JPS6146964B2 - - Google Patents

Info

Publication number
JPS6146964B2
JPS6146964B2 JP16582078A JP16582078A JPS6146964B2 JP S6146964 B2 JPS6146964 B2 JP S6146964B2 JP 16582078 A JP16582078 A JP 16582078A JP 16582078 A JP16582078 A JP 16582078A JP S6146964 B2 JPS6146964 B2 JP S6146964B2
Authority
JP
Japan
Prior art keywords
insulating film
semiconductor substrate
film
semiconductor
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16582078A
Other languages
Japanese (ja)
Other versions
JPS5593268A (en
Inventor
Motoo Nakano
Haruhisa Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16582078A priority Critical patent/JPS5593268A/en
Publication of JPS5593268A publication Critical patent/JPS5593268A/en
Publication of JPS6146964B2 publication Critical patent/JPS6146964B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 本発明は、表面に絶縁膜を有する半導体ウエハ
にイオン注入を行なう工程を必要とする半導体装
置を製造するのに好適な方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method suitable for manufacturing a semiconductor device that requires a step of implanting ions into a semiconductor wafer having an insulating film on its surface.

一般に、半導体装置を製造する場合、半導体ウ
エハ表面に絶縁膜が形成された状態でイオン注入
する工程はかなり多い。その場合、必要部分にイ
オン注入が行なわれるだけでなく、絶縁膜上にも
それが行なわれる為、絶縁膜のチヤージ・アツプ
によりその電位が次第に上昇し、遂には絶縁膜の
耐圧を越える状態となり、絶縁破壊される事故が
しばしば発生する。
Generally, when manufacturing semiconductor devices, there are quite a number of steps in which ions are implanted with an insulating film formed on the surface of a semiconductor wafer. In this case, ions are not only implanted into the necessary areas, but also onto the insulating film, so the potential gradually rises due to charge-up of the insulating film, eventually exceeding the withstand voltage of the insulating film. , accidents resulting in insulation breakdown often occur.

これを避ける為、本発明者は、さきに、半導体
ウエハを所定面積に分断するよう絶縁膜にエツチ
ング溝を入れて半導体バルク表面を露出させ、所
定面積の絶縁膜が通常のイオン注入でチヤージ・
アツプされても、その面積にチヤージ・アツプさ
れる電荷量程度では絶縁破壊を生じないようにし
た技術を例えば特願昭52−158322号として提供し
た。
In order to avoid this, the inventor first etched grooves in the insulating film to expose the semiconductor bulk surface so as to divide the semiconductor wafer into predetermined areas, and the predetermined area of the insulating film was charged by ordinary ion implantation.
For example, Japanese Patent Application No. 158322/1983 provided a technique that prevents dielectric breakdown from occurring even if the area is charged up by the amount of charge that is charged up.

この既提供の技術に依れば、絶縁膜の絶縁破壊
をかなりの程度防止できるが、単位時間当りのイ
オン注入量が大幅に増大すると、万全とは云い難
い。
According to this existing technique, dielectric breakdown of the insulating film can be prevented to a considerable extent, but it cannot be said to be perfect if the amount of ions implanted per unit time increases significantly.

本発明は、その後得られた新たな知見を基に、
半導体ウエハの絶縁膜にエツチング溝を入れて半
導体バルク表面を露出させて該絶縁膜を所定面積
に分断することに依り絶縁破壊を防止する技術に
更に改良を加えようとするものであり、以下これ
を詳細に説明する。
The present invention is based on new findings obtained since then.
This is an attempt to further improve the technique of preventing dielectric breakdown by cutting etching grooves into the insulating film of a semiconductor wafer to expose the semiconductor bulk surface and dividing the insulating film into predetermined areas. will be explained in detail.

本発明では、例えば二酸化シリコンなどの絶縁
膜にイオン注入を行なうと、絶縁膜表面近傍に於
いてそのイオンのエネルギが吸収されて電子・正
孔対が発生し、その電子或いは正孔がキヤリヤと
なつて注入イオンの電荷を運搬する旨の知見が基
礎になつている。
In the present invention, when ions are implanted into an insulating film such as silicon dioxide, the energy of the ions is absorbed near the surface of the insulating film, generating electron-hole pairs, and the electrons or holes become carriers. The basis of this method is the knowledge that the charge of the implanted ions is transported in the same way as the implanted ions.

このように、絶縁膜にイオン注入が行なわれる
と注入イオンの電荷を運ぶ電子或いは正孔が発生
することは、絶縁膜表面に導電層(或いは高抵抗
層)が形成されたと見てよい。尚、前記電子・正
孔対は、イオンが侵入した領域近くに偏在するの
で、イオン注入に依つて実質的に形成される導電
層は絶縁膜表面近傍に限定される。
In this way, when ions are implanted into an insulating film, the generation of electrons or holes that carry the charge of the implanted ions can be considered to be the formation of a conductive layer (or a high resistance layer) on the surface of the insulating film. Note that since the electron-hole pairs are unevenly distributed near the region into which ions have entered, the conductive layer substantially formed by ion implantation is limited to the vicinity of the surface of the insulating film.

第1図はその状態を説明するもので、1は半導
体基板、2は絶縁膜、2Aはイオン注入に依り形
成された実質的な導電層、3は絶縁膜に形成した
溝をそれぞれ示している。
Figure 1 explains this state, where 1 shows a semiconductor substrate, 2 shows an insulating film, 2A shows a substantial conductive layer formed by ion implantation, and 3 shows a groove formed in the insulating film. .

ところで、絶縁膜2は、通常、図示のように側
面が略直角に切立つている。従つて、導電層2A
が側面に形成されることはない。
By the way, the insulating film 2 usually has side surfaces that stand up at approximately right angles as shown in the figure. Therefore, the conductive layer 2A
are not formed on the sides.

しかしながら、このような導電層2Aが形成さ
れるのであるから、この導電層2Aを適切な手段
で半導体基板1と連絡できるようにしてやれば、
絶縁膜2に於けるチヤージ・アツプは殆んど解消
される筈である。尚、イオン注入法を適用する
際、半導体基板1は接地されるのが普通である。
However, since such a conductive layer 2A is formed, if this conductive layer 2A is made to be able to communicate with the semiconductor substrate 1 by appropriate means,
Charge-up in the insulating film 2 should be almost eliminated. Note that when applying the ion implantation method, the semiconductor substrate 1 is usually grounded.

さて、本発明では、絶縁膜表面と半導体基板表
面とを多結晶シリコン膜で接続するようにしてい
る。即ち、第2図は本発明の原理を説明する為の
半導体ウエハの要部側断面図であり、11は半導
体基板、12は絶縁膜、13は絶縁膜12に形成
した溝内に露出された半導体基板11の表面と絶
縁膜12の表面とを接続する多結晶シリコン膜、
12Aは絶縁膜12の表面に形成された導電層で
ある。
Now, in the present invention, the surface of the insulating film and the surface of the semiconductor substrate are connected by a polycrystalline silicon film. That is, FIG. 2 is a side cross-sectional view of a main part of a semiconductor wafer for explaining the principle of the present invention, in which 11 is a semiconductor substrate, 12 is an insulating film, and 13 is a part exposed in a groove formed in the insulating film 12. a polycrystalline silicon film connecting the surface of the semiconductor substrate 11 and the surface of the insulating film 12;
12A is a conductive layer formed on the surface of the insulating film 12.

図から明らかなように、イオン注入によつて絶
縁膜12の表面に形成された導電層12Aは、同
時にイオン注入によつて導電性化された多結晶シ
リコン膜13に依り半導体基板11に接続されて
いる。従つて、絶縁膜12の蓄積電荷は多結晶シ
リコン膜13を介して半導体基板11に放出され
るので、絶縁膜12の絶縁破壊は生じない。尚、
多結晶シリコン膜13は不純物を予じめ含有し導
電性化されたものであつても良い。
As is clear from the figure, the conductive layer 12A formed on the surface of the insulating film 12 by ion implantation is connected to the semiconductor substrate 11 by the polycrystalline silicon film 13, which is made conductive by the ion implantation. ing. Therefore, the charges accumulated in the insulating film 12 are released to the semiconductor substrate 11 via the polycrystalline silicon film 13, so that dielectric breakdown of the insulating film 12 does not occur. still,
The polycrystalline silicon film 13 may be made conductive by containing impurities in advance.

本発明に於いて絶縁膜と半導体基板とを結ぶ多
結晶シリコン膜の形成は、例えば、シリコン・ゲ
ートMIS電界効果半導体装置の製造に於いては特
に有利である。これを第3図について説明する。
Formation of a polycrystalline silicon film connecting an insulating film and a semiconductor substrate in the present invention is particularly advantageous in, for example, manufacturing a silicon gate MIS field effect semiconductor device. This will be explained with reference to FIG.

(1) 半導体基板11上にフイールド用の厚い絶縁
膜12を形成する。この絶縁膜12は熱酸化膜
であつて良い。
(1) A thick insulating film 12 for a field is formed on a semiconductor substrate 11. This insulating film 12 may be a thermal oxide film.

(2) 通常のフオト・リソグラフイ技術にて絶縁膜
12のパターニングを行ない、素子形成領域用
の開口と絶縁膜12を所定面積に分割する溝を
形成する。尚、開口内及び溝内には半導体基板
11の表面が露出する。
(2) The insulating film 12 is patterned using normal photolithography technology to form openings for element formation regions and grooves dividing the insulating film 12 into predetermined areas. Note that the surface of the semiconductor substrate 11 is exposed inside the opening and the groove.

(3) 開口内に薄い絶縁膜を形成する。このとき、
特別な工程を採らない限り溝内にも薄い絶縁膜
が形成される。これ等絶縁膜は熱酸化膜であつ
て良い。
(3) Form a thin insulating film inside the opening. At this time,
Unless a special process is adopted, a thin insulating film is also formed within the trench. These insulating films may be thermally oxidized films.

(4) 溝内に絶縁膜が形成されていれば、それを除
去してから多結晶シリコン膜を例えば化学気相
成長法を適用して形成する。
(4) If an insulating film is formed in the trench, it is removed and then a polycrystalline silicon film is formed by, for example, chemical vapor deposition.

(5) 通常のフオト・リングラフイ技術を適用して
多結晶シリコン膜のパターニングを行ない、半
導体基板11と絶縁膜12とを結ぶ接続用多結
晶シリコン膜13及びシリコン・ゲート14を
形成する。
(5) The polycrystalline silicon film is patterned by applying ordinary photolithography technology to form a connecting polycrystalline silicon film 13 and a silicon gate 14 that connect the semiconductor substrate 11 and the insulating film 12.

(6) シリコン・ゲート14をマスクにして薄い絶
縁膜のエツチングを行ないゲート絶縁膜12′
を形成するとともにソース領域形成用窓12S
及びドレイン領域形成用窓12Dを形成する。
(6) Using the silicon gate 14 as a mask, etching the thin insulating film to form the gate insulating film 12'
and a source region forming window 12S.
and a drain region forming window 12D.

(7) イオン注入法を適用してPチヤネル型でであ
れば例えば硼素イオンを、また、nチヤネル型
であれば例えば隣イオンを注入してソース領域
15及びドレイ領域16を形成するとともに多
結晶シリコン膜13及び、シリコン・ゲート1
4を導電性化する。この際、絶縁膜12に於け
る電荷は接続用多結晶シリコン膜13を介して
半導体基板11に放出される。
(7) Apply the ion implantation method to form the source region 15 and drain region 16 by implanting, for example, boron ions in the case of a P-channel type, or, for example, neighboring ions in the case of an N-channel type, and form the polycrystalline Silicon film 13 and silicon gate 1
4 to be conductive. At this time, charges in the insulating film 12 are released to the semiconductor substrate 11 via the connecting polycrystalline silicon film 13.

この後、通常の技法に従つて絶縁膜、金属電
極を形成して完成する。
Thereafter, an insulating film and metal electrodes are formed using conventional techniques to complete the process.

前記説明で理解できるように、本発明はシリコ
ンゲートMIS電界効果半導体装置の製造工程を殆
んど増加させることなく実施でき、僅かに増加す
るのは、多結晶シリコン膜を成長させる前に溝内
に形成された薄い絶縁膜を除去する工程のみであ
り、それも、近年実用化されているシリコン・ゲ
ートを半導体基板に接続する素子を有するものに
在つても、ゲート絶縁膜を加工しなければならな
いので、その工程を利用すれば良いから、その場
合は工程増加は全く生じない。
As can be understood from the above description, the present invention can be implemented with almost no increase in the manufacturing process of a silicon gate MIS field effect semiconductor device, and the only slight increase is that The only step is to remove the thin insulating film formed on the semiconductor substrate, and even if the device has an element that connects the silicon gate to the semiconductor substrate, which has been put into practical use in recent years, the gate insulating film must be processed. Since it is not, it is sufficient to use that process, and in that case, there will be no increase in the process at all.

前記説明に於ける絶縁膜12の分離用溝は所謂
1チツプを形成する為のスクライブ・ラインに合
せて形成すると工程上大変有利であり、また、ト
ランジスタなどに悪影響を与えることがない。
尚、第3図に於ける記号Qは1チツプ分を指示し
ている。
It is very advantageous in terms of process if the isolation grooves of the insulating film 12 in the above description are formed in line with the scribe lines for forming a so-called one chip, and there is no adverse effect on transistors and the like.
Note that the symbol Q in FIG. 3 indicates one chip.

以上の説明で判るように、本発明に依れば半導
体基板上に形成された絶縁膜を所定面積に分割す
る溝を形成して半導体基板表面を露出させてから
多結晶シリコン膜を成長させ、半導体基板表面と
絶縁膜表面と結合してからイオン注入を行なうよ
うにしているので、イオン注入に依り絶縁膜に蓄
積される電荷は前記多結晶シリコン膜を介して半
導体基板に放出され、従つて、該絶縁膜が絶縁破
壊される事故は殆んど無くなる。また、本発明を
実施するにあたつては、通常の半導体装置を製造
する場合と比較して工程増加は全く無いか、或い
は無いに等しい。
As can be seen from the above description, according to the present invention, grooves are formed to divide an insulating film formed on a semiconductor substrate into predetermined areas to expose the surface of the semiconductor substrate, and then a polycrystalline silicon film is grown. Since ion implantation is performed after the surface of the semiconductor substrate and the surface of the insulating film are bonded, the charges accumulated in the insulating film due to ion implantation are released to the semiconductor substrate via the polycrystalline silicon film. , accidents of dielectric breakdown of the insulating film are almost eliminated. Further, in carrying out the present invention, there is no or almost no increase in the number of steps compared to the case of manufacturing a normal semiconductor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術を説明する為の半導体ウエハ
の要部側断面図、第2図は本発明の原理を説明す
る為の半導体ウエハの要部側断面図、第3図は本
発明一実施例を説明する為の半導体ウエハの要部
側断面図である。 図に於いて、11は半導体基板、12は絶縁
膜、12Aは導電層、13は接続用多結晶シリコ
ン膜である。
Fig. 1 is a side cross-sectional view of a main part of a semiconductor wafer to explain the conventional technology, Fig. 2 is a side cross-sectional view of a main part of a semiconductor wafer to explain the principle of the present invention, and Fig. 3 is a side cross-sectional view of a main part of a semiconductor wafer to explain the principle of the present invention. FIG. 2 is a sectional side view of a main part of a semiconductor wafer for explaining an example. In the figure, 11 is a semiconductor substrate, 12 is an insulating film, 12A is a conductive layer, and 13 is a polycrystalline silicon film for connection.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板上に形成された絶縁膜に該絶縁膜
を所定面積毎に分割する溝を形成して該溝内に半
導体基板表面を露出させ、次に、前記溝内の半導
体基板表面と前記絶縁膜表面とを接続する多結晶
半導体膜を形成してからイオン注入を行なう工程
が含まれてなることを特徴とする半導体装置の製
造方法。
1 Forming grooves dividing the insulating film into predetermined areas in an insulating film formed on a semiconductor substrate, exposing the surface of the semiconductor substrate in the grooves, and then connecting the surface of the semiconductor substrate in the grooves with the insulating film. 1. A method of manufacturing a semiconductor device, comprising the steps of forming a polycrystalline semiconductor film connected to a film surface and then performing ion implantation.
JP16582078A 1978-12-30 1978-12-30 Manufacture of semiconductor device Granted JPS5593268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16582078A JPS5593268A (en) 1978-12-30 1978-12-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16582078A JPS5593268A (en) 1978-12-30 1978-12-30 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5593268A JPS5593268A (en) 1980-07-15
JPS6146964B2 true JPS6146964B2 (en) 1986-10-16

Family

ID=15819608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16582078A Granted JPS5593268A (en) 1978-12-30 1978-12-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5593268A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232123A (en) * 1986-03-31 1987-10-12 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH01134916A (en) * 1987-11-19 1989-05-26 Nec Yamagata Ltd Manufacture of semiconductor device
JPH01259529A (en) * 1988-04-09 1989-10-17 Toshiba Corp Semiconductor device

Also Published As

Publication number Publication date
JPS5593268A (en) 1980-07-15

Similar Documents

Publication Publication Date Title
US4366613A (en) Method of fabricating an MOS dynamic RAM with lightly doped drain
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US4342149A (en) Method of making very short channel length MNOS and MOS devices by double implantation of one conductivity type subsequent to other type implantation
US5028564A (en) Edge doping processes for mesa structures in SOS and SOI devices
JPS63314868A (en) Manufacture of mos semiconductor device
KR980006510A (en) Manufacturing Method of Semiconductor Device
US3986896A (en) Method of manufacturing semiconductor devices
KR100236101B1 (en) Semiconductor device and method of manufacturing the same
US4751554A (en) Silicon-on-sapphire integrated circuit and method of making the same
JPH0697297A (en) Semiconductor element provided with contact and its manufacture
JPS6146964B2 (en)
US5334543A (en) Method of making reverse lightly doped drain (LDD) for buried N+ conductor
JP2707901B2 (en) Method for manufacturing semiconductor device
JPS62122174A (en) Field effect semiconductor device and manufacture thereof
JPS6193641A (en) Semiconductor device
JPH02143461A (en) Semiconductor device and its manufacture
JPS6243341B2 (en)
JPS60160168A (en) Manufacture of mos semiconductor device
JPH0369137A (en) Manufacture of semiconductor integrated circuit
KR100855283B1 (en) method for fabricating capacitor
JPS5896732A (en) Ion implantation
JPH05267205A (en) Manufacture of semiconductor device
JPS6146963B2 (en)
JPH08340045A (en) Semiconductor integrated circuit device and its manufacture
JPH0695550B2 (en) Semiconductor device