JPS58153345A - Specimen feeding device - Google Patents

Specimen feeding device

Info

Publication number
JPS58153345A
JPS58153345A JP3461782A JP3461782A JPS58153345A JP S58153345 A JPS58153345 A JP S58153345A JP 3461782 A JP3461782 A JP 3461782A JP 3461782 A JP3461782 A JP 3461782A JP S58153345 A JPS58153345 A JP S58153345A
Authority
JP
Japan
Prior art keywords
sample
casing
rotating body
path
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3461782A
Other languages
Japanese (ja)
Inventor
Minoru Fujisawa
藤沢 穣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP3461782A priority Critical patent/JPS58153345A/en
Publication of JPS58153345A publication Critical patent/JPS58153345A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • C23C14/566Means for minimising impurities in the coating chamber such as dust, moisture, residual gases using a load-lock chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67745Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber characterized by movements or sequence of movements of transfer devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To rationalize the manufacturing steps and to improve the quality of a specimen feeding device by rotating a rotor having a specimen container in a casing which is connected to different atmosphere, thereby continuously feeding the specimen between different atmospheres. CONSTITUTION:A casing 1 is obliquely disposed, and a guide passage 2 is connected to atmospheric pressure and a discharge passage 3 is connected to a high vacuum. A rotor 5 is disposed in a space 4, a container 6 having holes corresponding to the passages 2, 3 is provided, supported via bearings 7, and driven by a driver 8 around a shaft 9. The rotor 5 is formed in a disc shape, and a hollow specimen container 6 is circumferentially opened laterally symmetrically. Sufficient exhaust resistance gap 10 is formed to maintain different atmospheres between the space 4 and the rotor 5. A specimen 11 is guided by a guide 2, and fed to the passage 3 of different atmosphere. According to this structure, the disconnection of automation due to batch process can be avoided, thereby rationalizing the steps and improving the quality.

Description

【発明の詳細な説明】 この発明はIC用ウつI・−などの試料を異雰囲気間で
移送するだめの試料移送装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sample transfer device for transferring a sample such as an IC sample between different atmospheres.

IC用ウェハーを真空下で各種プロセシングする場合、
大気中から高真空室へ試料を移送し、処理後は高真空室
から大気中へ再び試料を移送する必要がある。このほか
試料を特殊なガス中で処理する場合も同様に異種ガス間
の移送が必要となる。
When performing various processing on IC wafers under vacuum,
It is necessary to transfer the sample from the atmosphere to the high vacuum chamber, and after processing, transfer the sample from the high vacuum chamber to the atmosphere again. In addition, when a sample is processed in a special gas, transfer between different gases is similarly required.

従来、このような真気圧、異種ガス等の異雰囲気間にお
ける試料の移送を連続的に行う有効な装置がなかったた
め、いわゆるバッチ(一括)処理により、エアロツク室
を通じて挿入、移送をしているうそのだめ自動化の鎖が
そこで断たれてしまう欠点があった。
Until now, there was no effective device for continuously transferring samples between different atmospheres such as vacuum pressure and different gases, so it was difficult to insert and transfer samples through an aerodynamic chamber using so-called batch processing. The drawback was that the chain of automation was broken there.

この発明はこのような従来の欠点を解消するためになさ
れたもので、異雰囲気に接続するケーシング内で、回転
ドア式またはターレット式に試料収納部を有する回転体
を回転させることにより、試料を異雰囲気間で連続的に
移送することのできる試料移送装置を提供することを目
的としている。
This invention was made to eliminate these conventional drawbacks, and it is possible to store a sample by rotating a rotating body with a sample storage section in a revolving door type or turret type within a casing connected to a different atmosphere. The object of the present invention is to provide a sample transfer device that can continuously transfer samples between different atmospheres.

この発明はそれぞれ異雰囲気に接続する試料導入路およ
び試料送出路が開口するケーシングと、このケーシング
内で十分な排気抵抗を保って回転する回転体と、回転に
伴って前記試料導入路から試料を受入れ、かつ試料送出
路へ試料を送出するように前記回転体に設けられた試料
収納部とを備えたことを特徴とする試料移送装置である
The present invention includes a casing in which a sample introduction path and a sample delivery path each connected to a different atmosphere are opened, a rotating body that rotates within the casing while maintaining sufficient exhaust resistance, and a rotating body that rotates the sample from the sample introduction path as it rotates. The sample transfer device is characterized by comprising a sample storage section provided on the rotating body so as to receive the sample and send the sample to the sample sending path.

以下、この発明を図面により説明する。第1図はこの発
明の一実施例を示す垂直断面図、第2図はそのA−A断
面図、第3図(a)は回転体の平面図、lblは正面図
、(C)は側面図である。図において、1はケーシング
で、傾斜して設置されており、異雰囲気に接続する試料
導入路2および試料送出路6が開口する回転空間4を有
する。回転空間4には回転体5が設けられ、回転体5は
試料導入路2および試料送出路6に対応して開口する試
料収納部6を有するとともに、軸受7によって支持され
、かつ回転装置8によって回転させられる回転II!1
lI9を有している。回転体5は円板状で、左右対称に
円周方向に開口する試料収納部6が中仝状に形bVされ
ている。ケーシング1の(ロ)転空間4の内壁と回転体
5との間には、異雰囲気を維持するのに1分な排気抵抗
を廟する間隙10が形成されている。
Hereinafter, this invention will be explained with reference to the drawings. Fig. 1 is a vertical sectional view showing an embodiment of the present invention, Fig. 2 is a sectional view taken along the line A-A, Fig. 3 (a) is a plan view of the rotating body, lbl is a front view, and (C) is a side view. It is a diagram. In the figure, reference numeral 1 denotes a casing, which is installed at an angle and has a rotating space 4 in which a sample introduction path 2 and a sample delivery path 6 are opened, which are connected to a different atmosphere. A rotating body 5 is provided in the rotating space 4 , and the rotating body 5 has a sample storage section 6 that opens corresponding to the sample introducing path 2 and the sample sending path 6 , is supported by a bearing 7 , and is supported by a rotating device 8 . Rotation II that allows you to rotate! 1
It has lI9. The rotating body 5 is disk-shaped, and has a sample storage section 6 that is symmetrically opened in the circumferential direction and has a hollow shape bV. A gap 10 is formed between the inner wall of the rotating space 4 of the casing 1 and the rotating body 5, which provides one minute of exhaust resistance to maintain a different atmosphere.

以上のように構成された試料移送装置において、例えば
試料導入路2を大気圧に保ち、試料送出路6を高真空に
保ち、試料11を試料導入路2から傾斜を利用して回転
体5の試料収納部6に導入し、同転装置8により回転体
5を半回転させると、試料11は試料収納部6から傾斜
を利用して試料送出路6に送出する。一方試料導入路2
からは、前回と同様に新しい試料11が試料収納部6に
導入される。
In the sample transfer device configured as described above, for example, the sample introduction path 2 is maintained at atmospheric pressure, the sample delivery path 6 is maintained at high vacuum, and the sample 11 is transferred from the sample introduction path 2 to the rotating body 5 by using the slope. When the sample 11 is introduced into the sample storage section 6 and the rotating body 5 is rotated by half a rotation by the rotator 8, the sample 11 is delivered from the sample storage section 6 to the sample delivery path 6 using the slope. On the other hand, sample introduction path 2
From then on, a new sample 11 is introduced into the sample storage section 6 in the same way as the previous time.

以上の操作をくり返えすことにより、試料11は試料導
入路2から異雰囲気の試料送出路6へ移送される。回転
装置8による回転体5の回転は連続回転でもよいが、半
回転ごとの間欠回転でもよい。試料導入路2と試料送出
路6とを異雰囲気に保つためには、両者が短絡してはな
らず、このため回転体5の周縁部における試料収納部6
の開口距離Rよりも、試料収納部6間の非開口距離Sの
方が大きい必要がある。また間隙10は試料導入路2側
から試料送出路6側への実質的な流体の流れを制限し、
試料送出路6側における吸引による高真空維持が可能な
程度とする。
By repeating the above operations, the sample 11 is transferred from the sample introduction path 2 to the sample delivery path 6 in a different atmosphere. The rotation of the rotating body 5 by the rotating device 8 may be continuous rotation, or may be rotated intermittently every half rotation. In order to maintain the sample introduction path 2 and the sample delivery path 6 in different atmospheres, they must not be short-circuited.
It is necessary that the non-opening distance S between the sample storage sections 6 is larger than the opening distance R of the sample storage sections 6 . In addition, the gap 10 substantially restricts the flow of fluid from the sample introduction path 2 side to the sample delivery path 6 side,
It should be possible to maintain a high vacuum by suction on the sample delivery path 6 side.

第4図および第5図はそれぞれ回転体の変形例を示し、
(a)は平面図、(b)は正面図、(C)は側面図であ
る。第4図は第5図における試料収納部6の上部が開放
したものであり、試料の導入は容易であるが、排気抵抗
は小さくなる。第5図は独立した円形のもので、液体等
の移送に適している。
FIG. 4 and FIG. 5 each show a modification of the rotating body,
(a) is a plan view, (b) is a front view, and (C) is a side view. In FIG. 4, the upper part of the sample storage section 6 in FIG. 5 is open, making it easy to introduce the sample, but reducing the exhaust resistance. The one shown in FIG. 5 is an independent circular one, which is suitable for transferring liquids and the like.

第6図(、)は他の実施例を示すケーシング部を切欠い
た平面図、(b)はそのケーシング部を切欠いた側面図
であり、試料11が垂直状態で移送できるように、ケー
シング1および回転体5がドラム状に形成され、試料収
納部6の高さが高くなっておゆ、試料11をころがして
導入または送出することか可能である。竺7図および第
8図はこの実施例における回転体を示し、それぞれ(a
)は平面図、(b)は正面図、(C)は佃1面図である
。いずれも上部が開放していないので、排気抵抗は太き
い。
FIG. 6(a) is a cutaway plan view of the casing part showing another embodiment, and FIG. 6(b) is a cutaway side view of the casing part. The rotating body 5 is formed in the shape of a drum, and the height of the sample storage section 6 is increased, so that the sample 11 can be introduced or sent out by rolling. Figures 7 and 8 show the rotating body in this embodiment, and respectively (a
) is a plan view, (b) is a front view, and (C) is a top view of the Tsukuda. Since the tops of both are not open, the exhaust resistance is large.

第9図ないし第11図はそれぞれ他の実施例のケーシン
グ部を切欠いた平面図である。第9図では回転体5に試
料収納部6が1個設けられており、構造が簡単となって
いる。第10図では試料収納部6が4個設けられており
、試料導入路2および試料送出路6の中間気圧に吸引で
きるように、これらと垂直に位置する試料収納部6は中
間吸引路12に接続している。この場合、中間吸引路1
2は反対側にある試料収納部6とケーシング1の上部で
連絡している。この例では中間吸引が可能なだめ、試料
導入路2および試料送出路6の圧力差を大きくすること
ができる。第11図では試料導入路2および試料送出路
6間に2個の中間吸引路12.13を開口させているの
で、2段階に中間吸引することができ、このため圧力差
をさらに大きくすることができる。
FIGS. 9 to 11 are respectively cutaway plan views of the casing portion of other embodiments. In FIG. 9, one sample storage section 6 is provided on the rotating body 5, and the structure is simple. In FIG. 10, four sample storage sections 6 are provided, and the sample storage section 6 located perpendicularly to the sample introduction path 2 and the sample delivery path 6 is connected to the intermediate suction path 12 so that it can be sucked into the intermediate pressure between the sample introduction path 2 and the sample delivery path 6. Connected. In this case, intermediate suction path 1
2 communicates with the sample storage section 6 on the opposite side at the upper part of the casing 1. In this example, since intermediate suction is possible, the pressure difference between the sample introduction path 2 and the sample delivery path 6 can be increased. In FIG. 11, two intermediate suction passages 12.13 are opened between the sample introduction passage 2 and the sample delivery passage 6, so intermediate suction can be performed in two stages, and the pressure difference can therefore be further increased. I can do it.

第12図ないし第15図はそれぞれ傾斜を利用した別の
実施例を示す垂直断面図、第16図(a)。
FIGS. 12 to 15 are vertical cross-sectional views and FIG. 16(a) showing another embodiment using inclination, respectively.

(b)はさらに別の実施例の垂直断面図であり、いずれ
も2基連結したもので、段階的に圧力を低下させるのに
適している。第12図では試料11は試料導入路2、連
絡路14および試料送出路6を滑り降り、回転体5によ
シ移送される。第15図では同様の通路をころが9降り
る。第14図では回転体5が直結されている点を除けば
第13図と同じである。第15図では回転体5が直結し
たところを試料11が滑シ降りる。第16図は2基の回
転体5,5aがラップした例を示し、(a)は回転体5
.5aにローディングした状態、(b)は回転体5aが
試料11を移送中の状態をそれぞれ示す。
(b) is a vertical cross-sectional view of yet another embodiment, in which two units are connected and are suitable for reducing the pressure in stages. In FIG. 12, the sample 11 slides down the sample introduction path 2, the communication path 14, and the sample delivery path 6, and is transferred by the rotating body 5. In Figure 15, rollers 9 descend down a similar path. FIG. 14 is the same as FIG. 13 except that the rotating body 5 is directly connected. In FIG. 15, the sample 11 slides down where the rotating body 5 is directly connected. FIG. 16 shows an example in which the two rotating bodies 5 and 5a overlap, and (a) shows the rotating body 5.
.. 5a shows a state in which the sample 11 is being loaded, and (b) shows a state in which the rotating body 5a is transporting the sample 11.

第17図(a)は他の実施例を示す垂直断面図、(b)
はB−B断面図であり、15はフォークで、試料導入路
2および試料収納部6間ならびに試料収納部6および試
料送出部6間の試料11のローディングを行う。第18
図は他の実施例の水平断面図であり、16は回転アーム
で、回転により第17図と同様の位置における試料11
のローディングを行う。
FIG. 17 (a) is a vertical sectional view showing another embodiment, (b)
is a BB sectional view, and 15 is a fork for loading the sample 11 between the sample introduction path 2 and the sample storage section 6 and between the sample storage section 6 and the sample delivery section 6. 18th
The figure is a horizontal sectional view of another embodiment, in which 16 is a rotating arm, and the sample 11 is placed in the same position as in FIG. 17 by rotation.
Perform loading.

回転装[8としては電動機が使用できるが、第19図は
磁石により回転体5を回転させる実施例を示し、(al
は垂直断面図、(b)は水平断面図、第20図は軸受部
分の変形例を示す垂直断面図である。
An electric motor can be used as the rotating device [8, but FIG. 19 shows an embodiment in which the rotating body 5 is rotated by a magnet.
20 is a vertical sectional view, FIG. 20 is a horizontal sectional view, and FIG. 20 is a vertical sectional view showing a modification of the bearing portion.

第19図において、回転体5はケーシング1内に完全に
収容されている。ケーシング1外に回転装置8が設けら
れて、磁石17が回転するようになってニる。そしてこ
の磁石に対向して回転体5に磁性体18が設けられてお
り、回転体5はころがり軸受7aによってケーシング1
の周壁に回転可能に支持されている。第20図では回転
体5は軸受7によってケーシング1の上下壁に支持され
ている。これらの装置においては、回転装置8を回転す
ることによって、回転体5が回転し試料11を移送する
が、回転軸が外部に突出しないので、圧力差の維持が容
易となる。
In FIG. 19, the rotating body 5 is completely housed within the casing 1. A rotating device 8 is provided outside the casing 1 to rotate the magnet 17. A magnetic body 18 is provided on the rotating body 5 facing this magnet, and the rotating body 5 is mounted on the casing 1 by a rolling bearing 7a.
is rotatably supported on the peripheral wall of the In FIG. 20, the rotating body 5 is supported by bearings 7 on the upper and lower walls of the casing 1. In FIG. In these devices, by rotating the rotating device 8, the rotating body 5 rotates and transfers the sample 11, but since the rotating shaft does not protrude to the outside, it is easy to maintain the pressure difference.

第21図(a)は回転装置の変形例を示す平面図、(b
)は垂直断面図でろし、ゼネバ機構により間欠回転を行
うようになっている。すなわち、回転体5に接続するゼ
ネバ歯車18およびこのゼネバ歯車18にかみ合う保合
部19を有する回転アーム20からなり、回転アーム2
0を回転させることによ妙、ゼネバ歯車18が1/4回
転し、回転体5が間欠回転する。このため試料11のロ
ーディングのための時間をとることができる。
FIG. 21(a) is a plan view showing a modification of the rotating device, and FIG. 21(b)
) is shown in a vertical cross-sectional view, and is rotated intermittently by a Geneva mechanism. That is, it consists of a rotating arm 20 having a Geneva gear 18 connected to the rotating body 5 and a retaining part 19 that meshes with the Geneva gear 18.
By rotating the gear 0, the Geneva gear 18 rotates by 1/4, and the rotating body 5 rotates intermittently. Therefore, time can be taken for loading the sample 11.

第22図は他の変形例を示す平面図、第23図はその動
作図であり、この例では2個のゼネバ歯車18a、18
bが1個の回転アーム20によって回転されるように二
連に接続しており、中間引きして圧力差をもたせるのに
適している。第25図では回転アーム200回転に伴い
、ゼネバ歯車18a。
FIG. 22 is a plan view showing another modification, and FIG. 23 is an operation diagram thereof. In this example, two Geneva gears 18a, 18
b are connected in two so that they can be rotated by one rotating arm 20, and are suitable for creating a pressure difference by intermediate pulling. In FIG. 25, the Geneva gear 18a rotates as the rotary arm rotates 200 times.

18bに直結する回転体5,5aにより試料11が移動
する状態を模式的に図示しており、回転体5゜5aの回
転に90°の位相差が生じるので、1段目から2段目へ
の試料の移送に便利である。第23図の左端の数字は回
転アーム20の回転サイクルを示す。
This diagram schematically shows a state in which the sample 11 is moved by the rotating bodies 5 and 5a directly connected to the rotating body 18b, and since a 90° phase difference occurs in the rotation of the rotating bodies 5° and 5a, the sample 11 is moved from the first stage to the second stage. Convenient for transporting samples. The numbers at the left end of FIG. 23 indicate the rotation cycles of the rotary arm 20.

第24図および第25図は多数のケーシングを接続する
実施例の垂直断面図を示し、それぞれケーシング1.I
a、1b、1cは連絡路14゜14a、14bで連絡さ
れており、連絡路14から中間吸引路12がロータリー
ポンプ(図示省略)に接続して中間引きされ、ケーシン
グ1Cから吸引路21がデフニージョンポンプ(図示省
略)に接続して高真空に吸引される。そして第24図で
は、連絡路14aから排気抵抗を有する中間吸引路16
が吸引路21に接糾し、そのコンダクタンスにより真空
度が調整される。また第25図では間隙10aより間隙
10bの排気抵抗が小さく、そのコンダクタンスにより
真空度が調整される。こうして各ケーシング1,1a、
Ib、1cの真空度は順次高くなる。
Figures 24 and 25 show vertical cross-sections of an embodiment for connecting multiple casings, respectively casing 1. I
a, 1b, and 1c are connected through communication paths 14° and 14a, 14b, and the intermediate suction path 12 is connected from the communication path 14 to a rotary pump (not shown) for intermediate suction, and the suction path 21 is connected from the casing 1C to the differential. It is connected to a knee pump (not shown) and is sucked into a high vacuum. In FIG. 24, an intermediate suction path 16 having exhaust resistance from the communication path 14a is shown.
is connected to the suction path 21, and the degree of vacuum is adjusted by its conductance. Further, in FIG. 25, the exhaust resistance of the gap 10b is smaller than that of the gap 10a, and the degree of vacuum is adjusted by its conductance. In this way, each casing 1, 1a,
The degree of vacuum in Ib and 1c increases successively.

第26図および第27図は1つのケーシングにおいて段
階的に吸引する実施例を示す水平断面図であり、第26
図では、中間吸引路12をロータリーポンプに接続し、
中間吸引路16に排気抵抗をもたせ、試料送出路6を介
してデフニージョンポンプに接続し、段階的に真空度を
調整している。
FIG. 26 and FIG. 27 are horizontal sectional views showing an embodiment in which suction is performed in stages in one casing;
In the figure, the intermediate suction path 12 is connected to a rotary pump,
The intermediate suction path 16 is provided with an evacuation resistance and is connected to a deflation pump via the sample delivery path 6 to adjust the degree of vacuum in stages.

また第27図では中間吸引路12.16は同一のロータ
リーポンプに接続し、間隙10aよりも間隙10bを大
きくして、そのコンダクタンスにより段階的に真空度を
大きくしている。
Further, in FIG. 27, the intermediate suction paths 12, 16 are connected to the same rotary pump, the gap 10b is made larger than the gap 10a, and the degree of vacuum is gradually increased by the conductance thereof.

なお、上記説明において、各構成部分の構造、試料のロ
ーディング方式、異雰囲気の維持方式等は図示のものに
限定されず、任意に変更可能である。tた上記説明はI
Cウェハーを例にとり、異雰囲気として圧力差のあるも
のについて説明したが、試料の種類、形状等は制限され
ず、また雰囲気についても、圧力のほかガスの種類等信
の雰囲気についても同様に適用できる。
In the above description, the structure of each component, the method of loading a sample, the method of maintaining a different atmosphere, etc. are not limited to those shown in the drawings, and can be changed as desired. The above explanation is
Using C wafer as an example, we have explained an atmosphere with a pressure difference as a different atmosphere, but there are no restrictions on the type or shape of the sample, and the same applies to atmospheres other than pressure, such as the type of gas. can.

以上のとおシ、この発明によれば、異雰囲気に接続する
ケーシング内で、試料収納部を有する回転体を回転させ
ることにより、試料を異雰囲気間で連続的に移送するこ
とができ、自動化も可能である。このため、例え、は半
導体製造過程に適用すれば、ノζツチ処理等による自動
化の鎖の切断を避けることができ、製造工程の合理化、
品質の向上が可能となる。
In summary, according to the present invention, a sample can be continuously transferred between different atmospheres by rotating a rotating body having a sample storage part within a casing connected to a different atmosphere, and automation is also possible. It is possible. For this reason, if applied to the semiconductor manufacturing process, it is possible to avoid cutting the automation chain due to processing, etc., and streamline the manufacturing process.
It is possible to improve quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による試料移送装置を示す
垂直断面図、第2図はそのA−A断面図、第3図ないし
第5図、第7図および第8図は回転体の変形例を示し、
それぞれ(、)は平面図、(b)は正面図、(C)は側
面図、第6図(a)および第9図ないし第11図はそれ
ぞれ他の実施例のケーシング部を切欠いた平面図、第6
図fb)は(a)のケーシング部を切欠いた側面図、第
12図ないし第15図、第16図(al、 (b)、第
17図(a)、第19図(a)、第20図、第24図お
よび第25図はそれぞれ他の実施例の垂直断面図、第1
7図(b)は(a)のB−B断面図、第19図(b)は
(a)の水平断面図、第21図(atおよび第22図は
変形例を示す平面図、第21図(b)は(a)の垂直断
面図、第23図は動作図、第26図および第27図はそ
れぞれ別の実施例を示す水平断面図である。 各図中、同一符号は同一または相当部分を示し、1はケ
ーシング、2は試料導入路、6は試料送出路、5は回転
体、6は試料収納部、8は回転装輩、11は試料である
。 第17図 手続補正書(方式) 1.事件の表示 昭和57年特許願第 34617  号3、 補正をす
る者 事件との関係  特許出願人 4・ 代  理  人  〒105  電話436−4
700住 所  東京都港区西新橋3丁目15番8号「
第18図、」を挿入する。
FIG. 1 is a vertical cross-sectional view showing a sample transfer device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line A-A, and FIGS. Showing a modified example,
(,) is a plan view, (b) is a front view, (C) is a side view, and FIG. 6(a) and FIGS. 9 to 11 are respectively cutaway plan views of the casing part of other embodiments. , 6th
Figure fb) is a cutaway side view of the casing part in (a), Figures 12 to 15, Figures 16 (al, (b), Figure 17 (a), Figure 19 (a), Figure 20). 24 and 25 are vertical cross-sectional views of other embodiments, and FIG.
7(b) is a BB sectional view of (a), FIG. 19(b) is a horizontal sectional view of (a), FIG. 21(at) and FIG. 22 are a plan view showing a modified example, Figure (b) is a vertical sectional view of (a), Figure 23 is an operation diagram, and Figures 26 and 27 are horizontal sectional views showing different embodiments. In each figure, the same reference numerals are the same or The corresponding parts are shown: 1 is the casing, 2 is the sample introduction path, 6 is the sample delivery path, 5 is the rotating body, 6 is the sample storage section, 8 is the rotating device, and 11 is the sample. (Method) 1. Indication of the case Patent Application No. 34617 of 1983 3. Person making the amendment Relationship to the case Patent applicant 4/Agent 105 Telephone 436-4
700 Address: 3-15-8 Nishi-Shinbashi, Minato-ku, Tokyo
Insert "Figure 18."

Claims (1)

【特許請求の範囲】 (1)  それぞれ異雰囲気に接続する試料導入路およ
び試料送出路が開口するケーシングと、このケーシング
内で十分な排気抵抗を保って回転する回転体と、回転に
伴って前記試料導入路から試料を受入れ、かつ試料送出
路へ試料を送出するように前配回転体に設けられた試料
収納部とを備えたことを特徴とする試料移送装置 (2)試料収納部は回転体の円周方向に開口している特
許請求の範囲第1項記載の試料移送装置(3)試料導入
路と試料送出路の中間に1両者の雰囲気の中間の雰囲気
を形成する手段を備えた特許請求の範囲第1項または第
2項記載の試料移送装置 (4)  それぞれ回転体を有する複数のケーシングが
接続され、その中間部に試料導入路と試料送出路との中
間の雰囲気を形成する手段を備えた特許請求の範囲第1
項ないし第6項のいずれかに記載の試料移送装置
[Scope of Claims] (1) A casing in which a sample introduction path and a sample delivery path each connected to a different atmosphere are open; a rotating body that rotates within the casing while maintaining sufficient exhaust resistance; A sample transfer device (2) characterized by comprising a sample storage section provided on the front rotating body so as to receive the sample from the sample introduction path and send the sample to the sample delivery path (2) The sample storage section is rotatable. The sample transfer device (3) according to claim 1, which is open in the circumferential direction of the body, is provided with means for forming an atmosphere intermediate between the atmospheres of both the sample introduction path and the sample delivery path. Sample transfer device (4) according to claim 1 or 2 A plurality of casings each having a rotating body are connected, and an atmosphere intermediate between the sample introduction path and the sample delivery path is formed in the intermediate portion thereof. Claim 1 comprising means
Sample transfer device according to any one of Items 6 to 6
JP3461782A 1982-03-05 1982-03-05 Specimen feeding device Pending JPS58153345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3461782A JPS58153345A (en) 1982-03-05 1982-03-05 Specimen feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3461782A JPS58153345A (en) 1982-03-05 1982-03-05 Specimen feeding device

Publications (1)

Publication Number Publication Date
JPS58153345A true JPS58153345A (en) 1983-09-12

Family

ID=12419330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3461782A Pending JPS58153345A (en) 1982-03-05 1982-03-05 Specimen feeding device

Country Status (1)

Country Link
JP (1) JPS58153345A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106199U (en) * 1983-12-26 1985-07-19 日本たばこ産業株式会社 Radiation irradiation room
DE4408947A1 (en) * 1994-03-16 1995-09-21 Balzers Hochvakuum Vacuum treatment installation with a valve arrangement
EP0943699A1 (en) * 1998-02-19 1999-09-22 Leybold Systems GmbH Load-lock device for transferring substrates in and out of a treatment chamber
WO2004042111A2 (en) * 2002-11-08 2004-05-21 Applied Films Gmbh & Co. Kg Lock arrangement for a substrate coating installation
EP1577419A1 (en) * 2004-03-16 2005-09-21 Applied Films GmbH & Co. KG System for coating hollow bodies such as plastic bottles with an high vacuum chamber and a lock

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106199U (en) * 1983-12-26 1985-07-19 日本たばこ産業株式会社 Radiation irradiation room
DE4408947A1 (en) * 1994-03-16 1995-09-21 Balzers Hochvakuum Vacuum treatment installation with a valve arrangement
CH688043A5 (en) * 1994-03-16 1997-04-30 Balzers Hochvakuum Vakuumbehandlungsanlage and Ventilanordnung.
EP0943699A1 (en) * 1998-02-19 1999-09-22 Leybold Systems GmbH Load-lock device for transferring substrates in and out of a treatment chamber
WO2004042111A2 (en) * 2002-11-08 2004-05-21 Applied Films Gmbh & Co. Kg Lock arrangement for a substrate coating installation
WO2004042111A3 (en) * 2002-11-08 2005-01-27 Applied Films Gmbh & Co Kg Lock arrangement for a substrate coating installation
EP1577419A1 (en) * 2004-03-16 2005-09-21 Applied Films GmbH & Co. KG System for coating hollow bodies such as plastic bottles with an high vacuum chamber and a lock

Similar Documents

Publication Publication Date Title
JP2665202B2 (en) Semiconductor wafer processing equipment
JPH0319252A (en) Multistage vacuum separation type treater, multistage vacuum type semiconductor-wafer treater and device and method of transferring workpiece
US5478195A (en) Process and apparatus for transferring an object and for processing semiconductor wafers
JPH06264241A (en) Chamber and combined chambers for transfer of workpiece, vacuum treating device and method for transfer of workpiece
JP2003077976A (en) Processing system
JPH0684864A (en) Treatment device
JPH0533529B2 (en)
JPH07321178A (en) Carrier device and multichamber device with the carrier device
TWI644385B (en) Substrate transfer robot and substrate processing apparatus using the same
JPS58153345A (en) Specimen feeding device
JPS61112312A (en) Vacuum continuous treater
JPS62207866A (en) Continuous sputtering device
JPS61246381A (en) Vacuum treatment device
JPS6098628A (en) Conveyor in vacuum
JPH02140948A (en) Vacuum processor
JP2000218585A (en) Rotary driving gear
US6123494A (en) Process for the loading and unloading of an evacuatable treatment chamber and handling device for carrying out the process
JPH02196441A (en) Wafer conveying apparatus
JPS60238133A (en) Vacuum treatment apparatus
JP2676678B2 (en) Continuous sputtering method
JP4014059B2 (en) Single wafer vacuum processing equipment
JPH0375631B2 (en)
JPH07169706A (en) Vertical heat-treating device and vacuum treating device
JP2887079B2 (en) Ashing equipment
JPH0237742A (en) Semiconductor device manufacturing equipment