JPS58143506A - Superconductive device - Google Patents

Superconductive device

Info

Publication number
JPS58143506A
JPS58143506A JP57026117A JP2611782A JPS58143506A JP S58143506 A JPS58143506 A JP S58143506A JP 57026117 A JP57026117 A JP 57026117A JP 2611782 A JP2611782 A JP 2611782A JP S58143506 A JPS58143506 A JP S58143506A
Authority
JP
Japan
Prior art keywords
switch
current switch
current
permanent
permanent current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57026117A
Other languages
Japanese (ja)
Inventor
Takamasa Fujinaga
藤永 高正
Tatsuo Saito
斎藤 龍生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57026117A priority Critical patent/JPS58143506A/en
Publication of JPS58143506A publication Critical patent/JPS58143506A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/006Supplying energising or de-energising current; Flux pumps
    • H01F6/008Electric circuit arrangements for energising superconductive electromagnets

Abstract

PURPOSE:To simplify the release of a permanent current without overheating and burning a superconductive coil and a permanent current switch. CONSTITUTION:When current is supplied to a superconductive coil 1, if a mechanical permanent current switch 21 is kept opened, no current will flow through the permanent switch circuit even if the superconductive coil 1 is subjected to the normal conductive transfer, accordingly, a thermal permanent current switch 22 is prevented from overheating. Moreover, the resistance of a discharge resistor 3 is not restricted by the value of the resistance when the thermal permanent current switch 22 is opened and this makes it possible to set a high resistance, whereas the magnetic energy of the superconductive coil 1 is mostly consumed in the discharge resistor 3. As a result, the superconductive coil 1 is never overheated. When the permanent current condition is released, it is only necessary to open the thermal permanent current switch 22. Since the switch takes partial charge of the extinction of arc, the mechanical permanent current switch 21 is not burned by the arc and the superconductive coil 1 can be demagnetized.

Description

【発明の詳細な説明】 本発明は超電導装置に係り、*に、横槍式永久直流スイ
ッチを用い九超鑞導装置に最適な超電導aIiliに関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting device, and firstly, to a superconducting aIili that uses a horizontal spear type permanent DC switch and is most suitable for a nine superconducting device.

極低温に冷却することにより、電気抵抗が零になる超電
導体を使用してコイルを形成し、磁界発生源とする超電
導th11は、核融合用、エネにギー貯蔵用、磁気浮上
用、高エネルギー物理学用等、高範囲に応用されている
。超電導コイル自体の成力損失は零であり、電気抵抗が
零または殆んど無視し得る程度の電気抵抗を有するスイ
ッチを使用して、コイルの両端を短絡すれば、電流の減
衰が零か、殆んど減衰の無い、いわゆる永久電流状態を
保持する事が可能である。
Superconductor TH11, which uses a superconductor whose electrical resistance becomes zero when cooled to an extremely low temperature to form a coil and serves as a magnetic field generation source, is used for nuclear fusion, energy storage, magnetic levitation, and high energy applications. It is applied to a wide range of applications such as physics. The power loss of the superconducting coil itself is zero, and if you short-circuit both ends of the coil using a switch with zero or almost negligible electrical resistance, the attenuation of the current will be zero. It is possible to maintain a so-called persistent current state with almost no attenuation.

永久電流状−の形成を、第1図の回路を使用して説明す
る。第1図において1は超電導コイル、2は永久電流ス
イッチ、3は放電用抵抗器、4は励磁用電源である。二
点鎖線のブロック5によって囲まれた一分が極低温に保
持される。まず永久電流スイッチ2を開極の状−とする
う次いでft源から電流を一定の増加割合で送給すると
、その直流は超電導コイル1および放電抵抗!s3に流
れる。
The formation of a persistent current will be explained using the circuit of FIG. In FIG. 1, 1 is a superconducting coil, 2 is a persistent current switch, 3 is a discharge resistor, and 4 is an excitation power source. One minute surrounded by the block 5 indicated by two-dot chain lines is kept at a cryogenic temperature. First, the persistent current switch 2 is set to the open state, and then a current is supplied from the ft source at a constant increasing rate, and the direct current flows through the superconducting coil 1 and the discharge resistor! Flows to s3.

電源からの過給電流が所2の値に達した時、その値を一
定に保持すると、放電抵抗3に流れていた電流は、超電
導コイルlのインダクタンス及び放電抵抗器3の抵抗値
より定まろ時定数で、超電導コイルIK移行する。放電
抵抗1113へ流れていた1mが超電導コイル1への移
行が終了した時点で、永久電流スイッチ2を閉じる。閉
じ走時点においては、永久を流スイッチ2へは電流は流
れない。
When the supercharging current from the power supply reaches the value 2, if that value is held constant, the current flowing through the discharge resistor 3 will be determined by the inductance of the superconducting coil l and the resistance value of the discharge resistor 3. The superconducting coil IK shifts with a time constant. When the 1 m flowing to the discharge resistor 1113 finishes transferring to the superconducting coil 1, the persistent current switch 2 is closed. At the time of closing, no current flows into the permanent switch 2.

′電源4からの送給電流を一定の減少割合で減少させる
と、超電導コイルIK流れる電流は一定値に保たれたま
ま、永久taスイッチ2に流れる電流が増加する。また
放電抵抗a3へも再び″電流が流れる。電源からの送給
電流が減少している間は、電源からの送給電流と永久を
流スイッチ2に流れる電流と、放電抵抗に流れるwL流
との和は、超電導コイルIK流れる電/IIK等しい。
'When the current supplied from the power source 4 is reduced at a constant rate, the current flowing through the permanent TA switch 2 increases while the current flowing through the superconducting coil IK is kept at a constant value. In addition, current flows again into the discharge resistor a3.While the current supplied from the power supply is decreasing, the current supplied from the power supply, the current flowing through the switch 2, and the wL current flowing through the discharge resistor. The sum of is equal to the current flowing in the superconducting coil IK/IIK.

電源からの送給(流が零になった後は、放電抵抗器3に
流れていた電流が、前述の時定数で永久電流スイッチ2
に移行する。放電抵抗1113の電流が零となった時超
−導コイル1に流れる電流と、永久電流スイッチ2に流
れるttItは等しくなり、持続する循JjiIIIE
流となる。
The supply from the power supply (after the current has become zero, the current flowing through the discharge resistor 3 is switched to the persistent current switch 2 with the above-mentioned time constant).
to move to. When the current in the discharge resistor 1113 becomes zero, the current flowing in the superconducting coil 1 and ttIt flowing in the persistent current switch 2 become equal, and the continuous circulation JjiIIIE
It becomes a flow.

次に、永久を流状態の解除にりいて説明する。Next, eternity will be explained with reference to the release of the flowing state.

咄述の永久ItflL状態において、電源4から電流を
一定の増加割合で送給する。このとき、永久電流スイッ
チ20両端の電圧は零であり、放電抵抗器3へは電流は
流れない。電源よりの送給電流が、超電導コイル1に流
れている電流に等しくなった時、電源よりの送給電流を
一定値に保つ、このとき永久電流スイッチ2に対しては
電流は流れていない。次いで永久電流スイッチ2を開い
た後、電源よりの送給電流を一定の減少割合で減少させ
る。
In the permanent ItflL state described above, current is delivered from the power source 4 at a constant increasing rate. At this time, the voltage across the persistent current switch 20 is zero, and no current flows into the discharge resistor 3. When the current supplied from the power supply becomes equal to the current flowing through the superconducting coil 1, the current supplied from the power supply is kept at a constant value, and at this time no current flows to the persistent current switch 2. Next, after opening the persistent current switch 2, the current supplied from the power source is decreased at a constant rate of decrease.

超電導コイルIK売れていた電流は一部故嵯抵抗4に移
行した後、はぼ一定割合で減少するっ電源よりの送給I
I流が零となった後は、前述の時定数に従って超電導コ
イル1の電流は減衰する。
After some of the current that was sold in the superconducting coil IK is transferred to the resistor 4, it decreases at a constant rate.
After the I current becomes zero, the current in the superconducting coil 1 attenuates according to the above-mentioned time constant.

永久電流状態を解除するもう一つの方法は、永久電流が
流れている状態で、永久電流スイッチ2を開くことであ
る。励磁電源4のインピーダンスを、放電抵抗の値より
はるかに太きh値としておけば、永久電流スイッチ2を
開いた後は、超電導コイル1のインダクタンスと放電抵
抗器の抵抗値により定まる時定数に従って電流は減衰す
る。この方法は、電源を運転せずに永久−流を解除でき
るという利点を有する。
Another way to release the persistent current state is to open the persistent current switch 2 while persistent current is flowing. If the impedance of the excitation power source 4 is set to an h value that is much larger than the value of the discharge resistor, after the persistent current switch 2 is opened, the current will flow according to the time constant determined by the inductance of the superconducting coil 1 and the resistance value of the discharge resistor. is attenuated. This method has the advantage that permanent current can be removed without turning on the power supply.

永久taスイッチ2として、接触子を機械的に開閉する
いわゆる機械式永久電流スイッチと、超峨導線をゲート
線として使用し、ゲート線に併設され九加熱ヒーターに
通電してゲート線に有限の抵抗を発生させる、いわゆる
熱式永久電流スイッチとが有する。
As the permanent TA switch 2, we use a so-called mechanical persistent current switch that mechanically opens and closes the contact, and a superconducting wire as the gate wire. It has a so-called thermal persistent current switch that generates.

放電抵抗器3の抵抗値は、超電導コイル10両端に加わ
る電圧の許容値から決定されるが、大きい方が喪い。こ
れは、超電導コイル1が何等かの原因で常電導転移した
とき超電導コイルIK蓄えられた磁気エネルギーは、放
電抵抗の値が大きい種放電抵抗に消費され、超電導コイ
ルIK消費される磁気エネルギーが少なくなるので、超
電導コイル1が過熱されることが無いからである。永久
1mスイッチ2として、熟成永久電流スイッチをに用す
る場合は、放電抵抗の値は熱式永久電流スイッチtlI
Iい走時の抵抗値よりかなり小さい値を選定しておかl
〈てはならない。これは、超電導コイルlが何等かの原
因で常電導転移し走時、永久電流スイッチ2に消費され
るエネルギーを少なくシ、永久電流スイッチ2の焼損を
防ぐためであるつ但し、超電導コイル内に蓄えられてい
た磁気エネルギーは、その大部分が超電導コイル自身で
消費され、超電導コイル10通熱もしくは焼損のおそれ
がある。
The resistance value of the discharge resistor 3 is determined from the permissible value of the voltage applied to both ends of the superconducting coil 10, and the larger the resistance value, the lower the resistance value. This is because when the superconducting coil 1 transitions to normal conductivity due to some reason, the magnetic energy stored in the superconducting coil IK is consumed by the seed discharge resistor with a large discharge resistance value, and the magnetic energy consumed by the superconducting coil IK is small. This is because the superconducting coil 1 will not be overheated. When using an aged persistent current switch as the permanent 1m switch 2, the value of the discharge resistance is the thermal type persistent current switch tlI.
Be sure to select a value that is considerably smaller than the resistance value during running.
<must not. This is to reduce the energy consumed by the persistent current switch 2 and to prevent the persistent current switch 2 from burning out when the superconducting coil l transitions to normal conductivity due to some reason and runs. Most of the stored magnetic energy is consumed by the superconducting coil itself, and there is a risk that the superconducting coil 10 will be heated or burnt out.

永久電流状態の解除の際、電源を運転しないで永久電流
スイッチ2を開く方法は、操作が極めて簡本であるが、
機械式永久電流スイッチを使用することが出来ない、機
械式永久電流スイッチには、アークの消弧能力が無く 
通電状態で開極すると接点が焼け、′次に閉じた時に接
触抵抗が極めて大きくなるからである。まえ、永久電流
スイッチ2は極低温部分に置かれる丸め、接触子の交僕
には多大の費用と時間とを必要とする。
The method of opening the persistent current switch 2 without operating the power supply when canceling the persistent current state is extremely simple to operate;
Mechanical persistent current switches cannot be used; mechanical persistent current switches do not have the ability to extinguish arcs.
This is because if the contact is opened while energized, the contact will burn out, and the contact resistance will become extremely large when the contact is closed next time. First, the persistent current switch 2 is placed in a cryogenic area and requires a great deal of cost and time to roll and replace the contacts.

零発1は、超電導コイル、永久電流スイッチの過熱また
は焼損が無く永久電流の解除が浦単に行なえる超電導装
置の提供を目的とするう第2図は本発明の実繍例を示す
回路図である。
The purpose of the first embodiment is to provide a superconducting device in which the persistent current can be released simply without overheating or burning out the superconducting coil or persistent current switch. Figure 2 is a circuit diagram showing an example of the present invention. be.

なお、112図においては第1図に示したと同一部材で
あるものには同一符号を付している。永久鑞流スイッチ
は、機械式永久電流スイッチ21と熱式永久II流スイ
ッチ22との直列接続により構成する。また、放電抵抗
器3と蓋側に、スイッチ23と放電抵抗31の直列回路
を接続する。かかる構成により熱式永久電流スイッチと
機械式電流スイッチの各スイッチの長所を取入れ九永久
電流スイッチを得たことになる。超電導装置全体の動作
は第1図の場合と同一であるので説明は省略する。
In addition, in FIG. 112, the same members as shown in FIG. 1 are given the same reference numerals. The permanent current switch is composed of a mechanical permanent current switch 21 and a thermal permanent II current switch 22 connected in series. Further, a series circuit of a switch 23 and a discharge resistor 31 is connected to the discharge resistor 3 and the lid side. With this configuration, nine persistent current switches have been obtained by incorporating the advantages of the thermal persistent current switch and the mechanical persistent current switch. The operation of the entire superconducting device is the same as that shown in FIG. 1, so a description thereof will be omitted.

超電導コイルlへ電流を送給する場合は、機械式永久(
fiスイッチ21を開いておけば、超電導コイル1が常
鑞導転移しても永久電流スイッチ回路へのlll1流は
流れず、熱式水入電流スイッチ22が過熱することはな
い。また、放電抵抗is3の抵抗値は、熱式永久電流ス
イッチ22の開極時抵抗値の値に制限されることは無い
ので、高い抵抗値を設定することが可能でおり、従って
超電導コイル1の磁気エネルギーは大部分が放電抵抗器
3で消費され、超電導コイル1が過熱することが無い。
When sending current to the superconducting coil l, a mechanical permanent (
If the fi switch 21 is opened, even if the superconducting coil 1 undergoes a normal conduction transition, the lll1 current will not flow to the persistent current switch circuit, and the thermal water-immersed current switch 22 will not overheat. Furthermore, the resistance value of the discharge resistor is3 is not limited to the value of the open resistance value of the thermal persistent current switch 22, so it is possible to set a high resistance value. Most of the magnetic energy is consumed by the discharge resistor 3, and the superconducting coil 1 does not overheat.

永久電流状態の解除の際は、熱式永久″電流スイッチ2
2を開極すれば、該スイッチがアーク(14弧を分担す
るので機械式永久電流スイッチ21がアークにより焼損
することなく超電導コイル1の消磁が行なえる。この際
、放電抵抗器は熱式永久電流スイッチ22が開いている
ときは閉となるようなスイッチ23と直列に接続された
放電抵抗31の抵抗値を、永久電流スイッチ22の開極
抵抗より極めて小さb値としておけば、熱式永久電流ス
イッチ22が過熱する事は無い。
To release the persistent current state, use the thermal permanent current switch 2.
2, the switch shares the arc (14 arcs), so the superconducting coil 1 can be demagnetized without the mechanical permanent current switch 21 being burned out by the arc. Thermal permanent The current switch 22 will not overheat.

以上より明らかなように本@明によれば、機械式永久電
流スイッチと熱式永久*iスイッチの双方の長所を活か
した永久電流スイッチが得られることから、永久電流の
解除を過熱、焼損無しに行なうことができる。
As is clear from the above, according to the book@mei, a persistent current switch that takes advantage of the advantages of both mechanical persistent current switches and thermal permanent*i switches can be obtained, so that persistent current can be released without overheating or burnout. can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超醒導t装置の回路図、第2図は本発明
の実施例の回路図である。 1・・・超電導コイル、3.31・・・放電抵抗器、4
・・・励磁用電源、21・・・機械式永久電流スイッチ
、22・・・熱式永久電流スイッチ。
FIG. 1 is a circuit diagram of a conventional super-cooling device, and FIG. 2 is a circuit diagram of an embodiment of the present invention. 1... Superconducting coil, 3.31... Discharge resistor, 4
... Excitation power supply, 21... Mechanical persistent current switch, 22... Thermal persistent current switch.

Claims (1)

【特許請求の範囲】[Claims] 1、fi極低温保たれる超電導コイルおよび放電用抵抗
器を直流電源に対し並例に接続すると共に、電気抵抗が
無視しえる値を有した永久電流スイッチにより前記超電
導コイルの両端を所定時に短絡して永久電流状態を生成
する超電導線aにおいて、前記永久電流スイッチは、横
様的接点を有する機械式永久lt流スイッチと超電導線
をゲート線とし併設し九加熱ヒータの加□熱状襟に応じ
てスイッチ機能を示す熱式永久電流スイッチとを直列接
続して構成したことを特徴とする超電導装置。
1. A superconducting coil that is kept at an extremely low temperature and a discharge resistor are connected to a DC power source in a parallel manner, and both ends of the superconducting coil are short-circuited at a predetermined time using a persistent current switch whose electrical resistance is negligible. In the superconducting wire a that generates a persistent current state, the persistent current switch is a mechanical permanent LT current switch having transverse contacts and the superconducting wire is used as a gate wire, and is connected to the heating collar of a heating heater. A superconducting device characterized in that it is configured by connecting in series a thermal persistent current switch that exhibits a switching function according to the switching function.
JP57026117A 1982-02-22 1982-02-22 Superconductive device Pending JPS58143506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57026117A JPS58143506A (en) 1982-02-22 1982-02-22 Superconductive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57026117A JPS58143506A (en) 1982-02-22 1982-02-22 Superconductive device

Publications (1)

Publication Number Publication Date
JPS58143506A true JPS58143506A (en) 1983-08-26

Family

ID=12184629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57026117A Pending JPS58143506A (en) 1982-02-22 1982-02-22 Superconductive device

Country Status (1)

Country Link
JP (1) JPS58143506A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136800A (en) * 1985-12-07 1987-06-19 住友電気工業株式会社 X-ray generator
JPS6451679A (en) * 1987-08-24 1989-02-27 Hitachi Ltd Energy extracting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136800A (en) * 1985-12-07 1987-06-19 住友電気工業株式会社 X-ray generator
JPS6451679A (en) * 1987-08-24 1989-02-27 Hitachi Ltd Energy extracting method

Similar Documents

Publication Publication Date Title
JP2659363B2 (en) Superconducting magnet device with emergency demagnetization device
EP1012940B1 (en) Circuit protection arrangements
SE445416B (en) ENERGY CIRCUIT FOR A MICROWAVE OVEN
JPS61114509A (en) Superconductive coil device
JPS58143506A (en) Superconductive device
JP2007527682A (en) Injury current limiter
JPH0318001A (en) Superconductive magnet apparatus having emergency demagnetizing device
US4635015A (en) Switching device for shorting at least one superconducting magnet winding
JPH04322023A (en) Dc cutting device
JPH10144545A (en) Current limiting device
JPH033362B2 (en)
JPS633169Y2 (en)
JPS617610A (en) Superconductive device
JPH01177839A (en) Superconducting energy storage system
JPH10326915A (en) Connection structure of superconductive wire
JPH01248931A (en) Current limiting device
JPS61127106A (en) Superconductive electromagnet device
JPS63184225A (en) Electromagnetic contactor
JPS61256584A (en) Excessive temperature rise prevention circuit
SU983799A1 (en) Thermobimetallic relay
JPS59113605A (en) Superconductive magnet device
JPH05190325A (en) Protective circuit for superconducting magnet
SU1744729A1 (en) Device for arcless switching of dc electric circuits
JPS61226905A (en) Superconductive coil device
JPH07263760A (en) Superconductor permanent current switch and method of operating superconductor persistent current switch