JPS5815278A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5815278A
JPS5815278A JP11471881A JP11471881A JPS5815278A JP S5815278 A JPS5815278 A JP S5815278A JP 11471881 A JP11471881 A JP 11471881A JP 11471881 A JP11471881 A JP 11471881A JP S5815278 A JPS5815278 A JP S5815278A
Authority
JP
Japan
Prior art keywords
film
gate electrode
insulating film
insulating
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11471881A
Other languages
Japanese (ja)
Other versions
JPH0217931B2 (en
Inventor
Yoshihiko Higa
比嘉 良彦
Akira Takei
武井 朗
Takashi Mitsuida
高 三井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11471881A priority Critical patent/JPS5815278A/en
Publication of JPS5815278A publication Critical patent/JPS5815278A/en
Publication of JPH0217931B2 publication Critical patent/JPH0217931B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To provide a method of opening a hole by a self-aligning method for a contacting window of source and drain electrodes of a silicon gate MOSFET. CONSTITUTION:A gate electrode 5 formed of silicon or metal silicide covered with the thick first insulating film 6 on the upper surface is formed on an element forming region 3 specified by an interelement insulating and isolating region formed on the surface of a semiconductor substrate, thin second insulating films 7, 8 are respectively formed on the surface of the gate electrode surface and the element forming region surface, the thin third insulating film 9 is formed on the overall surface of a substrate by a plasma chemical vapor phase growing method, the third film is then removed by utilizing the large etching rate of the part adhered to the side wall surface of the gate electrode of the third film, with the remaining third insulating film 9 as a mask oxidation is then performed, thereby forming a thick oxidized film on the gate electrode side wall surface, the third film and the second film under the third film is then removed, thereby opening the contacting windows 20, 11 of the source and drain electrodes.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関し、特にシリコンゲ
ートMO8FETのソース及ヒトレイン電極のコンタク
ト窓の自己整合法による開口方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for opening contact windows of source and drain electrodes of a silicon gate MO8FET using a self-alignment method.

半導体装置を高集積化するため、その構成要素の各素子
がますます微細化され、高集積化される現況下にあって
、MOS FETのソース及びドレイン電極のコンタク
ト窓を開口する工程における位置合わせ余裕を不要化す
ることが重要な課題となっている。特にMOS FET
を短チヤネル化する場合には、この位置合わせ余裕を排
除することが素子の微細化にとって不可欠の要件となる
In order to increase the integration of semiconductor devices, each component element is becoming increasingly finer and more integrated, so alignment in the process of opening contact windows for the source and drain electrodes of MOS FETs is becoming increasingly important. Eliminating the need for margins has become an important issue. Especially MOS FET
When shortening the channel, eliminating this alignment margin is an essential requirement for device miniaturization.

そのため上記コンタクト窓を開口する際の位置合せ余裕
を不要化するための製造方法が種々提唱されているが、
いずれも十分に満足し得るものとは言い難い。
Therefore, various manufacturing methods have been proposed to eliminate the need for alignment margin when opening the contact window.
It is hard to say that either of them is fully satisfactory.

本発明の目的ばソース及びドレイン電極のコンタクト窓
をゲート電極と自己整合して形成し得る半導体装置の製
造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device in which contact windows for source and drain electrodes can be formed in self-alignment with gate electrodes.

本発明の特徴は、半導体基板表面に形成された素子間絶
縁分離領域により画定された素子形成領域に、上面を厚
い第1の絶縁膜で被覆されたシリコンまたは金属の硅化
物よりなるゲート電極を形成し、該ゲート電極表面及び
素子形成領域表面に薄い第2の絶縁膜を形成し、次いで
プラズマ化学気相成長法により基板上全面に第8の絶縁
膜を形成し、次いで該第8の絶縁膜のうち前記ゲート電
極の側壁面に付着せる部分の被エツチレートが大である
ことを利用してこれを除去し、次いで残留せる第8の絶
縁膜をマスクとして酸化処理を施こして前記ゲート電極
側壁面に厚い酸化膜を形成した後、曲起第8の絶縁膜と
その下層の薄い第2の絶縁膜を除去することにより、ソ
ース及びドレイン電極のコンタクト窓、を開口する工程
を含むことにある。
A feature of the present invention is that a gate electrode made of silicon or metal silicide whose upper surface is covered with a thick first insulating film is provided in an element formation region defined by an inter-element insulation isolation region formed on the surface of a semiconductor substrate. a thin second insulating film is formed on the surface of the gate electrode and the surface of the element formation region, then an eighth insulating film is formed on the entire surface of the substrate by plasma chemical vapor deposition; Taking advantage of the fact that the portion of the film to be attached to the side wall surface of the gate electrode is highly etched, this is removed, and then an oxidation treatment is performed using the remaining eighth insulating film as a mask to form the gate electrode. After forming a thick oxide film on the side wall surface, the method includes a step of opening contact windows for the source and drain electrodes by removing the curved eighth insulating film and the thin second insulating film thereunder. be.

以下本発明の一実施例を図面を用いて説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図〜第8図は本発明め一実施例をその製造工程の順
に説明する要部断面図である。第1図において1はシリ
コン(81)基板、2は選択酸化法に工って形成したフ
ィールド酸化膜、8はフィールド酸化膜によシ画定され
た素子形成領域、4はゲート酸化膜、5は例えばシリコ
ン多結晶よりなるゲート電極、6はゲー)[極5の上面
を被覆する第1の絶縁膜で、本実施例では二酸化シリコ
ン(S’zOg )膜を用いた。
FIGS. 1 to 8 are sectional views of essential parts for explaining a first embodiment of the present invention in the order of its manufacturing process. In FIG. 1, 1 is a silicon (81) substrate, 2 is a field oxide film formed by a selective oxidation method, 8 is an element formation region defined by the field oxide film, 4 is a gate oxide film, and 5 is a gate oxide film. For example, a gate electrode made of polycrystalline silicon (6 is a gate electrode) [a first insulating film covering the upper surface of the electrode 5, and in this embodiment, a silicon dioxide (S'zOg) film was used.

ここまでは通常の製造工程に従って進めてよい。Up to this point, the process may proceed according to the normal manufacturing process.

即ち、81基板1表面にフィールド酸化膜2を形成し、
素子形成領域8表面を一旦露出させ、次いで素子形成領
域8表面に加熱酸化法により約500[人コの厚さのゲ
ート酸化膜4を形成し、その上に化学気相成長(CvD
)法によりシリコン多結晶層6を成長させ、更にこれを
酸化する等の方法で第1のSiO2膜6を凡そ3000
〜4000[:Aコの厚さに形成した後、パターニング
工程を経て、同図に示すようにゲート酸化膜4.ゲー)
fi4i(厚さ凡そ4000〜5000[入コ)、第1
の5in2膜6が形成される。
That is, a field oxide film 2 is formed on the surface of the 81 substrate 1,
The surface of the element formation region 8 is once exposed, and then a gate oxide film 4 with a thickness of approximately 500 mm is formed on the surface of the element formation region 8 by a thermal oxidation method, and chemical vapor deposition (CvD) is applied thereon.
) method to grow a silicon polycrystalline layer 6, and further oxidize it to form a first SiO2 film 6 with a thickness of about 3,000 yen.
After forming the gate oxide film to a thickness of ~4000[:A], a patterning process is performed to form a gate oxide film 4. game)
fi4i (thickness approximately 4000 to 5000 [included]), 1st
A 5in2 film 6 is formed.

次いでこれに加熱酸化処理を施こして第2図に見られる
ように、素子形成領域8表面並びにゲート電砺5側面を
酸化して、100〜500[人]の厚さの第2のSin
、膜7,8を形成する。
Next, a heat oxidation treatment is performed on this to oxidize the surface of the element forming region 8 and the side surface of the gate wire 5, as shown in FIG.
, forming films 7 and 8.

次いでプラズマCVD法により第8図に示す如く基板1
上全面に窺化シリコン(5iaN、 ) fill (
第8の絶縁膜)9を500〜aoooc人]の厚さに形
成する。このようにプラズマCVD法によシ皮膜を形成
した場合には、ゲート電極6の側壁面のように直立面な
いしは直立に近い面に被着した部分dの膜質が非常に粗
となり、そのため平坦部に被着した膜に較べて薬品に対
する被エツチレートが著しく増大する。
Next, as shown in FIG. 8, the substrate 1 is formed by plasma CVD method.
Vitrified silicon (5iaN, ) fill (
An eighth insulating film) 9 is formed to a thickness of 500 to 500 cm. When a film is formed by the plasma CVD method in this way, the quality of the film on the portion d deposited on an upright surface or a nearly upright surface such as the side wall surface of the gate electrode 6 becomes very rough, and therefore, the film quality on the flat portions becomes very rough. The etch rate for chemicals is significantly increased compared to the film deposited on the substrate.

そこで81基板1を例えば濃度2[%コ程度に希釈した
弗酸(HF)溶液で処理すると、第4図に示すように8
18N4@9のうちゲート電極6の側壁面に被着された
部分9′のみが速やかに除去され、その下層の第2の5
102 @ 8が露呈する。この工程において、上記ゲ
ート電極5の側壁面以外に被着せる513N4膜9や第
2の5i09膜8は、上述の2、 [5週度のHF溶液
では殆んどおかされない。
Therefore, when the 81 substrate 1 is treated with a hydrofluoric acid (HF) solution diluted to a concentration of about 2%, the 81
Of the 18N4@9, only the portion 9' adhered to the side wall surface of the gate electrode 6 is quickly removed, and the second layer 9' below it is removed.
102 @8 is exposed. In this step, the 513N4 film 9 and the second 5i09 film 8, which are deposited on areas other than the side wall surfaces of the gate electrode 5, are hardly damaged by the HF solution for 5 weeks as described above.

次いで上記残留せる5iaN4膜9をマスクとじて81
基板lに加熱酸化処理を施こす。すると周知の如(Si
3N4g119に被覆されている部分ではSi、02膜
は成長せず、Si3N4膜の存在しない部分ではSlの
酸化が進行して810B膜が成長する。従って第5図に
示すようにゲート電極5の側壁面の第2の5i02膜8
は厚さを増大する。その厚さは実用ト2000〜400
0[人コ程度に制御する。
Next, the remaining 5iaN4 film 9 is removed as a mask 81.
A heating oxidation treatment is performed on the substrate l. Then, as is well known (Si
In the portion covered with 3N4g119, the Si, 02 film does not grow, and in the portion where the Si3N4 film does not exist, oxidation of Sl progresses and an 810B film grows. Therefore, as shown in FIG.
increases the thickness. Its thickness is practically 2000~400mm
0 [Control to human level.

次いで第6図に示すように燐酸(H3P0. )等によ
り残留せる5j−11N4119を除去し、更にHF糸
の薬品により基板1表面の薄い第2の5102膜7を除
去する。このときゲート電極6の上面及び側壁面のSi
、O,fi6.8もおかされるが、前述の除去すべきS
ing膜7より遥かに厚いので、若干厚さを減じるがす
べて除去されることはない。
Next, as shown in FIG. 6, the remaining 5j-11N4119 is removed using phosphoric acid (H3P0.) or the like, and the thin second 5102 film 7 on the surface of the substrate 1 is further removed using HF thread chemicals. At this time, Si on the upper surface and side wall surface of the gate electrode 6
, O, fi6.8 is also affected, but the above-mentioned S to be removed
Since it is much thicker than the ing film 7, the thickness is slightly reduced but not completely removed.

以上によりソース及びドレイン領域のコンタクト窓to
、ttが形成されたのであるがSこのコンタク)窒10
.・11の位置はゲート[極5と自己整合して決定され
、位置決めのためのホト工程を使用していない。従って
コンタク)窓10.11を開口するための位置合わせ余
裕を設ける必要がなくなり、素子が微細化される。。
As described above, the contact window to of the source and drain regions is
, tt was formed, but this contact) nitrogen 10
.. - The position of 11 is determined by self-alignment with the gate [pole 5, and no photo process is used for positioning. Therefore, there is no need to provide a positioning margin for opening the contact windows 10, 11, and the element can be miniaturized. .

このあとは通常の製造工程に従って進めてよく、即ち、
第7図に示すようにコンタクト窓10.11部にイオン
注入法或いは拡散法によシ所望の不純物[例えばnチャ
ネル素子の場合には砒素(As)。
After this, you may proceed according to the normal manufacturing process, i.e.
As shown in FIG. 7, contact windows 10 and 11 are doped with a desired impurity (for example, arsenic (As) in the case of an n-channel device) by ion implantation or diffusion.

燐(P)コを導入してソース及びドレイン領域12゜1
8を形成し、更に第8図に示すようにアルミニウム(A
l)のような導電材料よりなるソース及びドレインの電
極配線14.15を形成して本実施例によるMOS F
ETの完成体が得られる。
By introducing phosphorus (P), the source and drain regions 12°1
8, and as shown in FIG.
The MOS F according to this embodiment is formed by forming source and drain electrode wirings 14 and 15 made of a conductive material such as l).
A complete ET is obtained.

なおソース及びドレイン領域12.18は上記一実施例
の如く、コンタクト窓to、ttを開口した後に形成し
てもよく、前記第1図或いは第2図により説明した工程
のあとイオン注入法により形成してもよい。
Note that the source and drain regions 12.18 may be formed after opening the contact windows to and tt as in the above embodiment, and may be formed by ion implantation after the steps explained in FIG. 1 or 2. You may.

以上説明した如く本発明によれば、ソース及びドレイン
領域のコンタクト窓をゲート電極と自己整合して形成し
得るので、位置合わせ余裕を設ける必要がない。従って
半導体装置の微細化、高密度化が容易となる。
As described above, according to the present invention, the contact windows of the source and drain regions can be formed in self-alignment with the gate electrode, so there is no need to provide alignment margin. Therefore, it becomes easy to miniaturize and increase the density of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第8図は本発明の一実施例を製造工程の順に示
す要部断面図であって、図中、lは半導体基板、2は素
子間絶縁分離領域、8は素子形成領域、4はゲート絶縁
膜、5はゲート電極、6は第1の絶縁膜、7.8は第2
の絶縁膜、9.9′は第8の絶縁膜、to、ttはソー
ス及びドレイン電極のコンタクト窓を示す。
1 to 8 are cross-sectional views of main parts of an embodiment of the present invention showing the manufacturing process in order, in which l is a semiconductor substrate, 2 is an inter-element isolation region, 8 is an element formation region, 4 is a gate insulating film, 5 is a gate electrode, 6 is a first insulating film, and 7.8 is a second insulating film.
9.9' is an eighth insulating film, to and tt are contact windows for source and drain electrodes.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面に素子形成領域を画定する素子間絶縁分
離領域を形成する工程と、前記素子形成領域表面の所定
部分にゲート絶縁膜を介してyyコンまえは金属の硅化
物よりなるゲート電極とその上に第1の絶縁膜を形成す
る工程と、前記素子形成領域表面の残りの部分及び前記
ゲート電極の側面に第2の絶縁膜を形成する工程と、前
記ゲート電極上面部及び側面部を含む半導体基板上にプ
ラズマ化学気相成長法により第8の絶縁膜を形成する工
程と、前記ゲート電極側面部に被着せる第8の絶縁膜を
除去する工程と、残留せる前記第8の絶縁膜をマスクと
して半導体基板に酸化処理を施こすことにより前記ゲー
ト電極側面部にシリコンの酸化膜を成長せしめる工程と
前記第8及び第2の絶縁膜を除去する工程とを含むこと
を特徴とする半導体装置の製造方法。
A step of forming an inter-element insulation isolation region for defining an element formation region on the surface of the semiconductor substrate, and forming a gate electrode made of metal silicide on a predetermined portion of the surface of the element formation region with a gate insulating film in front of the yy cone. forming a first insulating film on the surface of the element formation region and forming a second insulating film on the remaining portion of the surface of the element formation region and the side surfaces of the gate electrode; a step of forming an eighth insulating film on a semiconductor substrate by plasma chemical vapor deposition; a step of removing the eighth insulating film deposited on the side surface of the gate electrode; and a step of removing the eighth insulating film to remain. A semiconductor device comprising the steps of: growing a silicon oxide film on the side surface of the gate electrode by oxidizing the semiconductor substrate as a mask; and removing the eighth and second insulating films. manufacturing method.
JP11471881A 1981-07-21 1981-07-21 Manufacture of semiconductor device Granted JPS5815278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11471881A JPS5815278A (en) 1981-07-21 1981-07-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11471881A JPS5815278A (en) 1981-07-21 1981-07-21 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5815278A true JPS5815278A (en) 1983-01-28
JPH0217931B2 JPH0217931B2 (en) 1990-04-24

Family

ID=14644875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11471881A Granted JPS5815278A (en) 1981-07-21 1981-07-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5815278A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068612A (en) * 1983-09-26 1985-04-19 Oki Electric Ind Co Ltd Manufacture of semiconductor element
FR2720331A1 (en) * 1994-05-27 1995-12-01 Ier Printing machine with moving guide for material to be printed

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068612A (en) * 1983-09-26 1985-04-19 Oki Electric Ind Co Ltd Manufacture of semiconductor element
FR2720331A1 (en) * 1994-05-27 1995-12-01 Ier Printing machine with moving guide for material to be printed

Also Published As

Publication number Publication date
JPH0217931B2 (en) 1990-04-24

Similar Documents

Publication Publication Date Title
US5488004A (en) SOI by large angle oxygen implant
US4402761A (en) Method of making self-aligned gate MOS device having small channel lengths
JPH06260497A (en) Semiconductor device and manufacture thereof
JPH0638496B2 (en) Semiconductor device
JPS63219152A (en) Manufacture of mos integrated circuit
JPS5815278A (en) Manufacture of semiconductor device
JPH023244A (en) Manufacture of semiconductor device
JPS62291176A (en) Semiconductor device and manufacture thereof
JPS60145664A (en) Manufacture of semiconductor device
GB2038088A (en) Semiconductor structures
JPH0298143A (en) Manufacture of ldd structure polysilicon thin film transistor
JP3436315B2 (en) Method of manufacturing MONOS type semiconductor nonvolatile memory device and method of manufacturing semiconductor device
KR0170436B1 (en) Method of manufacturing mosfet
JPS60200572A (en) Manufacture of semiconductor device
JPH06196498A (en) Semiconductor device and manufacture thereof
GB2172743A (en) Forming gate sidewall oxide spacers
JPH0481327B2 (en)
JPS6072274A (en) Manufacture of semiconductor device
JPH0567634A (en) Manufacture of mis type semiconductor device
JP2003100868A (en) Semiconductor device and its manufacturing method
JPH10125623A (en) Manufacture of semiconductor device
JPS61212067A (en) Manufacture of semiconductor device
JPH0350836A (en) Manufacture of mos type semiconductor device
JPH1126756A (en) Manufacture of semiconductor device
JPS61107736A (en) Manufacture of semiconductor device