JPS58159377A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58159377A
JPS58159377A JP4318282A JP4318282A JPS58159377A JP S58159377 A JPS58159377 A JP S58159377A JP 4318282 A JP4318282 A JP 4318282A JP 4318282 A JP4318282 A JP 4318282A JP S58159377 A JPS58159377 A JP S58159377A
Authority
JP
Japan
Prior art keywords
implanted
oxide film
ions
semiconductor substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4318282A
Other languages
Japanese (ja)
Inventor
Naoyuki Shigyo
直之 執行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP4318282A priority Critical patent/JPS58159377A/en
Publication of JPS58159377A publication Critical patent/JPS58159377A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Local Oxidation Of Silicon (AREA)

Abstract

PURPOSE:To contrive to prevent dependence character of the threshold voltage upon channel width, and to enhance the characteristic and reliability of the element by a method wherein second impurity ions to form a layer of reversely conductive type from a semiconductor substrate are implanted by the quantity smaller than the implanting quantity of first impurity ions. CONSTITUTION:An oxide film 12 and a silicon nitride film 13 are formed on the P type silicon substrate 11, an oxide film 15 is formed on the whole surface, and boron (the first impurities) ions are implanted. Owing to the difference of film thickness of the oxide film 15, boron ion implanted layers 17 are formed selectively at the part excluding the silicon nitride film 13 and the neighborhood of the edge parts thereof. The oxide film 15 is removed, and arsenic (the second impurities) ions are implanted to form the arsenic ion implanted layers 18. Because the arsenic ion implanting quantity is smaller than the implanting quantity of boron ions, inversion preventing layers generated by arsenic ion implantation are formed only at the neighborhood of the edge parts of the silicon nitride film 13, impurity concentration on the silicon substrate 11 presents the condition as shown in the figure, the narrow channel effect can be suppressed, and forms the highly reliable device.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置の製造方法に係ゎ夛、特に耐酸化
膜による選択酸化法を用いえ半導体装置の製造方法に関
する・ 〔発明の技術的背景とその問題点〕 近時、半導体装置の製造工程において1耐酸化W1を用
いた選択酸化法が使用されている働ζσ・方法では、ま
ず第1図(a) K示す如くシリコン基板1の一生面に
熱酸化法によ)酸化膜2を形成する・次いで、#E1a
A(b)に示す如く酸化膜2t、 K II化シリコン
膜1を形成し、この窒化シリコンa3の必!!部分を7
オトレジスト4でマスクし、マスクされていない部分を
、例えばCF4のプラズマエツチングで除去する・次す
で、第1図(@)K示す如く酸化膜2を介してシリコン
基&J内へIロンのイオン注入を行すい%dHフイオン
注入注入層形成する・その@s 7 # )レノスト4
を除去し、縞1図(葡に示す如く選択酸化を行ないフィ
ールド酸化膜−を形成する・これ以降は、周知の技術に
よりf−)電極および配線層等を形成することによって
、MOS )ランジスタが作成される・ しかしながら、この種の方法にあって拡次のような問題
があった。すなわち、MOS )ランゾスタの製造に適
用した場合、第2図に示す如くチャンネル幅が狭くなる
に従いしきい値電圧が増大する御所n狭チャネル効果が
生じると云う欠点がある・さらに、シリコン基板中にイ
オン注入し一#:、コロンが素子形成領域にしみ出し、
第3図に示す如き不純物分布となり、前記狭チャネル効
果が強調される・狭チャネル効果によるしきい値電圧の
チャネル幅依存性は、素子の微細化と共に増大し素子の
特性に悪影醤を与える・このように、しきい値電圧のチ
ャネル幅依存性が重要な問題となってい友。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and particularly relates to a method for manufacturing a semiconductor device using a selective oxidation method using an oxidation-resistant film. Background and Problems] Recently, in the selective oxidation method using 1 oxidation resistant W1 in the manufacturing process of semiconductor devices, first, as shown in FIG. Form an oxide film 2 (by thermal oxidation method) on the whole surface・Next, #E1a
As shown in A(b), an oxide film 2t and a KII silicon film 1 are formed, and this silicon nitride film a3 is removed. ! part 7
Mask with photoresist 4, and remove the unmasked portion by plasma etching of CF4, for example.Next, as shown in FIG. It is easy to implant %dH ion implantation to form an implantation layer.
After that, selective oxidation is performed to form a field oxide film as shown in Figure 1 (Fig. However, there are problems with this type of method, such as expansion. In other words, when applied to the manufacture of MOS (MOS) Lanzostars, there is a drawback that a narrow channel effect occurs in which the threshold voltage increases as the channel width becomes narrower, as shown in Figure 2. After ion implantation, colon seeps into the element formation area,
The impurity distribution becomes as shown in Fig. 3, and the narrow channel effect is emphasized. - The dependence of the threshold voltage on the channel width due to the narrow channel effect increases with the miniaturization of the device and has a negative impact on the characteristics of the device.・Thus, the dependence of threshold voltage on channel width has become an important issue.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、し龜い値電圧のチャネル幅依存性を防
止することができ、素子特性および信頼性の向上をはか
)得る半導体装置の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that can prevent channel width dependence of threshold voltage and improve device characteristics and reliability.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、半導体基板と同導電屋を作るイオンが
素子領域へしみ出すのを防止するために、基板と逆導電
蓋を作る不純物のイオン注入を行ない第4図に示す如く
素子領域中央部よりも卓子領域周辺部において不純物濃
度が低くなるような不純物分布を得ることにある・すな
わち本発明は、耐酸化性被膜をマスクとして用い半導体
基板上に選択的に熱酸化層を形成する1桐を含む半導体
装置の製造方法において、上記半導体基板上に耐酸化性
被膜を選択的yc影形成九のち、上記半導体基板および
耐鹸化性被膜上の全面にイオン注入制御層を堆積し、次
いで上記イオン注入制御層を介して前記半導体基板と同
導電皺を作る第1の不純物を上記半導体基板にイオン注
入し、次いで前記イオン注入制御層を除去し、次いで前
記半導体基板と逆導電11會作る第2の不純物を前記第
1の不純物より少ない注入量で上記半導体基板にイオン
注入し、しかるのち前記半導体基板の前記耐酸化性被膜
で覆われていない部分に熱酸化層を形成するようにし丸
方法である。 ・ 〔発明の効果〕 本発明によれば、半導体基板と逆導電蓋を作る不純物の
イオン注入にょ)前記第4図に示す如き不純物濃度を得
ることができ、これにょ)第5図に示す如く狭チャネル
効果が従来よシも抑えられ九半導体装置を得ることがで
きる・このため、信頼性の向上をはかp得て、また集積
度の向上に寄与し得る等の効果を奏する・〔発明の実施
例〕 第6図(a)〜(g)は本発明の一実施例に係わるMO
sトランジスタ製造工Sを示す断面図である。tず〜第
6aA(a)に示す如<pmシリコン基板(半導体基板
)1上に熱酸化法にょ夛厚さ300(Hの酸化膜12を
形成する0次いで、第6図ら)に示す如く酸化膜12の
上に厚さ4000 (X)の窒化シリコンII(耐酸化
性被膜)1st形成し、さらに同図(b) K示す如く
窒化シリコン膜11の巻装部分をフォトレゾスト14で
マスクシ、マスクサレない部分をCF4のプラズマエッ
チンクで除去する。次いで、フォトレジスト14を除去
したのち、第6図(d)に示す如く試料上の全面KCV
D法Kj fi 5000 (X 〕01ml化膜イオ
ン注入制御層)15を形感する・このとき亀前s+ll
化シリコン膜IJの存在に起因する断差により、酸化膜
16JICもこの段差に応じ九段差が形成される。そし
て、酸化膜15の窒化シリコン膜13の端@16におけ
る膜厚が他の部分より4h*くなる。
The gist of the present invention is to implant impurity ions that form a conductive lid opposite to the substrate in order to prevent ions that form a conductive layer from the semiconductor substrate from seeping into the element area, as shown in FIG. The purpose of the present invention is to obtain an impurity distribution in which the impurity concentration is lower in the peripheral area of the table area than in the peripheral area of the table area.In other words, the present invention is to form a thermal oxidation layer selectively on a semiconductor substrate using an oxidation-resistant film as a mask. In the method of manufacturing a semiconductor device including paulownia, after selectively forming an oxidation-resistant film on the semiconductor substrate, an ion implantation control layer is deposited on the entire surface of the semiconductor substrate and the saponification-resistant film, and then the above-mentioned A first impurity that forms the same conductive wrinkles as the semiconductor substrate is ion-implanted into the semiconductor substrate through an ion-implantation control layer, and then the ion-implantation control layer is removed, and then a first impurity that forms conductive wrinkles opposite to the semiconductor substrate is formed. 2 impurities are ion-implanted into the semiconductor substrate at a smaller dose than the first impurity, and then a thermal oxidation layer is formed in a portion of the semiconductor substrate not covered with the oxidation-resistant film. It is.・ [Effects of the Invention] According to the present invention, it is possible to obtain the impurity concentration as shown in FIG. It is possible to obtain a semiconductor device in which the narrow channel effect is suppressed compared to the conventional one. Therefore, it is possible to obtain effects such as improving reliability and contributing to an improvement in the degree of integration. Embodiment] FIGS. 6(a) to 6(g) show an MO according to an embodiment of the present invention.
FIG. As shown in Fig. 6A(a), a thermal oxidation method is applied to a <pm silicon substrate (semiconductor substrate) 1 to form an oxide film 12 of 300 mm (H) as shown in Fig. 6. A first silicon nitride II (oxidation-resistant film) with a thickness of 4000 mm (X) is formed on the film 12, and as shown in FIG. The portion is removed using a CF4 plasma etch. Next, after removing the photoresist 14, the entire surface of the sample is covered with KCV as shown in FIG. 6(d).
D method Kj fi 5000 (X 〕01ml film ion implantation control layer) 15. At this time, Kamemae s+ll
Due to the difference caused by the presence of the silicon oxide film IJ, nine steps are formed in the oxide film 16JIC in accordance with this step. The film thickness of the oxide film 15 at the end @16 of the silicon nitride film 13 is 4h* greater than that at other parts.

次に%前記酸化膜15を通して加速電圧250〔kv〕
、ドーズ量lXl0  (ffi  )で、フィールド
イオン注入を行なう・注入イオンには一ロン(第1の不
純物)を使用した・ζζで1前記窒化シリコン膜IJで
覆われている部分にはイオン注入されず、を九前記酸化
属180m厚の違いから窒化シリ;ン膜110端部では
その注入イオン量は極めて少ないものとな為・このため
、第6WJ(・)に示す如(z taxンイオン注入層
11は窒化シリコン膜13およびその端部近傍を除いた
部分に選択的に形成される。
Next, an acceleration voltage of 250 [kv] is applied through the oxide film 15.
, Field ion implantation is performed at a dose of lXl0 (ffi) - Iron (first impurity) is used for the implanted ions Due to the difference in the thickness of the silicon oxide layer 180 m, the amount of ions implanted at the end of the silicon nitride film 110 is extremely small. 11 is selectively formed on the silicon nitride film 13 and its portions other than the vicinity of its ends.

次に1前記酸化膜15をNH4F等によシエ、チング除
去したのち、加速電圧6G(kV)、ドーズ量I X 
10”(国−2〕で砒素(第2の不純物)をイオン注入
し第6図(f)に示す如く砒素イオン注入層1Mを形成
する。このとき砒素イオン注入は前記がロンイオン注入
の注入量よや少ないので、砒素イオン注入による反転防
止層は繭記輩化シリ;ン膜11の端部近傍のみに形成さ
れることKなる・すなわち、シリコン基板11上の不純
物濃度が前記第4図に示す如き状態にな為。
Next, after removing the oxide film 15 by oxidation using NH4F or the like, the acceleration voltage is 6G (kV) and the dose is IX.
Arsenic (second impurity) is ion-implanted at 10" (Country-2) to form an arsenic ion-implanted layer 1M as shown in FIG. Since the amount of impurity is relatively small, the inversion prevention layer by arsenic ion implantation is formed only near the end of the silicon film 11. In other words, the impurity concentration on the silicon substrate 11 is as shown in FIG. The situation is as shown.

次に、熱酸化法を用いて第6図−)に示す如くフィール
ド酸化膜19を形成する・その後、窒化シリコン1s1
3を除去したのち1周知の技術を用いてf−)電極およ
び配線層等を形成することによってMOB )ランジス
タが作製されることになる・かくして形成されたMOB
 )ランゾスタは、前記第4図に示す不純物分布を有す
ることから、狭チャネル効果を抑える仁とかで亀、なお
、本発明は上述した実施例に@定されるものではなく、
その要旨を逸脱しない範囲で、檜々変形して実施するこ
とができる・例えば1前記CVD法によゐイオン注入制
御層は、前記第6図(d)に示す形状に形成される膜で
あればシリコン酸化膜、P2O(リン・シリケート・ガ
ラス)膜、多結晶シリコン膜、アル建ニウム膜等でもよ
く1またこれらを組み合わせた多層膜でもよい。また、
半導体基板としてはPgを用いたが、n型を用いてもよ
いのは勿論である。ただしこの場合、前記第1および#
I2の不純物を変える会費がある。つ1夛、第1の不純
物は半導体基板と同導電麺を作るもので、第2の不純物
は半導体基板と逆導電臘を作る−ので、かつ第2の不純
物のイオン注入量が第1の不純物のイオン注入量より少
ないものであればよいφtた、MO8トランソスタに限
らず%c −Bi!Osその他の半導体装置に適用でき
るのも勿論のむとマある・
Next, a field oxide film 19 is formed using a thermal oxidation method as shown in FIG.
After removing 3, a MOB transistor is fabricated by forming f-) electrodes, wiring layers, etc. using a well-known technique.The thus formed MOB
) Lanzosta has the impurity distribution shown in FIG.
It can be carried out with various modifications without departing from the gist of the invention. For example, 1. The ion implantation control layer by the CVD method may be a film formed in the shape shown in FIG. 6(d). For example, it may be a silicon oxide film, a P2O (phosphorus silicate glass) film, a polycrystalline silicon film, an aluminum film, or a multilayer film combining these. Also,
Although Pg was used as the semiconductor substrate, it goes without saying that an n-type substrate may also be used. However, in this case, the first and #
There is a fee to change the impurity of I2. First, the first impurity forms the same conductive layer as the semiconductor substrate, and the second impurity forms the opposite conductive layer with the semiconductor substrate. φt is sufficient as long as it is less than the ion implantation amount of %c-Bi! Of course, it is also useful to be able to apply it to OS and other semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は従来の選択酸化法を用いたMO
Bトランジスタ袈造工程を示す断面図、第2図は従来法
により得られたトランジスタのしきい値電圧のチャネル
幅依存性を示す特性図、第3図は従来法による酸化膜シ
リコンとの界面における不純物分布を示す特性図、第4
図は本発明による酸化膜とシリコンとの界面における不
純物分布を示す特性図、第5図は本発明により得られる
トランジスタのしきい値電圧のチャネル幅依存性を示す
特性図、第6図(a)〜葎)は本発明の一実施例に係わ
るMOB )ランジスタ製造工糧を示す断面図である。 11・・・p型シリコン基板(半導体基板)、12・・
・酸化膜、IJ・・・窒化シリコン披(耐鈑化性被II
)、14°゛フ゛オドレジスト、15・・・酸化膜(イ
オン注入制御層)、11・・・メロンイオン注入層、1
a・・・砒素イオン注入層、1#・・・フィールド酸化
膜。 第1図 第2図 第3図 一干ッネーbtsw− 第5図 第6図 2 第6図 s
Figures 1 (a) to (d) show MO using the conventional selective oxidation method.
A cross-sectional view showing the B transistor fabrication process, Fig. 2 is a characteristic diagram showing the channel width dependence of the threshold voltage of a transistor obtained by the conventional method, and Fig. 3 is a cross-sectional view showing the channel width dependence of the threshold voltage of the transistor obtained by the conventional method. Characteristic diagram showing impurity distribution, 4th
5 is a characteristic diagram showing the impurity distribution at the interface between an oxide film and silicon according to the present invention, FIG. 5 is a characteristic diagram showing the channel width dependence of the threshold voltage of a transistor obtained according to the present invention, and FIG. ) to ) are sectional views showing MOB transistor manufacturing equipment according to an embodiment of the present invention. 11...p-type silicon substrate (semiconductor substrate), 12...
・Oxide film, IJ...silicon nitride (paneling resistance II)
), 14° photoresist, 15... oxide film (ion implantation control layer), 11... melon ion implantation layer, 1
a... Arsenic ion implantation layer, 1#... Field oxide film. Figure 1 Figure 2 Figure 3 Ichikune btsw- Figure 5 Figure 6 Figure 2 Figure 6 s

Claims (1)

【特許請求の範囲】[Claims] 耐酸化性被膜をマスクとして用い半導体基板上に選択的
に熱酸化層を形成する工程を含む半導体装置の製造方法
において、上記半導体基板上に耐酸化性被膜を選択的に
形成したのち、上記半導体基板および耐酸化性被膜上の
全面にイオン注入制御層を堆積し、次いで上記イオン注
入制御層を介して前記半導体基板と同導電型を作る第1
の不純物を上記半導体基板にイオン注入し、次いで前記
イオン注入制御層を除去し、次いで前記半導体基板と逆
導電臘を作る第2の不純物を前記第1の不純物より少な
い注入量で上記半導体基板にイオン注入し、しかるのち
前記半導体基板の前記耐酸化性被膜で覆われていない部
分に熱酸化層を形成することを特徴とする半導体装置の
製造方法。
In a method for manufacturing a semiconductor device including a step of selectively forming a thermal oxidation layer on a semiconductor substrate using an oxidation-resistant film as a mask, the oxidation-resistant film is selectively formed on the semiconductor substrate, and then the semiconductor A first layer that deposits an ion implantation control layer on the entire surface of the substrate and the oxidation-resistant film, and then forms the same conductivity type as the semiconductor substrate through the ion implantation control layer.
ions of an impurity are implanted into the semiconductor substrate, the ion implantation control layer is removed, and a second impurity that forms a conductivity opposite to the semiconductor substrate is implanted into the semiconductor substrate in a smaller amount than the first impurity. 1. A method of manufacturing a semiconductor device, comprising implanting ions and then forming a thermal oxidation layer on a portion of the semiconductor substrate not covered with the oxidation-resistant film.
JP4318282A 1982-03-18 1982-03-18 Manufacture of semiconductor device Pending JPS58159377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4318282A JPS58159377A (en) 1982-03-18 1982-03-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4318282A JPS58159377A (en) 1982-03-18 1982-03-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58159377A true JPS58159377A (en) 1983-09-21

Family

ID=12656749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4318282A Pending JPS58159377A (en) 1982-03-18 1982-03-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58159377A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097637A (en) * 1983-11-01 1985-05-31 Matsushita Electronics Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097637A (en) * 1983-11-01 1985-05-31 Matsushita Electronics Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US5079609A (en) Semiconductor device having dielectric breakdown protection element and method of fabricating same
JPH05865B2 (en)
JPS5893279A (en) Manufacture of semiconductor device
JPS58159377A (en) Manufacture of semiconductor device
JP2793141B2 (en) Method of manufacturing semiconductor device having trench element isolation film
JPS62229880A (en) Semiconductor device and manufacture thereof
JPH0334656B2 (en)
JPS63241965A (en) Insulated-gate field-effect transistor and manufacture thereof
JPS61256670A (en) Insulated gate field effect transistor
JPS58190060A (en) Manufacture of semiconductor device
US6803288B2 (en) Method of manufacturing field effect transistor
JP2880885B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPS6055658A (en) Manufacture of semiconductor device
JPS6193641A (en) Semiconductor device
JPS6146964B2 (en)
JPS59124164A (en) Manufacture of semiconductor device
JP3123598B2 (en) LSI and manufacturing method thereof
JP2676769B2 (en) Semiconductor device
JPS59194462A (en) Semiconductor device
JPH11312806A (en) Manufacture of semiconductor device
JPH0258771B2 (en)
JPH0529337A (en) Semiconductor device
JPH07130997A (en) Manufacture of high-breakdown-strength transistor
JPS62122174A (en) Field effect semiconductor device and manufacture thereof