方から進行し、
吸着塔下方部においてはO2リッチの混合ガスが接触する
ことになり、O2成分が残存する比率が高くなる。
[Problems to be Solved by the Invention] FIGS. 5A to 5D are schematic explanatory views showing N 2 gas adsorption states in respective steps of the adsorption tower 3a. The shaded area indicates the high-purity N 2 adsorption portion. When the raw material gas, the cleaning gas, etc. are supplied from the top side of the adsorption tower 3a as shown in the figure, the adsorption or substitution of the N 2 component proceeds from the upper side of the adsorption tower, and the lower portion is an impure component. The O 2 component remains until the start of the desorption process (the O 2 component in the adsorbent remains adsorbed without being replaced with the N 2 component, or remains in the adsorbent loading gap. To go). In particular, when the O 2 / N 2 mixed gas is supplied from the top side of the adsorption tower in the adsorption step as described above, adsorption of the N 2 component proceeds from above the loaded adsorbent,
In the lower part of the adsorption tower, the O 2 -rich mixed gas comes into contact with each other, and the proportion of O 2 component remaining increases.

その結果脱着工程において回収されるN2ガス濃度は99.9
%とするのが限度であり、これ以上高純度のN2ガス回収
は不可能とされていた。
As a result, the concentration of N 2 gas recovered in the desorption process was 99.9.
However, it was considered impossible to recover N 2 gas of higher purity.

そこで本発明者らは回収目的成分ガスを99.9%以上の高
純度で得ることを目的として研究を積み重ねた結果、本
発明を完成したのである。
Therefore, the present inventors have completed the present invention as a result of repeated research for the purpose of obtaining a target gas for recovery with a high purity of 99.9% or more.

[課題を解決するための手段] 上記目的を達成した本発明方法は、脱着工程終了後の吸
着塔へ高純度の回収目的成分ガスを150〜300mmHgまで初
期導入し、その後、前記吸着塔の初期導入口の反対側よ
り原料ガスを供給して吸着工程を行なうことを要旨とす
る。
[Means for Solving the Problems] In the method of the present invention which has achieved the above object, a high-purity recovery target component gas is initially introduced to an adsorption tower after the desorption step up to 150 to 300 mmHg, and then the initial stage of the adsorption tower. The gist is to perform the adsorption step by supplying the raw material gas from the side opposite to the inlet.

また上記方法に利用する圧力スイング吸着装置は、前記
吸着塔における原料ガス供給管接続側と対峙する側に
は、前記洗浄管から分岐した初期導入管が連結されてな
る点を要旨とするものである。
Further, the pressure swing adsorption device used in the above method is characterized in that an initial introduction pipe branched from the cleaning pipe is connected to a side of the adsorption tower facing the raw material gas supply pipe connection side. is there.

[作用及び実施例] 第1図(A)は本発明の代表的なPSA装置の実施例を示
す概略説明図である。第3図に示す従来装置と相違する
特徴的な構成は、洗浄管6を分岐して初期導入管11a,11
b,11cを配設し、各初期導入管11a,11b,11cは自動開閉弁
V16〜V18を介して各吸着塔3a,3b,3cの底部へ連結した点
にある。即ち各吸着塔において原料ガス供給管1aの接続
位置と上下反対側に初期導入管11a,11b,11cを接続す
る。
[Operation and Embodiment] FIG. 1A is a schematic explanatory view showing an embodiment of a typical PSA device of the present invention. A characteristic configuration different from the conventional device shown in FIG. 3 is that the cleaning pipe 6 is branched and the initial introduction pipes 11a, 11
b, 11c are installed, and each initial introduction pipe 11a, 11b, 11c is an automatic opening / closing valve
It is a point connected to the bottom of each adsorption tower 3a, 3b, 3c through V 16 to V 18 . That is, in each adsorption tower, the initial introduction pipes 11a, 11b, 11c are connected to the upper and lower sides of the connection position of the raw material gas supply pipe 1a.

第2図(A)〜(D)は第1図(A)に示したPSA装置
による吸着塔3aにおける吸着工程直前から脱着工程直前
までを順に示す模式説明図である。
2 (A) to (D) are schematic explanatory views sequentially showing from immediately before the adsorption step to immediately before the desorption step in the adsorption tower 3a by the PSA apparatus shown in FIG. 1 (A).

第2図(A)に示す様に、脱着工程が終了して吸着工程
を開始する直前に、前記初期導入管11aを通して製品ガ
スホルダ20内の高純度N2ガスを吸着塔3aの底部側から塔
内に導入し、主として塔内下方部側に装填された吸着剤
にN2成分を吸着させておく。その後弁の切換えを行なっ
て吸着工程に移行し、原料ガス供給管1aよりO2/N2混合
ガスを吸着塔3a頂部側から導入する[第2図(B)]。
このとき吸着剤へのN2成分の吸着は吸着塔3a上方部から
進行し、該工程前のN2初期導入に加えて本工程供給N2
塔内の吸着剤に吸着させ、吸着工程を終了する。これに
よって吸着剤に吸着されるO2成分は従来に比べて減少
し、この時点で既に不純成分濃度の低下が達成される。
なぜなら吸着工程時にO2リッチなガスと接触される吸着
剤には初期導入によってすでにN2が吸着されており、O2
吸着の割合は非常に低いものとなるからである。
As shown in FIG. 2 (A), immediately before the desorption process is finished and the adsorption process is started, the high-purity N 2 gas in the product gas holder 20 is passed through the initial introduction pipe 11a from the bottom side of the adsorption column 3a. The N 2 component is adsorbed in the column and is mainly adsorbed on the adsorbent loaded in the lower part of the column. After that, the valve is switched to shift to the adsorption step, and the O 2 / N 2 mixed gas is introduced from the top side of the adsorption tower 3a through the raw material gas supply pipe 1a [FIG. 2 (B)].
At this time, the adsorption of the N 2 component to the adsorbent proceeds from the upper part of the adsorption tower 3a, and in addition to the initial introduction of N 2 before the step, the N 2 supplied in this step is adsorbed by the adsorbent in the tower to perform the adsorption step. finish. As a result, the O 2 component adsorbed on the adsorbent is reduced as compared with the conventional one, and at this point, the concentration of the impure component is already reduced.
Because already N 2 by the initial introduction into the adsorbent is contacted with O 2 rich gas during the adsorption step are adsorbed, O 2
This is because the adsorption rate is extremely low.

そして第2図(C),(D)に示す回収工程及び洗浄工
程によって僅かに残留している不純成分ガスをほぼ完全
に追放した後、脱着工程において高純度N2ガスを回収す
る。
Then, after the slightly remaining impure component gas is almost completely expelled by the recovery process and the cleaning process shown in FIGS. 2C and 2D, high-purity N 2 gas is recovered in the desorption process.

上記の様に吸着工程直前に、吸着塔における原料ガス導
入方向に対して反対側から高純度N2ガスを導入しておく
ことによって、脱着工程まで塔内に不純成分が残るのが
抑制できる様になり、回収されるN2ガス純度は99.99%
以上を達成することができる様になる。
Immediately before the adsorption step as described above, by introducing high-purity N 2 gas from the opposite side to the raw material gas introduction direction in the adsorption tower, it is possible to prevent impurities from remaining in the tower until the desorption step. And the purity of the recovered N 2 gas is 99.99%.
You will be able to achieve the above.

第1図(B)は初期導入管11a,11b,11cによる吸着塔へ
のN2ガス供給量(分圧で示す)と製品ガス純度との関係
を示すグラフである。即ち吸着塔の大きさは直径80mm,
高さ1000mmとし、吸着工程における原料供給を0.5〜0.1
Kg/cm2Gで行ない、脱着工程を真空ポンプによって100
〜50mmHgまで減圧して脱着を行なった。その結果吸着工
程直前の高純度N2ガスの導入は150〜300mmHgの範囲とす
る必要があることが分かった。なぜならば150mmHg未満
であるとN2ガスを初期導入しても従来と比較して回収ガ
ス濃度の向上効果はさほど期待できず、また300mmHgよ
り多くなると吸着工程におけるN2吸着量が減少してしま
い回収率が低下してしまうためである。
FIG. 1 (B) is a graph showing the relationship between the N 2 gas supply amount (indicated by the partial pressure) to the adsorption tower by the initial introduction pipes 11a, 11b, 11c and the product gas purity. That is, the size of the adsorption tower is 80 mm in diameter,
The height is 1000 mm and the raw material supply in the adsorption process is 0.5 to 0.1.
Kg / cm 2 G is used, and the desorption process is performed by a vacuum pump at 100
Desorption was performed by reducing the pressure to -50 mmHg. As a result, it was found that the introduction of high-purity N 2 gas just before the adsorption step should be in the range of 150 to 300 mmHg. Because, if it is less than 150 mmHg, even if N 2 gas is initially introduced, the effect of improving the concentration of the recovered gas cannot be expected so much compared to the conventional case, and if it exceeds 300 mmHg, the N 2 adsorption amount in the adsorption process decreases. This is because the recovery rate will decrease.

(比較実験例) 第1図(A)及び第3図に示した構造のPSA装置を使っ
て下記の条件で夫々N2ガス回収実験を行なって夫々の回
収ガス濃度を調べた。尚第1図(A)に示すPSAの使用
に当たっては吸着工程開始直前に2秒間高純度N2ガスの
導入を行なった。
(Comparative Experimental Example) Using the PSA apparatus having the structure shown in FIGS. 1 (A) and 3, N 2 gas recovery experiments were conducted under the following conditions to examine the concentration of each recovered gas. In using the PSA shown in FIG. 1 (A), high-purity N 2 gas was introduced for 2 seconds immediately before the start of the adsorption step.

各吸着塔の内径を80mm,高さを1000mmとし、充填する吸
着剤は合成ゼオライト5A型を用いた。
The inner diameter of each adsorption tower was 80 mm, the height was 1000 mm, and the adsorbent to be filled was synthetic zeolite 5A type.

原料ガス供給圧力:0.2kg/cm2G、 脱着圧力:70Torr、 1塔の1工程サイクル:1分、 圧縮機9への 原料空気供給量:3200Nl/h、 N2ガスの回収量:800Nl/h、 の条件で各々実験を行なった。Source gas supply pressure: 0.2 kg / cm 2 G, Desorption pressure: 70 Torr, 1 tower 1 step cycle: 1 minute, Source air supply amount to compressor 9: 3200 Nl / h, N 2 gas recovery amount: 800 Nl / The experiments were carried out under the conditions of h and.

この実験の結果、従来装置(第3図に示す)によって製
品ガスホルダ20内に回収されたN2成分の濃度は99.9%で
あったのに対し、本発明のPSA装置の場合、N2濃度は99.
997%まで高めることができた。
As a result of this experiment, the concentration of the N 2 component recovered in the product gas holder 20 by the conventional device (shown in FIG. 3) was 99.9%, whereas in the case of the PSA device of the present invention, the N 2 concentration was 99.
I was able to increase it to 997%.

各吸着塔において原料ガス供給側と反対側から高純度N2
ガスを吸着工程直前に導入する方法としては、第1図
(A)に示す実施例に限定されず、製品ガスホルダ20と
は別のN2ガスホルダを設けて該ホルダから吸着塔へ初期
導入管を接続するものであっても良いし、或は真空ポン
プ6の出口側又は製品ガスホルダ20から分岐して初期導
入管を連結するもの等であっても構わない。
High-purity N 2 from the side opposite to the source gas supply side in each adsorption tower
The method of introducing the gas immediately before the adsorption step is not limited to the embodiment shown in FIG. 1 (A), and an N 2 gas holder different from the product gas holder 20 is provided and an initial introduction pipe is introduced from the holder to the adsorption tower. It may be connected, or may be branched from the outlet side of the vacuum pump 6 or the product gas holder 20 to connect the initial introduction pipe.

[発明の効果] 請求項(1)の方法によって脱着工程開始に到るまで吸
着塔内に残存する不純成分濃度を低減できるようになっ
た。また請求項(2)の装置により回収目的成分の所定
分圧を吸着工程直前の吸着塔へ正確に導入できる様にな
った。
[Advantages of the Invention] By the method of claim (1), the concentration of the impure component remaining in the adsorption tower can be reduced until the desorption step is started. Further, the apparatus of claim (2) enables the predetermined partial pressure of the recovery target component to be accurately introduced into the adsorption tower immediately before the adsorption step.

これらの結果製品ガスとして回収される目的成分ガス濃
度を従来より高純度化することができる様になった。
As a result, the concentration of the target component gas recovered as the product gas can be made higher than before.

【図面の簡単な説明】[Brief description of drawings]

第1図(A)は本発明PSA装置の代表的な実施例を示す
概略説明図、第1図(B)は初期導入ガス分圧と製品ガ
ス純度の関係を示すグラフ、第2図(A)〜(D)は第
1図(A)のPSA装置による1塔の工程状態を示す模式
説明図、第3図は従来のPSA装置を示す概略説明図、第
4図は1つの吸着塔の工程順序を示す説明図、第5図は
従来のPSA装置による1塔の工程状態を示す模式説明図
である。 1a…原料ガス供給管、2…前処理装置 3a,3b,3c…吸着塔、5…脱着用管 6…真空ポンプ、8…洗浄用管 9…圧縮機 11a,11b,11c…初期導入管
FIG. 1 (A) is a schematic explanatory view showing a typical embodiment of the PSA device of the present invention, FIG. 1 (B) is a graph showing the relationship between the initial introduced gas partial pressure and the product gas purity, and FIG. 2 (A). ) To (D) are schematic explanatory views showing a process state of one tower by the PSA apparatus of FIG. 1 (A), FIG. 3 is a schematic explanatory view showing a conventional PSA apparatus, and FIG. 4 is one adsorption tower. FIG. 5 is an explanatory view showing a process sequence, and FIG. 5 is a schematic explanatory view showing a process state of one tower by a conventional PSA device. 1a ... Raw material gas supply pipe, 2 ... Pretreatment device 3a, 3b, 3c ... Adsorption tower, 5 ... Desorption pipe 6 ... Vacuum pump, 8 ... Cleaning pipe 9 ... Compressor 11a, 11b, 11c ... Initial introduction pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】吸着工程で原料ガスを吸着塔内へ導入して
回収目的成分ガスを吸着剤に吸着し、脱着工程で該回収
目的成分ガスを脱着して回収し、上記吸着工程と脱着工
程を繰返す圧力スイング吸着方法において、 脱着工程終了後の吸着塔へ高純度の回収目的成分ガスを
150〜300mmHgまで初期導入し、その後、前記吸着塔にお
ける該初期導入口の反対側より原料ガスを供給して吸着
工程を開始することを特徴とする圧力スイング吸着方
法。
1. A raw material gas is introduced into an adsorption tower in an adsorption step to adsorb a recovery target component gas to an adsorbent, and a desorption step desorbs and recovers the recovery target component gas. The adsorption step and the desorption step In the pressure swing adsorption method in which the above steps are repeated, a high-purity recovery target component gas is supplied to the adsorption tower after the desorption process.
A pressure swing adsorption method characterized in that the adsorption step is started by initially introducing up to 150 to 300 mmHg and then supplying a raw material gas from the opposite side of the initial introduction port in the adsorption tower.
【請求項2】吸着塔に原料ガス供給管、脱着用管及び洗
浄用管を連結してなる圧力スイング吸着装置において、 前記吸着塔における原料ガス供給管接続側と対峙する側
には、前記洗浄管から分岐した初期導入管が連結されて
なることを特徴とする圧力スイング吸着装置。
2. A pressure swing adsorption apparatus in which a raw material gas supply pipe, a desorption pipe and a cleaning pipe are connected to an adsorption tower, wherein the cleaning is provided on the side of the adsorption tower facing the raw material gas supply pipe connection side. A pressure swing adsorption device characterized in that an initial introduction pipe branched from a pipe is connected.
JP63193596A 1988-08-02 1988-08-02 Pressure swing adsorption method and device Expired - Lifetime JPH0691925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63193596A JPH0691925B2 (en) 1988-08-02 1988-08-02 Pressure swing adsorption method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63193596A JPH0691925B2 (en) 1988-08-02 1988-08-02 Pressure swing adsorption method and device

Publications (2)

Publication Number Publication Date
JPH0243916A JPH0243916A (en) 1990-02-14
JPH0691925B2 true JPH0691925B2 (en) 1994-11-16

Family

ID=16310587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63193596A Expired - Lifetime JPH0691925B2 (en) 1988-08-02 1988-08-02 Pressure swing adsorption method and device

Country Status (1)

Country Link
JP (1) JPH0691925B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069452A (en) * 2008-09-22 2010-04-02 Sumitomo Seika Chem Co Ltd Method for separating carbon monoxide and carbon monoxide separation apparatus

Also Published As

Publication number Publication date
JPH0243916A (en) 1990-02-14

Similar Documents

Publication Publication Date Title
KR960004606B1 (en) Process for producing high purity oxygen gas from air
US4013429A (en) Fractionation of air by adsorption
JP2002191925A (en) Pressure swing adsorption method for separating feed gas
JPH0531481B2 (en)
US5620501A (en) Recovery of trace gases from gas streams
JPH0321207B2 (en)
US6113672A (en) Multiple equalization pressure swing adsorption process
JP2719661B2 (en) Adsorption separation method and apparatus for separating argon and hydrogen from ammonia plant purge gas at high concentration
JPS6245315A (en) Pressure swing adsorbing method
JP3076912B2 (en) Method and apparatus for separating mixed gas
JPS6137970B2 (en)
JPH0691925B2 (en) Pressure swing adsorption method and device
KR100228239B1 (en) Apparatus and process for producing nitrogen using psa system depending on nitrogen concentration in the product
JPH01155926A (en) Pressure switching adsorption process
JPH0312307A (en) Method for enriching oxygen
JPH0517133Y2 (en)
JPH0687935B2 (en) Pressure swing adsorption device
KR0145787B1 (en) Process for preparing oxygen by changing pressure
JPH07110328B2 (en) Pressure swing adsorption type high-purity nitrogen production method and apparatus
JPH0240366B2 (en)
JPH0352615A (en) Gas separation
JPH0372326B2 (en)
JPS63147516A (en) Pressure swing adsorbing method and its device
JPH0331487B2 (en)
JPS6287402A (en) Method of separating and recovering high-purity nitrogen form air