JPS5816559A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5816559A
JPS5816559A JP56113712A JP11371281A JPS5816559A JP S5816559 A JPS5816559 A JP S5816559A JP 56113712 A JP56113712 A JP 56113712A JP 11371281 A JP11371281 A JP 11371281A JP S5816559 A JPS5816559 A JP S5816559A
Authority
JP
Japan
Prior art keywords
type
layer
diffusion
epitaxial
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56113712A
Other languages
Japanese (ja)
Inventor
Isao Shimizu
勲 志水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56113712A priority Critical patent/JPS5816559A/en
Publication of JPS5816559A publication Critical patent/JPS5816559A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/8605Resistors with PN junctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent parasitic MOS buildup and to enhance device integration by a method wherein impurity concentration in a semiconductor resistor region forming epitaxial layer is higher than in other epitaxial layers. CONSTITUTION:A doped N<-> type Si layer 3' with relatively low impurity concentration is epitaxially grown on a high resistance P<-> type Si semiconductor substrate 1, with the partial intermediary of an N<+> type buried layer 2, which is followed by ion implantation for the formation of a P type isolation 4. After this, N type impurity ions are implanted into the surface of the epitaxial Si layer 3' forming a P<+> type resistor region 5. The implantation is so effected that after diffusion the impurity concentration in the Si layer 3' is higher than in other isolated epitaxial layers. Finally, the formation of a resistor region 5 is performed together with the diffusion of a P<+> type base for an NPN transistor.

Description

【発明の詳細な説明】 本発明は半導体装置の製法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a semiconductor device.

半導体集積回路装置(以下IO)を形成する場合におい
て、第1図に示すようK例えば高抵抗のP−型別半導体
基板1上に一部でN+型塩込層2を介しズ比較的低不純
物濃置ドープN−型St半導体層3をエピタキシャル成
長させ、このN″″s1″81層3らP−基板に接続す
るP+型アインレーション4(分離層)で囲んだ部分を
素子領域として、NPNトランジスタ等をつ(りこむが
、このNPN)ランジスタのP中型ベース拡散と同時に
抵抗領域5を形成することが知られている。
When forming a semiconductor integrated circuit device (hereinafter referred to as IO), as shown in FIG. A heavily doped N-type St semiconductor layer 3 is epitaxially grown, and a portion surrounded by a P+-type inlation 4 (separation layer) connected to the P- substrate from this N''s1''81 layer 3 is used as an element region to form an NPN transistor. It is known to form the resistance region 5 at the same time as the P medium base diffusion of the NPN transistor.

ところで、高耐圧のIOの場合、N−81層3の不純物
濃度を小さくとってあり、一方、抵抗となるP+島領域
の端子VC@続したAj配置16をN−8i層表面に絶
縁膜(8i0.)7を介して延在させたり、低電位のA
j配■がP+抵抗5とアイソレージ冒ン4とめ間を通過
するためKP+抵抗領域5とP+アイソレージ曹ノン4
の間VC寄生MO8&Cよる反転層を生じ、抵抗のリー
クとなる問題があった。このような寄生MO8対策とし
て、(1)P中抵抗領域とP+アイツレ−・シ曹ンの間
のN−81′層表面に工電ツタ拡散による高湿[N中領
域8をナヤネルストッパとして設ける方法、(2)表面
に高電位のAJ膜をオーバラップさせる方法が従来より
採られている。しかしく1)Kよればチャネルストッパ
の幅d、、d、’に応じて抵抗をアイソレージ曹ンから
引き離すために抵抗のレイアウト(ある偽は寸法!Dが
変り、パターンの高密度化が困難となり、又(2)によ
ればAI膜をオーバラップさせることで配線レイアウト
が複雑化する等の欠点があった。
By the way, in the case of a high breakdown voltage IO, the impurity concentration of the N-81 layer 3 is kept low, and on the other hand, an insulating film ( 8i0.) Extending through 7 or lower potential A
Since j distribution passes between P+ resistance 5 and isolation range 4, KP+ resistance area 5 and P+ isolation range 4
During this period, an inversion layer was formed due to the VC parasitic MO8&C, which caused a problem of resistance leakage. As a countermeasure against such parasitic MO8, (1) high humidity caused by the diffusion of industrial ivy on the surface of the N-81' layer between the P medium resistance region and the P+ high resistance region [using the N medium region 8 as a Nayanel stopper]; (2) A method of overlapping a high potential AJ film on the surface has been conventionally adopted. However, 1) According to K, in order to separate the resistor from the isolation circuit according to the width d,,d,' of the channel stopper, the layout of the resistor (some false dimensions! D changes, making it difficult to increase the density of the pattern. Also, according to (2), there were drawbacks such as overlapping the AI films, which made the wiring layout complicated.

本発明は上記した欠点を取り除くためKなされたも゛の
であり、高密度化を損うことなく、を生MO8を防止し
た高耐圧IOの提供にある。
The present invention has been made to eliminate the above-mentioned drawbacks, and its purpose is to provide a high voltage IO that prevents the generation of MO8 without impairing high density.

第2図は本発明の原理的構造を示す半導体装置の断面図
である。本発明によれば、抵抗のP+抵抗領域5を形成
するエピタキシャル8i層3′において表面よりN型不
純物、例えばリンをイオン打込みにより導入し、拡散さ
せsi層の比抵抗を下げることすなわち、他のアイツレ
−、トされたエピタキシャル層(図示せず)よりも高濃
度にすることによってエピタキシャル層表面に反転層を
生じにくくエミッタ拡散によるチャネルストッパ等を用
いることなくを生MO8の生じるのを防止するものであ
る。このような本発明によれば、N十エミッタ拡散によ
るチャネルストッパの#1dt−d*の和だけ抵抗領域
の抵抗の寸法itを従来の場合の!、よりも太き(する
ことができ、特に高抵抗を形成する場合に有利である。
FIG. 2 is a sectional view of a semiconductor device showing the basic structure of the present invention. According to the present invention, an N-type impurity, for example, phosphorus, is introduced from the surface of the epitaxial 8i layer 3' forming the P+ resistance region 5 of the resistor by ion implantation, and is diffused to lower the resistivity of the Si layer. It is possible to prevent the formation of raw MO8 without using a channel stopper or the like by emitter diffusion by making the concentration higher than that of the epitaxial layer (not shown) that has been etched. It is. According to the present invention, the resistance dimension it of the resistance region is reduced from the conventional case by the sum of #1dt-d* of the channel stopper due to N+ emitter diffusion! , which is advantageous especially when forming a high resistance.

又、本発明によれば、高電位のA!膜をオーバーラツプ
させる場合忙比べて構造的にも簡単になる。
Further, according to the present invention, high potential A! If the membranes are overlapped, the structure will be simpler than if the membranes were overlapped.

第3図はIOにおいてP+抵抗領域による抵抗を形成す
る場合の拡散レイアウトパターンの例を示すもので、5
がP+抵抗領域、9がそのコンタクト穴を示している。
Figure 3 shows an example of a diffusion layout pattern when forming a resistance using a P+ resistance region in an IO.
indicates the P+ resistance region, and 9 indicates its contact hole.

N型エピタキシャル層4′の不純物濃度は、通常3Ω−
cm〜5Ω−cmのエピタキシャル層においてリンネ線
動をlXl0”〜5X 10 ” atoms/d糧度
が適当である。一般に抵抗の耐圧BY、は BV、2BVC1,)BYclo であり、エピタキシャル層を少し高濃度にしてもBvc
、。以下になることはなく、回路的に耐圧としてはBv
o。を用いるので十分保証される。
The impurity concentration of the N-type epitaxial layer 4' is usually 3Ω-
In an epitaxial layer of cm to 5 Ω-cm, a Rinne linear motion of 1X10'' to 5X10'' atoms/d is suitable. In general, the withstand voltage BY of a resistor is BV,2BVC1,)BYclo, and even if the epitaxial layer is made a little highly doped, Bvc
,. It will never go below Bv, and the circuit withstand voltage is Bv.
o. is used, so it is fully guaranteed.

第4図(a)〜(d)は本発明をIJ ニア−I”1回
路を含む高耐圧IOのプロセスに適用した場合の実施例
を各工程ごとに図示したものである。
FIGS. 4(a) to 4(d) illustrate each step of an embodiment in which the present invention is applied to a high breakdown voltage IO process including one IJ near-I" circuit.

(al  通常の高耐圧IOのプロセス忙従って、高抵
抗P−型8i基板1上に部分的N中拡散によりN十埋込
層2を形成し、この上に低不純物濃度のN−型8i層3
をエビタキシャAI成長させる。この後、84層の表面
酸化膜7をマスクにB(ボロン)を深いイオン打込みま
たは拡散によりP型アイソレージ曹ン(素子分離領域)
4を形成する。
(al) Due to the usual high-voltage IO process, an N0 buried layer 2 is formed on a high-resistance P-type 8i substrate 1 by partial N diffusion, and on top of this an N-type 8i layer with a low impurity concentration. 3
Let Ebitakisha AI grow. After this, using the 84-layer surface oxide film 7 as a mask, B (boron) is deeply ion-implanted or diffused to form P-type isolation carbon (element isolation region).
form 4.

−図にお−て、■はリニア(高耐圧リニア)部、■は抵
抗部、■はI”L部をそれぞれ形成すべき領域とする。
- In the figure, ◯ indicates a region where a linear (high breakdown voltage linear) portion, ◯ indicates a resistance portion, and ◯ indicates an area where an I''L portion is to be formed.

、(b)  リニア部Iの表面に酸化膜等によるマスク
10を形成し、抵抗部■、ILL部■のN8i層[P(
リン)をイオン打込みする。なお、リニア部Iにおいて
コレクタ取出し部(ON)&Cは同時[13ンをイオン
打込みを行なう。
, (b) A mask 10 made of an oxide film or the like is formed on the surface of the linear part I, and the N8i layer [P(
ion implantation of phosphorus). In addition, in the linear part I, the collector extraction part (ON) &C perform ion implantation at the same time.

(C) l リゴア部!・のベース11.抵抗部■の領
域5゜β1L部のインジェクタ12. インバータのベ
ース13のP+拡散のためのB(ボロン)デポジシ。
(C) l Rigoa Club! Base of 11. Injector 12 in the area 5°β1L of the resistor section ■. B (boron) deposit for P+ diffusion in the base 13 of the inverter.

ン(又はイオン打込み)を行なう。このとき同時にアイ
ソレージ冒ンの表面部’14にもボロンをオーバラップ
するように導入する。
(or ion implantation). At this time, boron is also introduced into the surface part '14 of the isolation layer so as to overlap.

(dl  リニア部Iのエミッタ15. コレクタ取出
し部16: β1L部のマルチコレクタ17.  エミ
ッタリング18のN+拡散のためのP(リン)又はAs
  (、ヒ素)の高濃度デポジン璽ヌ拡散を行なう。
(dl Emitter 15 of linear part I. Collector extraction part 16: Multi-collector 17 of β1L part. P (phosphorus) or As for N+ diffusion of emitter ring 18
(, arsenic) is diffused into a high concentration deposit.

第5図は上記工程終了後の各素子領域1.  We I
IIにおける拡散パターンのレイアウトを示す平面図で
ある。
FIG. 5 shows each element region 1. after the above process is completed. We I
FIG. 3 is a plan view showing the layout of the diffusion pattern in II.

この後、図示畜れないが、表面酸化膜上にPSG(リン
・シリケート・ガラス)等をデポジットし、コンタクト
ホトエッチによる各半導体領域に窓開し、AJ蒸着、ア
ニール、ホトエッチの各工程を経て電極、配線を完成す
る。なお、第5図において抵抗領域5に対する配線は例
えば点線で図示したようにアイソレージIl′71・4
上に延び木ことばいうまでもない。
After this, as shown in the figure, PSG (phosphorus silicate glass) or the like is deposited on the surface oxide film, a window is opened in each semiconductor region by contact photoetching, and the steps of AJ vapor deposition, annealing, and photoetching are performed. Complete the electrodes and wiring. In FIG. 5, the wiring for the resistance region 5 is, for example, an isolation wire Il'71/4 as shown by a dotted line.
Needless to say, it grows upwards.

以上実施例で述べたように、■!L高耐圧プロセスでは
、通常I”L部のN″″″エピタキシヤル層上!1!ク
エルイオン打込みを行なってβ1(NPN型インバーメ
トランジスタの電流増幅率)値を調整することが行われ
ているので、このN型ウェルイオン打込みと抵抗部のN
−エピタキシャル層の比抵抗を下げ″′CN一層表面の
反転をなりシ薔生MO8発生を防止する目的でのN型不
純物イオン打込みとを同じ工程で行なうことができ、特
にエミッタ拡散等による沓生MO8対策が不要となり、
抵抗レイアウトの高密度化が実現できる。
As mentioned above in the examples, ■! In the L high voltage process, it is usually on the N″″″ epitaxial layer of the I″L part! 1! Quell ion implantation is performed to adjust the β1 (current amplification factor of an NPN type inverter transistor) value, so this N type well ion implantation and N
- N-type impurity ion implantation for the purpose of lowering the specific resistance of the epitaxial layer, causing inversion of the surface of the CN layer, and preventing the generation of MO8 can be performed in the same process. MO8 countermeasures are no longer necessary,
High density resistor layout can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来型の半導体抵抗率子の例を示す断面図であ
る。第2図は本発明の原理的構成を示す半導体装置の断
面図、第3因は本発明の一実施例を示す半導体@11の
正面断面斜面図、第4図(al〜(diはIRL高耐圧
IOに本発明を適用した場合のプロセスにおける1糧断
面図、第5図は第4図1dlに対応する拡散パターンの
平面図である。 l・・・P−型Si基板、2・・・N+型埋込層、3・
・・N−型8i エピタキシャル層、4・・・P型アイ
ソレージ冒ン、5・・・P+型島領域(抵抗)、6・・
・AI配線、7・・・酸化膜、8・・・N+型チャネル
ストッパ、9・・・コンタクト孔、10・・・酸化膜マ
スク、11・・・リニア部のベース、12・・・インジ
ェクタ、13・・・インバータのベース、14・・・ア
イソレーン1フ表面部、15・・・エミッタ、16・・
・コレクタ取出し部、17・・・マルチコレクタ、18
・・・エミッタリング。
FIG. 1 is a cross-sectional view showing an example of a conventional semiconductor resistor. FIG. 2 is a cross-sectional view of a semiconductor device showing the basic configuration of the present invention, the third factor is a front cross-sectional oblique view of a semiconductor @11 showing an embodiment of the present invention, and FIG. FIG. 5 is a cross-sectional view of a process in which the present invention is applied to a withstand voltage IO, and FIG. 5 is a plan view of a diffusion pattern corresponding to 1dl in FIG. 4. l...P-type Si substrate, 2... N+ type buried layer, 3.
...N- type 8i epitaxial layer, 4...P type isolation layer, 5...P+ type island region (resistance), 6...
・AI wiring, 7... Oxide film, 8... N+ type channel stopper, 9... Contact hole, 10... Oxide film mask, 11... Base of linear part, 12... Injector, 13...Base of inverter, 14...Isolane 1 surface part, 15...Emitter, 16...
・Collector extraction part, 17...Multi collector, 18
...Emitter ring.

Claims (1)

【特許請求の範囲】[Claims] 1、フイソレートされた複数の半導体エピタキシャル層
のうち少くなくとも一つのエピタキシャル層内にそのエ
ピタキシャル層と逆導電型の半導体抵抗領域を形成する
にあたって、半導体抵抗領域を形成すべきエピタキシャ
ル層内を他のエピタキシャル層よりも高不純物濃ll!
にしておくことを特徴とする半導体装置の製法。
1. When forming a semiconductor resistance region of a conductivity type opposite to that of at least one epitaxial layer among a plurality of fissolated semiconductor epitaxial layers, the inside of the epitaxial layer in which the semiconductor resistance region is to be formed is Higher impurity concentration than epitaxial layer!
A method for manufacturing a semiconductor device characterized by:
JP56113712A 1981-07-22 1981-07-22 Manufacture of semiconductor device Pending JPS5816559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56113712A JPS5816559A (en) 1981-07-22 1981-07-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56113712A JPS5816559A (en) 1981-07-22 1981-07-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5816559A true JPS5816559A (en) 1983-01-31

Family

ID=14619239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56113712A Pending JPS5816559A (en) 1981-07-22 1981-07-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5816559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466963A (en) * 1994-01-13 1995-11-14 Harris Corporation Trench resistor architecture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017992A (en) * 1973-06-19 1975-02-25
JPS515976A (en) * 1974-07-04 1976-01-19 Tokyo Shibaura Electric Co SHUSEKI KAIROSOSHI

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017992A (en) * 1973-06-19 1975-02-25
JPS515976A (en) * 1974-07-04 1976-01-19 Tokyo Shibaura Electric Co SHUSEKI KAIROSOSHI

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466963A (en) * 1994-01-13 1995-11-14 Harris Corporation Trench resistor architecture

Similar Documents

Publication Publication Date Title
JPS6080267A (en) Semiconductor ic device and manufacture thereof
US5323057A (en) Lateral bipolar transistor with insulating trenches
US4199378A (en) Method of manufacturing a semiconductor device and semiconductor device manufactured while using such a method
GB2156583A (en) Process for producing semiconductor device
KR910006672B1 (en) Semiconductor integrated circuit device and its manufacturing method
JPH0557741B2 (en)
JPS63200568A (en) Bipolar transistor employing cmos technology and manufacture of the same
JPS5880851A (en) Semiconductor device and method of producing same
JPH02246264A (en) Semiconductor device and manufacture thereof
JP3099917B2 (en) Field effect transistor
US4197147A (en) Method of manufacturing an integrated circuit including an analog circuit and an I2 L circuit utilizing staged diffusion techniques
JPS5816559A (en) Manufacture of semiconductor device
JPS62229880A (en) Semiconductor device and manufacture thereof
KR100774114B1 (en) Semiconductor device for integrated injection logic cell and process for fabricating the same
EP0367293B1 (en) Methods of fabricating semiconductor devices having a bipolar transistor
JPH06168953A (en) Bipolar transistor
JPS6159775A (en) Semiconductor device
JP3082800B2 (en) Semiconductor device and manufacturing method thereof
JP2602490B2 (en) Method for manufacturing semiconductor device
JPH0621077A (en) Semiconductor device and manufacture thereof
JPH01187868A (en) Semiconductor device
JPS61139057A (en) Manufacture of semiconductor integrated circuit device
JPH0574790A (en) Semiconductor device and manufacture thereof
JPS58108765A (en) Manufacture of semiconductor device
JPH02278736A (en) Semiconductor device