JP2569091B2 - Pressure swing adsorption method - Google Patents

Pressure swing adsorption method

Info

Publication number
JP2569091B2
JP2569091B2 JP62310648A JP31064887A JP2569091B2 JP 2569091 B2 JP2569091 B2 JP 2569091B2 JP 62310648 A JP62310648 A JP 62310648A JP 31064887 A JP31064887 A JP 31064887A JP 2569091 B2 JP2569091 B2 JP 2569091B2
Authority
JP
Japan
Prior art keywords
adsorption tower
pressure
adsorption
exhaust gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62310648A
Other languages
Japanese (ja)
Other versions
JPH01151920A (en
Inventor
昌弘 山形
文彦 糟谷
卓 青方
義信 中根
迪彦 福田
利明 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kobe Steel Ltd
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kansai Coke and Chemicals Co Ltd filed Critical Kobe Steel Ltd
Priority to JP62310648A priority Critical patent/JP2569091B2/en
Publication of JPH01151920A publication Critical patent/JPH01151920A/en
Application granted granted Critical
Publication of JP2569091B2 publication Critical patent/JP2569091B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、2塔以上の吸着塔を用いて混合ガスから
特定成分{例えば一酸化炭素(CO)}を高収率で分離回
収することができる圧力スイング吸着方法に関するもの
である。
The present invention relates to a method for separating and recovering a specific component {for example, carbon monoxide (CO)} from a mixed gas in a high yield by using two or more adsorption towers. And a pressure swing adsorption method.

(従来技術) 従来、例えばCOが含まれた混合ガスからCOを分離回収
する圧力スイング吸着方法としては、昇圧工程と吸着工
程と均圧工程と洗浄工程と脱着工程とを有し、吸着塔の
洗浄工程において発生するパージ排ガスをそのまま廃棄
するのではなく、このパージ排ガスを他の吸着塔に導入
してこのパージ排ガス中のCO成分をさらに吸着させてCO
成分の回収率を向上させるようにしたものが知られてい
る。
(Prior art) Conventionally, as a pressure swing adsorption method for separating and recovering CO from a mixed gas containing CO, for example, a pressure swing step, an adsorption step, a pressure equalization step, a washing step, and a desorption step are included. Instead of directly discarding the purge exhaust gas generated in the cleaning process, the purge exhaust gas is introduced into another adsorption tower, and the CO component in the purge exhaust gas is further adsorbed to remove CO.
There is known one that improves the recovery of components.

上記従来の圧力スイング吸着方法を第3図に示す工程
説明図と、第4図に示すような2つの吸着塔A,Bを有す
る装置とに基いて一方の吸着塔Aを中心に説明する。ま
ず昇圧工程では、原料ガス圧縮機11によってCO,N2,CO2,
H2の混合ガスである原料ガスが加圧されて供給管路21お
よび弁31aを通して上記一方の吸着塔Aに供給される。
これによって吸着塔Aは所定の吸着圧力まで昇圧され
る。
The conventional pressure swing adsorption method will be described with reference to one of the adsorption towers A based on a process explanatory view shown in FIG. 3 and an apparatus having two adsorption towers A and B as shown in FIG. First, in the pressurization step, CO, N 2 , CO 2 ,
The raw material gas, which is a mixed gas of H 2 , is pressurized and supplied to the one adsorption tower A through the supply pipe 21 and the valve 31a.
Thereby, the pressure of the adsorption tower A is increased to a predetermined adsorption pressure.

つぎに吸着工程では、上記昇圧工程に引き続き原料ガ
スが吸着塔Aに供給されるとともに、弁32aが開かれ
る。これによって吸着塔A内の吸着剤(例えばゼオライ
ト、活性炭あるいはアルミナなど)に原料ガス中の吸着
性の高いCO(易吸着成分)が加圧下で吸着され、吸着性
の低いN2およびH2(難吸着成分)が排出管路22および弁
32aを通して大気中へ放出される。この吸着工程は、吸
着塔Aの出口におけるCO濃度が入口における原料ガス中
のCO濃度と同じになる直前に弁31aと弁32aとを閉じるこ
とによって終了され、これによって吸着塔Aはその内部
が吸着圧力のままで封鎖される。
Next, in the adsorption step, the raw material gas is supplied to the adsorption tower A following the above-described pressure increasing step, and the valve 32a is opened. As a result, highly adsorbable CO (easily adsorbable component) in the raw material gas is adsorbed to the adsorbent (for example, zeolite, activated carbon, or alumina) in the adsorption tower A under pressure, and N 2 and H 2 ( The hardly adsorbable component) is discharged line 22 and valve
Released into the atmosphere through 32a. This adsorption step is terminated by closing the valves 31a and 32a immediately before the CO concentration at the outlet of the adsorption tower A becomes the same as the CO concentration in the raw material gas at the inlet. It is blocked under the adsorption pressure.

上記吸着塔Aが上記昇圧工程および吸着工程にある
間、他方の吸着塔Bでは脱着工程が行われており、この
脱着工程により前工程までに吸着されたCO成分が真空ポ
ンプ12によって減圧脱着され、このCO成分が吸収管路23
および弁33bを通して製品ガス貯留槽4に製品ガスとし
て導入される。
While the adsorption tower A is in the pressure increasing step and the adsorption step, a desorption step is performed in the other adsorption tower B. In this desorption step, the CO component adsorbed up to the previous step is decompressed and desorbed by the vacuum pump 12. , This CO component is
And the product gas is introduced into the product gas storage tank 4 through the valve 33b.

上記吸着工程が終了すると、吸着塔Aは連絡管路24a
の弁34aを開くことによって均圧工程に入る。これによ
って吸着圧力まで昇圧された吸着塔A内の原料ガスは減
圧状態の吸着塔Bに移動し、吸着塔Aはほぼ大気圧まで
減圧され、また吸着塔Bはほぼ大気圧まで昇圧される。
上記2つの吸着塔A,Bがほぼ大気圧に互いに均圧した段
階で弁34aを閉じる。
When the above adsorption step is completed, the adsorption tower A is connected to the communication line 24a.
The pressure equalizing process is started by opening the valve 34a. As a result, the raw material gas in the adsorption tower A whose pressure has been increased to the adsorption pressure moves to the adsorption tower B in a reduced pressure state, and the pressure of the adsorption tower A is reduced to almost the atmospheric pressure, and the pressure of the adsorption tower B is increased to almost the atmospheric pressure.
The valve 34a is closed when the two adsorption towers A and B are almost equalized to the atmospheric pressure.

この後、吸着塔Aは洗浄工程に入る。この洗浄工程で
は、洗浄用ガス供給管路25の弁35aと、連絡管路24aの弁
34aと、排出管路22の弁32bとが開かれて製品ガス貯留槽
4のCO成分ガスが吸着塔Aに導入される。このCO成分ガ
スによって吸着塔A内に残留する難吸着成分がパージさ
れ、このパージ排ガスは他方の吸着塔Bに送給されてパ
ージ排ガス中のCO成分の一部が吸着塔B内の吸着剤に吸
着される。この吸着塔BでCO成分が吸着された残りのパ
ージ排ガスはほぼ大気圧となるので排ガス圧縮機13によ
って大気中に放出される。
Thereafter, the adsorption tower A enters a washing step. In this cleaning step, the valve 35a of the cleaning gas supply pipe 25 and the valve of the communication pipe 24a
34a and the valve 32b of the discharge line 22 are opened, and the CO component gas in the product gas storage tank 4 is introduced into the adsorption tower A. The CO component gas purges the hardly adsorbable components remaining in the adsorption tower A, and the purge exhaust gas is sent to the other adsorption tower B, and a part of the CO component in the purge exhaust gas is converted into an adsorbent in the adsorption tower B. Is adsorbed. The remaining purged exhaust gas in which the CO component has been adsorbed by the adsorption tower B has almost the atmospheric pressure, and is released into the atmosphere by the exhaust gas compressor 13.

洗浄工程で開いた弁35a,34a,32bを閉じた後、吸着塔
Aは脱着工程に入る。この脱着工程では、吸収管路23の
弁33aを開いて真空ポンプ12を作動することによって吸
着塔A内に吸着されたCO成分が減圧脱着され、このCO成
分ガスが製品ガス貯留槽4に吸収される。
After closing the valves 35a, 34a, 32b opened in the washing step, the adsorption tower A enters a desorption step. In this desorption step, the CO component adsorbed in the adsorption tower A is desorbed under reduced pressure by opening the valve 33a of the absorption pipe 23 and operating the vacuum pump 12, and this CO component gas is absorbed in the product gas storage tank 4. Is done.

この脱着工程が吸着塔Aで行なわれている間、他方の
吸着塔Bでは昇圧工程と吸着工程とが行なわれている。
そして上記他方の吸着塔Bが均圧工程に入ることによっ
て吸着塔Aはほぼ大気圧まで昇圧され、他方の吸着塔B
が洗浄工程に入ることによって吸着塔Aでは上記吸着塔
Bからのパージ排ガス中のCO成分の一部が吸着され、残
りのパージ排ガスが排出管路22を通して大気へ放出され
る。この後、吸着塔Aは昇圧工程に戻り、以下同様の工
程が繰返される。
While the desorption step is being performed in the adsorption tower A, the other adsorption tower B is performing the pressure increasing step and the adsorption step.
When the other adsorption tower B enters the pressure equalizing step, the pressure of the adsorption tower A is raised to almost the atmospheric pressure.
Enters the washing step, a part of the CO component in the purge exhaust gas from the adsorption tower B is adsorbed in the adsorption tower A, and the remaining purge exhaust gas is discharged to the atmosphere through the discharge pipe 22. Thereafter, the adsorption tower A returns to the pressure increasing step, and the same steps are repeated thereafter.

上記従来の圧力スイング吸着方法においては、洗浄工
程で例えば吸着塔Aに供給される洗浄用ガスはCO純度の
高い製品ガスであるために、吸着塔Aの洗浄後のパージ
排ガスは上記製品ガスより低いがその製品ガスに近いCO
純度を有している。したがって上記従来の方法では洗浄
後のパージ排ガスを他方の吸着塔Bに送給し、この吸着
塔Bでパージ排ガス中のCO成分を吸着するようにしてい
るが、製品ガス貯留槽4からの供給元圧が比較的低いた
めに上記他方の吸着塔BでのCO成分の回収が十分ではな
く、このため上記他方の吸着塔Bから排出管路22を通し
て廃棄されるパージ排ガス中には多量のCO成分が含まれ
ることになる。この結果、CO成分の回収率を十分に向上
させることはできないという問題がある。
In the conventional pressure swing adsorption method described above, for example, the cleaning gas supplied to the adsorption tower A in the cleaning step is a product gas having a high CO purity. Low but close to product gas
Has purity. Therefore, in the above-mentioned conventional method, the purged exhaust gas after the cleaning is sent to the other adsorption tower B, and the CO component in the purge exhaust gas is adsorbed by the adsorption tower B, but the supply from the product gas storage tank 4 is performed. Since the source pressure is relatively low, the recovery of the CO component in the other adsorption tower B is not sufficient. Therefore, a large amount of CO is contained in the purged exhaust gas discarded from the other adsorption tower B through the discharge line 22. Ingredients will be included. As a result, there is a problem that the recovery rate of the CO component cannot be sufficiently improved.

そこで均圧工程においては、2つの吸着塔A,Bがほぼ
大気圧となるまで互いに均圧させるのではなく、第3図
に1点鎖線で示すように吸着工程後の吸着塔Aが大気圧
まで減圧された状態で他方の吸着塔Bは大気圧より低い
圧力となるように設定する方法も提案されている(例え
ば特開昭61−37970号公報参照)。この方法によれば洗
浄工程を上記他方の吸着塔Bの出口側の弁32bが閉じた
状態で行っても、パージ排ガスを一方の吸着塔Aから他
方の吸着塔Bに導入することができ、これによってパー
ジ排ガスは上記他方の吸着塔Bから廃棄されることなく
蓄えられる。
Therefore, in the pressure equalization step, the two adsorption towers A and B are not equalized with each other until the pressure becomes almost atmospheric pressure, and as shown by a dashed line in FIG. A method has also been proposed in which the other adsorption tower B is set to a pressure lower than the atmospheric pressure in a state where the pressure is reduced to a lower level (for example, see Japanese Patent Application Laid-Open No. 61-37970). According to this method, even if the cleaning step is performed with the valve 32b on the outlet side of the other adsorption tower B closed, the purged exhaust gas can be introduced from one adsorption tower A to the other adsorption tower B, As a result, the purge exhaust gas is stored without being discarded from the other adsorption tower B.

ところが、この方法では、吸着中の吸着塔Aと脱着中
の吸着塔Bとの均圧時に、吸着塔Bが常圧へ復帰する以
前に吸着塔Aが常圧まで減圧されるように吸着圧力値お
よび脱着圧力値を設定せねばならなず、これらの圧力の
設定に手間を要することになる。また均圧時間の設定、
調整に多大な労力を要するうえに、洗浄工程時に洗浄さ
れる吸着塔内圧力が徐々に高くなり、これにより洗浄効
果が低下するという問題点もある。
However, in this method, when the adsorption tower A during adsorption and the adsorption tower B during desorption are equalized in pressure, the adsorption pressure is reduced to normal pressure before the adsorption tower B returns to normal pressure. Values and desorption pressure values must be set, and setting these pressures is troublesome. Setting of equalizing time,
A great deal of labor is required for the adjustment, and the pressure inside the adsorption tower to be washed during the washing step gradually increases, which causes a problem that the washing effect is reduced.

また製品ガス貯留槽4からの洗浄用ガスの供給圧力を
比較的高くすることも考えられる。ところが、この場合
には洗浄圧力が時間の経過とともに高くなるために吸着
剤の吸着特性により洗浄効果がその分悪くなり、この結
果、脱着回収されるCO成分ガスの純度が低下する。
It is also conceivable to make the supply pressure of the cleaning gas from the product gas storage tank 4 relatively high. However, in this case, since the cleaning pressure increases with time, the cleaning effect is deteriorated by the adsorption characteristics of the adsorbent, and as a result, the purity of the CO component gas to be desorbed and recovered is reduced.

このほかに排出管路22からのパージ排ガスを原料ガス
圧縮機11の吸込み側に導入し、上記パージ排ガスを原料
ガスとして再使用することも考えられる。ところが、こ
の場合には原料ガス圧縮機11の能力や図示しない前処理
工程(例えば水分の除去など)の能力を再使用する分だ
け大きくする必要があり、このため経済性に欠けるとい
う問題がある。
In addition, it is conceivable that the purge exhaust gas from the discharge line 22 is introduced into the suction side of the raw material gas compressor 11, and the purge exhaust gas is reused as the raw material gas. However, in this case, it is necessary to increase the capacity of the raw material gas compressor 11 and the capacity of a not-shown pretreatment step (for example, removal of water) by the amount of reuse, which causes a problem of lack of economy. .

(発明の目的) この発明は、このような従来の問題を解決するために
なされたものであり、特定成分の回収率を容易かつ確実
に向上することができ、しかも純度や経済性を損うこと
のない圧力スイング吸着方法を提供するものである。
(Purpose of the Invention) The present invention has been made to solve such a conventional problem, and it is possible to easily and surely improve the recovery rate of a specific component, and to impair the purity and economic efficiency. The present invention is to provide a pressure swing adsorption method without any problem.

(発明の構成) この発明は、昇圧工程と吸着工程と均圧工程と洗浄工
程と脱着工程とを有し、少なくとも2以上の圧力スイン
グ吸着塔において上記工程を互いにずらせて繰返すこと
によって混合ガス中の特定成分を吸着回収する圧力スイ
ング吸着方法において、上記洗浄工程では脱着工程で回
収された特定成分ガスを洗浄用ガスとして均圧工程後の
吸着塔に導入し、ある吸着塔の洗浄工程ではこの吸着塔
と互いに異なる他の吸着塔の出口を閉じ、洗浄工程で発
生するパージ排ガスを上記他の吸着塔に導く際に、その
パージ排ガスを再加圧して上記他の吸着塔に送給もので
ある。
(Constitution of the Invention) The present invention has a pressure rising step, an adsorption step, a pressure equalizing step, a washing step, and a desorption step. In the pressure swing adsorption method for adsorbing and recovering a specific component, in the washing step, the specific component gas collected in the desorption step is introduced as a cleaning gas into the adsorption tower after the pressure equalization step. The outlet of another adsorption tower different from the adsorption tower is closed, and when the purge exhaust gas generated in the washing step is guided to the other adsorption tower, the purge exhaust gas is repressurized and sent to the other adsorption tower. is there.

上記構成によれば、洗浄工程で洗浄用ガスが比較的小
さい圧力で供給されても、そのパージ排ガスは洗浄工程
の吸着塔から他の吸着塔へ送給される際に再加圧される
ので、出口を閉じた状態の他の吸着塔へ確実に導入する
ことができ、しかも上記パージ排ガスは吸着剤に加圧状
態で吸着させることができ、このため上記他の吸着塔で
はパージ排ガスを廃棄することなく従来よりも多量の特
定成分を吸着回収することができる。
According to the above configuration, even if the cleaning gas is supplied at a relatively small pressure in the cleaning step, the purge exhaust gas is repressurized when being sent from the adsorption tower in the cleaning step to another adsorption tower. The purged exhaust gas can be reliably introduced into another adsorption tower with the outlet closed, and the purged exhaust gas can be adsorbed to the adsorbent in a pressurized state. Thus, a larger amount of a specific component can be adsorbed and recovered than before.

(実施例) 第2図に示すこの発明を実施するための装置は、第4
図に示す従来の装置に対して2つの吸着塔A,Bで発生す
るパージ排ガスを一方から他方へ互いに加圧して送給す
る加圧管路26を設けたものである。この加圧管路26には
パージ排ガス圧縮機14が設けられ、吸着塔A,Bの出口は
弁36a,36bを介して上記パージ排ガス圧縮機14の吸込み
側と接続され、また上記吸着塔A,,Bの入口は弁37a,37b
を介してパージ排ガス圧縮機14の吐出側と接続されてい
る。また第2図に示す装置には、第4図に示す従来の装
置に設けられている排ガス圧縮機13が省略されている。
(Embodiment) An apparatus for carrying out the present invention shown in FIG.
The apparatus shown in the figure is provided with a pressurized pipe 26 for pressurizing and sending purge exhaust gas generated in two adsorption towers A and B to one another from the conventional apparatus shown in the figure. The pressurized line 26 is provided with a purge exhaust gas compressor 14, and the outlets of the adsorption towers A and B are connected to the suction side of the purge exhaust gas compressor 14 via valves 36a and 36b. , B inlet valves 37a, 37b
Is connected to the discharge side of the purge exhaust gas compressor 14. Further, in the apparatus shown in FIG. 2, the exhaust gas compressor 13 provided in the conventional apparatus shown in FIG. 4 is omitted.

第1図に示す実施例の特徴は、一方の吸着塔の洗浄工
程で発生するパージ排ガスを他方の吸着塔に送給するの
に、第3図に示す従来の方法においては連絡管路24a,24
bを通して送給するようにしているのに対し、この実施
例では上記加圧管路26を通して送給するようにした点に
ある。
A feature of the embodiment shown in FIG. 1 is that the purge exhaust gas generated in the washing step of one adsorption tower is sent to the other adsorption tower, but the conventional method shown in FIG. twenty four
In this embodiment, the feed is performed through the pressurized pipe 26, whereas the feed is performed through the b.

すなわち一方の吸着塔Aの均圧工程によって2つの吸
着塔A,Bをほぼ大気圧まで均圧した後、連絡管路24aの弁
34aを閉じる。これによってすべての弁31a〜37a,31b〜3
7b,は閉じられる。この後、上記一方の吸着塔Aの洗浄
工程では、洗浄用ガス供給管路25の弁35aを開くととも
に、加圧管路26の吸着塔Aの出口側の弁36aと他方の吸
着塔Bの入口側の弁37aとを開いてパージ排ガス圧縮機1
4を作動させる。すると、吸着塔Aの洗浄によって生じ
るパージ排ガスはパージ排ガス圧縮機14によって吸着塔
Aから吸引されるとともに、そのパージ排ガスは加圧さ
れて他方の吸着塔Bに蓄圧される。この後、洗浄工程を
終えた一方の吸着塔Aは脱着工程、パージ排ガスが蓄圧
された他方の吸着塔Bは原料ガスによる昇圧工程にそれ
ぞれ移る。
That is, after equalizing the two adsorption towers A and B to almost the atmospheric pressure in the pressure equalizing step of one adsorption tower A, the valve of the communication line 24a is opened.
Close 34a. This allows all valves 31a-37a, 31b-3
7b, is closed. Thereafter, in the cleaning step of the one adsorption tower A, the valve 35a of the cleaning gas supply pipe 25 is opened, and the valve 36a on the outlet side of the adsorption tower A of the pressurization pipe 26 and the inlet of the other adsorption tower B are opened. Open side valve 37a and purge exhaust gas compressor 1
Activate 4. Then, the purge exhaust gas generated by washing the adsorption tower A is sucked from the adsorption tower A by the purge exhaust gas compressor 14, and the purge exhaust gas is pressurized and accumulated in the other adsorption tower B. Thereafter, the one adsorption tower A, which has completed the washing step, shifts to a desorption step, and the other adsorption tower B, in which the purged exhaust gas has been stored, shifts to a step of increasing the pressure by a raw material gas.

したがってこの他方の吸着塔Bでは、大気圧より高い
圧力下でパージ排ガス中のCO成分の吸着回収を行うなう
ことができるので、従来の大気圧下で吸着させる場合よ
りも多量のCO成分を吸着回収することができる。この結
果CO成分回収における収率を従来よりも向上させること
ができる。また、これまで廃棄されていたパージ排ガス
は廃棄されることなく上記他方の吸着塔Bに昇圧用ガス
の一部として蓄圧されるので、従来方法における上記パ
ージ排ガスの放出用の排ガス圧縮機13(第4図参照)を
省略することができる。
Therefore, in the other adsorption tower B, it is possible to perform the adsorption and recovery of the CO component in the purged exhaust gas at a pressure higher than the atmospheric pressure. It can be adsorbed and recovered. As a result, the yield in CO component recovery can be improved as compared with the conventional case. Further, since the purge exhaust gas which has been discarded up to now is accumulated in the other adsorption tower B as a part of the pressurizing gas without being discarded, the exhaust gas compressor 13 (for discharging the purge exhaust gas) in the conventional method is used. 4) can be omitted.

またパージ排ガス圧縮機14によって洗浄工程の吸着塔
Aからパージ排ガスを吸引するようにしているので、他
方の吸着塔Bの排出管路22側の弁32bを閉じた状態にし
ても上記パージ排ガスを確実に上記他方の吸着塔に導入
することができる。同様にパージ排ガス圧縮機14によっ
てパージ排ガスを他方の吸着塔Bに送給するようにして
いるので、均圧工程で上記吸着塔Bを大気圧より低い状
態に設定する必要もない。
Further, since the purge exhaust gas is sucked from the adsorption tower A in the cleaning step by the purge exhaust gas compressor 14, even if the valve 32b on the discharge line 22 side of the other adsorption tower B is closed, the purge exhaust gas is removed. It can be reliably introduced into the other adsorption tower. Similarly, since the purge exhaust gas is supplied to the other adsorption tower B by the purge exhaust gas compressor 14, it is not necessary to set the adsorption tower B to a state lower than the atmospheric pressure in the pressure equalizing step.

なお上記実施例においては、COを含む原料ガスから特
定成分としてCOを分離回収する場合について説明した
が、これに限らず、例えばN2とO2とAr(アルゴン)とか
らなる原料ガスから特定成分として例えばN2を分離回収
する場合にも適用することができる。
Note in the above embodiment has described the case of separating and recovering the CO as a specific component from a feed gas containing CO, is not limited to this, for example, N 2, O 2 and Ar particular from a feed gas consisting of a (argon) The present invention can also be applied to a case where, for example, N 2 is separated and recovered as a component.

また上記実施例においては、2つの吸着塔A,Bから構
成される装置を用いているが、これに限らず、例えば4
つの吸着塔からなる装置において互いに工程をずらせて
連続運転させるようにしてもよい。
Further, in the above-described embodiment, an apparatus composed of two adsorption towers A and B is used.
In an apparatus composed of two adsorption towers, the steps may be shifted from each other to continuously operate.

(具体例) 第2図に示す装置を用いてCOが70%、CO2が15%、N2
が15%の組成の原料ガスからCOを分離回収する場合につ
いて第1図に示す工程にしたがって試験した。なお吸着
剤としては活性アルミナに銅化合物を添着させたものを
使用した。
(Examples) CO 70% by using the apparatus shown in FIG. 2, CO 2 is 15%, N 2
Was tested in accordance with the process shown in FIG. The adsorbent used was an activated alumina with a copper compound impregnated.

まず一方の吸着塔Aにおいて吸着圧力2kg/cm2Gで昇圧
工程および吸着工程を行った後、均圧工程により上記吸
着塔Aを大気圧まで減圧する。つぎに減圧した吸着塔A
に製品ガス貯留槽4から製品ガスを圧力0.1kg/cm2Gで流
して吸着塔Aを洗浄し、洗浄後大気圧となって吸着塔A
の出口から出てくるパージ排ガスをパージ排ガス圧縮機
14によって0.3kg/cm2Gまで加圧して他方の吸着塔Bに蓄
圧してCO成分を吸着回収させる。洗浄後の吸着塔Aを真
空ポンプ12によって50Torrまで減圧してCO成分を脱着回
収する。脱着工程終了後の吸着塔Aを他方の吸着塔Bの
均圧工程によってほぼ大気圧まで昇圧し、その後上記他
方の吸着塔Bの洗浄工程でのパージ排ガスをパージ排ガ
ス圧縮機14によって吸着塔Aに導入して吸着塔Aを0.3k
g/cm2Gまで昇圧する。これで1サイクルを終了し、再び
上記昇圧工程に戻り原料ガス圧縮機11によって吸着圧力
2kg/cm2Gまで昇圧させる。
First, in one adsorption tower A, after performing a pressure raising step and an adsorption step at an adsorption pressure of 2 kg / cm 2 G, the pressure in the adsorption tower A is reduced to atmospheric pressure by an equalizing step. Next, the adsorption tower A is depressurized.
The product gas is supplied from the product gas storage tank 4 to the adsorption tower A at a pressure of 0.1 kg / cm 2 G to wash the adsorption tower A.
Purging exhaust gas compressor
The pressure is increased to 0.3 kg / cm 2 G by 14 and the pressure is accumulated in the other adsorption tower B to adsorb and collect the CO component. After the washing, the adsorption tower A is depressurized to 50 Torr by the vacuum pump 12 to desorb and collect the CO component. After completion of the desorption step, the pressure of the adsorption tower A is raised to almost the atmospheric pressure by the pressure equalization step of the other adsorption tower B, and then the purge exhaust gas in the washing step of the other adsorption tower B is purged by the purge exhaust gas compressor 14 into the adsorption tower A. 0.3k
Increase the pressure to g / cm 2 G. This completes one cycle, and returns to the above-described pressurizing step again, where the raw material gas compressor 11 performs the adsorption
Increase the pressure to 2kg / cm 2 G.

上記1サイクルを8分間で運転した結果、運転開始後
約80分間で製品ガスのCO純度は99.7%となり、またCO回
収率は85%を維持することができた。
As a result of operating the above cycle for 8 minutes, the CO purity of the product gas was 99.7% and the CO recovery was 85% in about 80 minutes after the start of the operation.

(第1の比較例) 第4図に示す従来の装置を用いて上記具体例と同組成
の原料ガスからCOを分離回収する場合について第3図に
示す従来の工程にしたがって試験した。この場合、洗浄
工程としては、吸着塔Aに製品ガス貯留槽4から製品ガ
スを圧力0.2kg/cm2Gで流して吸着塔Aを洗浄し、洗浄後
0.1kg/cm2Gとなって吸着塔Aの出口から出てくるパージ
排ガスを他方の吸着塔Bに流入させてCO成分を吸着回収
させ、この他方の吸着塔Bの出口から大気圧となって出
てくる排ガスを排ガス圧縮機13によって廃棄させるよう
にした。
(First Comparative Example) Using a conventional apparatus shown in FIG. 4, a test was conducted in accordance with the conventional process shown in FIG. 3 in the case of separating and recovering CO from a raw material gas having the same composition as the above specific example. In this case, as the washing step, the product gas is supplied from the product gas storage tank 4 to the adsorption tower A at a pressure of 0.2 kg / cm 2 G to wash the adsorption tower A, and
The purge gas discharged from the outlet of the adsorption tower A at a pressure of 0.1 kg / cm 2 G flows into the other adsorption tower B to adsorb and recover the CO component. The discharged exhaust gas is disposed of by the exhaust gas compressor 13.

この結果、製品ガスのCO純度は98.9%となり、CO回収
率は78%であった。
As a result, the CO purity of the product gas was 98.9%, and the CO recovery was 78%.

(第2の比較例) 第1の比較例における洗浄工程として他方の吸着塔B
の出口側の弁32bを閉じた状態で行った。このため、吸
着塔Aに製品ガス貯留槽4から製品ガスを圧力0.4kg/cm
2Gで流して吸着塔Aを洗浄し、吸着塔Aの出口から出て
くるパージ排ガスを他方の吸着塔Bに流入させてCO成分
を吸着回収させるようにした。なおこの場合、洗浄工程
の初めに吸着塔Aの出口から出てくるパージ排ガスの圧
力は比較的低いが、その圧力は時間の経過とともに高く
なり、最終的には0.4kg/cm2Gになる。
(Second Comparative Example) The other adsorption tower B was used as a washing step in the first comparative example.
The operation was performed with the valve 32b on the outlet side of the valve closed. For this reason, the product gas is supplied to the adsorption tower A from the product gas storage tank 4 at a pressure of 0.4 kg / cm.
The adsorption tower A was washed by flowing at 2 G, and the purged exhaust gas coming out of the outlet of the adsorption tower A was flowed into the other adsorption tower B to adsorb and collect the CO component. In this case, the pressure of the purged exhaust gas coming out of the outlet of the adsorption tower A at the beginning of the washing step is relatively low, but the pressure increases with the passage of time and finally reaches 0.4 kg / cm 2 G. .

この結果、製品ガスのCO純度は98.5%となり、CO回収
率は84%であった。
As a result, the CO purity of the product gas was 98.5%, and the CO recovery was 84%.

(発明の効果) この発明の圧力スイング吸着方法によれば、洗浄用ガ
スが比較的小さい圧力で吸着塔に供給されても、その吸
着塔からのパージ排ガスは他の吸着塔へ送給される際に
再加圧されるので、出口が閉じた状態の他の吸着塔へ確
実に導入することができ、しかも他の吸着塔はその出口
を閉じた状態にあるので上記パージ排ガスは吸着塔内に
加圧状態で保持される。このため上記他の吸着塔ではパ
ージ排ガスを廃棄することなくパージ排ガス中の特定成
分を従来よりも多量に吸着回収することができる。
(Effect of the Invention) According to the pressure swing adsorption method of the present invention, even if the cleaning gas is supplied to the adsorption tower at a relatively small pressure, the purge exhaust gas from the adsorption tower is supplied to another adsorption tower. At the time of re-pressurization, it can be reliably introduced into another adsorption tower with the outlet closed, and since the other adsorption tower has its outlet closed, the above-mentioned purged exhaust gas is stored in the adsorption tower. Is held in a pressurized state. For this reason, the other adsorption towers can adsorb and recover a larger amount of specific components in the purged exhaust gas than in the conventional apparatus without discarding the purged exhaust gas.

したがって均圧工程で上記他の吸着塔を大気圧より低
い圧力に設定する必要もなく、通常の吸着性能を有する
吸着剤で特定成分の回収率を容易かつ確実に向上するこ
とができ、しかも純度や経済性を損うことはない。
Therefore, there is no need to set the other adsorption tower to a pressure lower than the atmospheric pressure in the pressure equalization step, and the recovery rate of the specific component can be easily and reliably improved with the adsorbent having ordinary adsorption performance, and the purity is also improved. It does not hurt the economy.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の実施例の各工程と吸着塔内の定性的
な圧力とを経時的に示す工程説明図、第2図は第1図の
工程を実施する装置の概略構成図、第3図は従来の方法
の各工程と吸着塔内の定性的な圧力とを経時的に示す工
程説明図、第4図は第3図の工程を実施する装置の概略
構成図である。 A,B……吸着塔(圧力スイング吸着塔)。
FIG. 1 is a process explanatory diagram showing the steps of the embodiment of the present invention and the qualitative pressure in the adsorption tower with time, FIG. 2 is a schematic configuration diagram of an apparatus for performing the process of FIG. FIG. 3 is a process explanatory view showing each step of the conventional method and the qualitative pressure in the adsorption tower with time, and FIG. 4 is a schematic configuration diagram of an apparatus for performing the process of FIG. A, B …… Adsorption tower (pressure swing adsorption tower).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青方 卓 兵庫県神戸市須磨区妙法寺字蓮池366番 地の10 (72)発明者 中根 義信 兵庫県加古川市平岡町二俣1007 (72)発明者 福田 迪彦 兵庫県加古郡稲美町加古3765―1 (72)発明者 辻 利明 大阪府泉佐野市南中岡本145 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Taku Aogata 366, Hasuike, Myohoji, Suma-ku, Kobe City, Hyogo Prefecture Dihiko 376-1, Kako, Inami-cho, Kako-gun, Hyogo (72) Inventor Toshiaki Tsuji 145 Minaminakaokamoto, Izumisano-shi, Osaka

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】昇圧工程と吸着工程と均圧工程と洗浄工程
と脱着工程とを有し、少なくとも2以上の圧力スイング
吸着塔において上記工程を互いにずらせて繰返すことに
よって混合ガス中の特定成分を吸着回収する圧力スイン
グ吸着方法において、上記洗浄工程では脱着工程で回収
された特定成分ガスを洗浄用ガスとして均圧工程後の吸
着塔に導入し、ある吸着塔の洗浄工程ではこの吸着塔と
互いに異なる他の吸着塔の出口を閉じ、洗浄工程で発生
するパージ排ガスを上記他の吸着塔に導く際に、そのパ
ージ排ガスを再加圧して上記他の吸着塔に送給すること
を特徴とする圧力スイング吸着方法。
1. A method comprising a step of increasing pressure, an adsorption step, a pressure equalization step, a washing step and a desorption step, wherein at least two or more pressure swing adsorption towers are repeated with the above steps shifted from each other to remove specific components in the mixed gas. In the pressure swing adsorption method of adsorbing and recovering, in the washing step, the specific component gas collected in the desorbing step is introduced as a washing gas into the adsorption tower after the pressure equalization step. Closing the outlet of another different adsorption tower, and introducing the purge exhaust gas generated in the washing step to the other adsorption tower, re-pressurizing the purge exhaust gas and feeding it to the other adsorption tower. Pressure swing adsorption method.
JP62310648A 1987-12-07 1987-12-07 Pressure swing adsorption method Expired - Lifetime JP2569091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62310648A JP2569091B2 (en) 1987-12-07 1987-12-07 Pressure swing adsorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62310648A JP2569091B2 (en) 1987-12-07 1987-12-07 Pressure swing adsorption method

Publications (2)

Publication Number Publication Date
JPH01151920A JPH01151920A (en) 1989-06-14
JP2569091B2 true JP2569091B2 (en) 1997-01-08

Family

ID=18007777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62310648A Expired - Lifetime JP2569091B2 (en) 1987-12-07 1987-12-07 Pressure swing adsorption method

Country Status (1)

Country Link
JP (1) JP2569091B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073875C (en) * 1997-10-24 2001-10-31 化学工业部西南化工研究设计院 Pressure swing adsorption process for separating carbon monooxide from carbon monooxide contg. mixed gas
KR100324709B1 (en) * 1999-03-19 2002-02-16 이종훈 Pressure Swing Adsorption System for Highly Concentrated Carbon Dioxide Recovery from Power Plant Flue Gas and Recovery Method Using thereof

Also Published As

Publication number Publication date
JPH01151920A (en) 1989-06-14

Similar Documents

Publication Publication Date Title
CA1201663A (en) Nitrogen generation system
EP1018359A2 (en) Pressure swing adsorption process and system with product storage tank(s)
CA2289909C (en) Oxygen generation process and system using single adsorber vessel and single blower
US6524370B2 (en) Oxygen production
US5620501A (en) Recovery of trace gases from gas streams
JPH0429601B2 (en)
US6102985A (en) Pressure swing adsorption process and system with dual product storage tanks
GB1579783A (en) Separation of gaseous mixture by selective adsorption
US4404004A (en) Method for separating gas mixtures by means of pressure changing adsorption technique
US6113672A (en) Multiple equalization pressure swing adsorption process
JP2569091B2 (en) Pressure swing adsorption method
US6083299A (en) High pressure purge pressure swing adsorption process
WO2004014523A1 (en) Method of separating target gas
JPH07110762B2 (en) Method for producing high concentration oxygen
JP2569095B2 (en) Pressure swing adsorption method
JPH10272332A (en) Gas separation device and its operation method
JP2529929B2 (en) Method for separating and recovering carbon monoxide gas
KR100275858B1 (en) Pressure and apparatus for nitrogen production by pressure swing adsorption
KR19980016382A (en) Pressure swing adsorption method for producing high purity carbon dioxide
KR100292555B1 (en) Pressure swing adsorption process for hydrogen purification with high productivity
JP4611514B2 (en) Hydrogen gas separation method
JP2638037B2 (en) Pressure swing adsorption method
JP2529928B2 (en) Method for separating and recovering carbon monoxide gas
JP3015840B2 (en) Pressure swing adsorption method for separating and recovering carbon monoxide from a mixed gas containing carbon monoxide
JP2000210524A (en) Mixed gas adsorbing and separating method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12