JPH01177839A - Superconducting energy storage system - Google Patents

Superconducting energy storage system

Info

Publication number
JPH01177839A
JPH01177839A JP63000545A JP54588A JPH01177839A JP H01177839 A JPH01177839 A JP H01177839A JP 63000545 A JP63000545 A JP 63000545A JP 54588 A JP54588 A JP 54588A JP H01177839 A JPH01177839 A JP H01177839A
Authority
JP
Japan
Prior art keywords
superconducting
switch
conductor
state
superconducting conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63000545A
Other languages
Japanese (ja)
Inventor
Hidehiro Nagamura
英博 長村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63000545A priority Critical patent/JPH01177839A/en
Publication of JPH01177839A publication Critical patent/JPH01177839A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To obtain a system in which power loss is suppressed to a remarkably small value by providing a switch in series with a superconductor for forming a DC closing circuit at the time of storing energy, and operating to open or close the switch at the time of switching normal conduction/superconduction. CONSTITUTION:A system for forming a DC closing circuit by connecting superconducting coil 5 and a superconducting conductor 3 in series with the DC side of an AC/DC converter 1, and switching the conductor 3 to a superconducting state at the time of storing energy, a switch 2 is provided in series with the conductor 3. The switch 2 is closed immediately before the conductor 3 is switched to the superconducting state, and the switch 2 is opened immediately after the conductor 3 is switched to a normal conducting state. Thus, a large current circuit can be opened or closed even by the switch 2 having a small rated value, and power loss at the conductor 3 can be suppressed.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、超電導コイルを利用してエネルギーを貯蔵
し、必要なときに貯蔵エネルギーを交流系統に供給する
超電導エネルギー貯蔵システムに関するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) This invention is a superconducting energy storage system that stores energy using superconducting coils and supplies the stored energy to an AC system when necessary. It is related to.

(従来の技術) 近年、原子力発電による発電量が増加してきており、こ
の結果、−日の需要電力の変動に対応するため、老朽化
しつつある経年火力発電設備が起動、停止等の運転を強
いられているのが実状である。
(Conventional technology) In recent years, the amount of power generated by nuclear power generation has been increasing, and as a result, aging thermal power generation facilities are being forced to start up and shut down in order to cope with fluctuations in power demand on -day. The reality is that

この経年火力設備の起動、停止の回数を低く抑えるため
の新しい技術として、超電導コイルを用いて電気エネル
ギーを貯蔵したり、放出したりして、需要電力を調整す
る超電導エネルギー貯蔵システムが提案されている。
A superconducting energy storage system that uses superconducting coils to store and release electrical energy to adjust power demand has been proposed as a new technology to keep the number of startups and shutdowns of aging thermal power facilities low. There is.

第3図はこの種の従来のエネルギー貯蔵システムの構成
を示す回路図である。同図において、変圧器1aと、サ
イリスタ素子等を用いた交流/直流変換器1bとで電力
変換装置1が構成されている。この電力変換装置1の交
流側端子は図示省略の交流系統に接続され、直流側端子
に抵抗器4゜超電導コイル5およびサイリスクスイッチ
7が並列接続されている。
FIG. 3 is a circuit diagram showing the configuration of this type of conventional energy storage system. In the figure, a power conversion device 1 is configured by a transformer 1a and an AC/DC converter 1b using a thyristor element or the like. The AC side terminal of this power converter 1 is connected to an AC system (not shown), and a resistor 4° superconducting coil 5 and a thyrisk switch 7 are connected in parallel to the DC side terminal.

ここで、交流系統の発電電力に比べて、需要電力が過少
の場合には、電力変換装置1を介して、超電導コイル5
にエネルギーを蓄積する。エネルギーの蓄積中は、サイ
リスクスイッチ7が点弧され、これに還流モードの電流
■。が流される。−方、発電電力に比べて、需要電力が
過多の場合には、電力変換装置1を介して、超電導コイ
ル5の蓄積エネルギーを商用系統に供給する。この時、
サイリスクスイッチ7は消弧される。
Here, if the demand power is too small compared to the generated power of the AC system, the superconducting coil 5
to store energy. During energy storage, the thyrisk switch 7 is fired, and a current in the reflux mode is applied to it. is washed away. - On the other hand, when the demanded power is excessive compared to the generated power, the energy stored in the superconducting coil 5 is supplied to the commercial grid via the power conversion device 1. At this time,
The thyrisk switch 7 is turned off.

以上の動作により、需要電力の一日の変動に対応するこ
とができる。
Through the above operations, it is possible to respond to daily fluctuations in power demand.

なお、超電導コイル5に異常があり、その蓄積エネルギ
ーを急速に外部に放出する必要に迫られたとき、サイリ
スクスイッチ7を消弧して、抵抗4に電流Iを流すこと
により、この抵抗4に蓄積エネルギーを消費させる。
Note that when there is an abnormality in the superconducting coil 5 and it is necessary to rapidly release the stored energy to the outside, the resistor 4 can be consumes stored energy.

現在、計画されている超電導エネルギー貯蔵システムと
しては、超電導コイル5の定格電流が数百キロアンペア
(KA)にも及ぶものがある。この場合、サイリスクス
イッチ7の最小点弧電圧はせいぜい1〜2〔V〕と小さ
いが、超電導コイルの電流が数百(KA)ともなると、
定常電力損失がメガワット(MW)オーダとなってサイ
リスクスイッチでの電力損失が非常に大きくなる。
Currently, some superconducting energy storage systems being planned have superconducting coils 5 with a rated current of several hundred kiloamperes (KA). In this case, the minimum firing voltage of the thyrisk switch 7 is as small as 1 to 2 [V] at most, but when the current of the superconducting coil reaches several hundreds (KA),
The steady state power loss is on the order of megawatts (MW), and the power loss in the thyrisk switch becomes very large.

一方、現在実用になっているサイリスタ素子として、定
格電流が4 (KA)のものがあるが、数百〔KA〕の
超電導電流I。を流す回路にこのサイリスタ素子を用い
ようとすると、約4000個の素子を並列接続しなけれ
ばならず、その場合、電流バランスを確保する新たな技
術を確立しなければならなかった。
On the other hand, some thyristor elements currently in practical use have a rated current of 4 (KA), but the superconducting current I is several hundred [KA]. In order to use this thyristor element in a circuit that flows current, approximately 4,000 elements had to be connected in parallel, and in that case, a new technology had to be established to ensure current balance.

さらにまた、約4000個にも及ぶサイリスクスイッチ
を必要とするシステムとなると、その経済性が疑問視さ
れてもいた。
Furthermore, the economics of a system that requires approximately 4,000 thyrisk switches has been questioned.

そこで、これに代わるシステムとして、第4図に示すも
のが提案されている。この第4図に示したエネルギー貯
蔵システムは、第3図に示したシステム中のサイリスク
スイッチ7に代えて、超電導導体3を用いたものである
Therefore, a system shown in FIG. 4 has been proposed as an alternative system. The energy storage system shown in FIG. 4 uses a superconducting conductor 3 in place of the cyrisk switch 7 in the system shown in FIG.

かかる構成により、例えば、商用系統とエネルギーの授
受をしない場合には、超電導導体3を超電導状態にして
、図示した如く、還流モードの電流I。を流す。
With this configuration, for example, when energy is not transferred to or from a commercial grid, the superconducting conductor 3 is brought into a superconducting state and the current I in the reflux mode is generated as shown in the figure. flow.

また、商用系統とエネルギーの授受を行う場合には、例
えば、超電導導体3に熱を加えて温度を上げることによ
り超電導状態を破って常電導状態とする。常電導状態で
は数十オーム〔Ω〕径程度通常抵抗素子として作用する
Further, when transmitting and receiving energy with a commercial grid, for example, heat is applied to the superconducting conductor 3 to raise the temperature, thereby breaking the superconducting state and bringing it into the normal conducting state. In a normally conductive state, it normally acts as a resistance element with a diameter of several tens of ohms (Ω).

一方、超電導コイル5を保護するモードにおいても、超
電導導体3の超電導状態を破ることにより、抵抗4に電
流11を流し、貯蔵エネルギーをここで消費させる。な
お、抵抗4としては、超電導コイル5の定格電流Iや定
格インダクタンスによっても異なるが、約1〜2〔Ω〕
径程度ものが使用される。
On the other hand, also in the mode of protecting the superconducting coil 5, by breaking the superconducting state of the superconducting conductor 3, the current 11 is caused to flow through the resistor 4, and the stored energy is consumed here. The resistance 4 is approximately 1 to 2 [Ω], although it varies depending on the rated current I and rated inductance of the superconducting coil 5.
A diameter of about 100 ml is used.

この第4図に示したエネルギー貯蔵システムを、第3図
に示したシステムと比較すれば、超電導導体の抵抗値が
理論的に零であることから還流モードにおける定常損失
がなく、さらに、約4000個ものサイリスク素子の代
わりに1個の超電導導体で済むことから電流のアンバラ
ンスを考慮する必要性がなく、しかも、超電導コイル5
の冷却システムを使って超電導導体を冷却することがで
きるため経済的でもあった。
Comparing this energy storage system shown in Fig. 4 with the system shown in Fig. 3, it is found that since the resistance value of the superconducting conductor is theoretically zero, there is no steady state loss in the reflux mode, and furthermore, the energy storage system shown in Fig. Since only one superconducting conductor is required instead of individual cyrisk elements, there is no need to consider current imbalance, and superconducting coil 5
It was also economical because the superconducting conductor could be cooled using the same cooling system.

(発明が解決しようとする問題点) しかしながら、第4図に示した従来のエネルギー貯蔵シ
ステムにおいても、商用系統とエネルギー授受を行う時
の電力損失が大きく、さらに、超電導導体の特性劣化に
伴う費用負担が大きいという問題点があった。
(Problems to be Solved by the Invention) However, even in the conventional energy storage system shown in Fig. 4, there is a large power loss when transferring energy to and from the commercial grid, and there is also a cost associated with the deterioration of the characteristics of the superconducting conductor. The problem was that it was a heavy burden.

すなわち、超電導導体3の常電導状態の抵抗値は、経済
性、実現性から考えて、数十オーム〔Ω〕径程度上限で
あり、電力変換装置の定格直流電圧がキロボルト(KV
)のオーダとすると、この電力変換装置を用いて交流系
統と電力授受する際の超電導導体3の電力損失がメガワ
ット(MW)のオーダとなってしまう。
In other words, the resistance value of the superconducting conductor 3 in the normal conduction state is at the upper limit of several tens of ohms (Ω) in terms of economy and feasibility, and the rated DC voltage of the power converter is kilovolt (KV).
), the power loss of the superconducting conductor 3 when transmitting and receiving power to and from an AC system using this power conversion device will be on the order of megawatts (MW).

また、超電導導体3を常電導状態で長期間使用すると、
これを冷却しながら使用したとしても超電導状態と比較
して温度が高くなってしまい、発熱による変質および特
性の劣化が大きい。従って、その交換に伴う費用負担が
大きくなる。
In addition, if the superconducting conductor 3 is used for a long period of time in a normal conducting state,
Even if this is used while being cooled, the temperature will be higher than in the superconducting state, and the heat generation will cause significant deterioration and property deterioration. Therefore, the cost burden associated with its replacement increases.

この発明は上記の問題点を解決するためになされたもの
で、電力損失を格段に小さく抑え、且、経済性に優れた
超電導エネルギー貯蔵システムを得ることを目的とする
This invention has been made to solve the above-mentioned problems, and aims to provide a superconducting energy storage system that significantly reduces power loss and is highly economical.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、交流/直流電力変換装置の直流端子間に超電
導コイルおよび超電導導体が並列接続され、交流系統と
電力の授受を行うとき前記超電導導体を常電導状態にし
、エネルギーの貯蔵中は前記超電導導体を超電導状態に
する超電導エネルギー貯蔵システムにおいて、前記超電
導導体と直列に挿設されたスイッチを備え、前記超電導
導体を常電導状態から超電導状態に移行する直前に前記
スイッチをオン状態にし、前記超電導導体を超電導状態
から常電導状態に移行させた直後に前記スイッチをオフ
状態にすることを特徴とするものである。
(Means for Solving the Problems) The present invention is characterized in that a superconducting coil and a superconducting conductor are connected in parallel between DC terminals of an AC/DC power converter, and when transmitting and receiving power to and from an AC system, the superconducting conductor is turned into a normal conductor. A superconducting energy storage system that sets the superconducting conductor to a superconducting state and puts the superconducting conductor in a superconducting state during energy storage, the superconducting energy storage system including a switch inserted in series with the superconducting conductor, immediately before transitioning the superconducting conductor from a normal to a superconducting state. The method is characterized in that the switch is turned on, and immediately after the superconducting conductor is transferred from a superconducting state to a normal conducting state, the switch is turned off.

(作 用) 一般に、数百[KA)の直流回路の解放、閉成が可能な
開閉器があれば、上述した超電導導体の代わりに、この
開閉器を使用すればよい。しかし、そのような開閉器の
実現性が薄いがために、従来は超電導導体を用いている
。ところが、オン、オフ操作するときの電流値を低く抑
えることができれば、定格の小さい開閉器でも大電流回
路の解放、閉成が可能となる。
(Function) Generally, if there is a switch capable of opening and closing a DC circuit of several hundred KA, this switch may be used in place of the above-mentioned superconducting conductor. However, since the feasibility of such a switch is low, conventionally superconducting conductors have been used. However, if the current value during on/off operations can be kept low, even a switch with a low rating can open and close a high current circuit.

この発明は、この原理を巧みに利用したもので、開閉器
等のスイッチを超電導導体と直列に挿設し、この超電導
導体を常電導状態に保つ間、このスイッチをオフ状態に
しようとするものであるが、このとき、超電導導体を超
電導状態から常電導状態に移行させた直後にオフ操作し
、常電導状態から超電導状態に移行させる直前にオン操
作している。
This invention skillfully utilizes this principle by inserting a switch such as a switch in series with a superconducting conductor, and attempting to turn off the switch while maintaining the superconducting conductor in a normal conducting state. However, at this time, the OFF operation is performed immediately after the superconducting conductor is transferred from the superconducting state to the normal conducting state, and the ON operation is performed immediately before transferring the superconducting conductor from the normal conducting state to the superconducting state.

従って、スイッチをオン操作するときの電流と、オフ操
作するときの電流が超電導導体の常電導状態時の抵抗値
によって抑制されるため、大電流回路をスイッチによっ
て解放させたり、閉成させたりすることができると同時
に、このスイッチによって超電導導体の常電導状態の電
流の大部分を遮断することができ、超電導導体での消費
電力を実質的に零に抑えることができる。また、消費電
力を零にしたことにより、超電導導体の変質を防止でき
、その交換も殆ど不要化されて経済的に優れたものが得
られる。
Therefore, the current when turning on the switch and the current when turning it off are suppressed by the resistance value of the superconducting conductor in the normal conducting state, so the switch can open or close a large current circuit. At the same time, this switch can cut off most of the current in the normal conductor state of the superconducting conductor, and the power consumption in the superconducting conductor can be suppressed to substantially zero. Further, by reducing the power consumption to zero, it is possible to prevent deterioration of the superconducting conductor, and there is almost no need to replace it, resulting in an economically superior product.

(実施例) 第1図はこの発明の一実施例の構成を示す回路図であり
、図中、第4図と同一の符号を付したものはそれぞれ同
一の要素を示している。そして、超電導導体3と直列に
機械的な開閉器等のスイッチ2を挿設すると共に、超電
導導体3を超電導状態にしたり、常電導状態にしたりす
ることに合せてスイッチ2をオン、オフ操作するスイッ
チ制御手段8を設けたものである。
(Embodiment) FIG. 1 is a circuit diagram showing the configuration of an embodiment of the present invention, and in the figure, the same reference numerals as in FIG. 4 indicate the same elements. Then, a switch 2 such as a mechanical switch is inserted in series with the superconducting conductor 3, and the switch 2 is turned on and off according to whether the superconducting conductor 3 is in a superconducting state or in a normal conducting state. A switch control means 8 is provided.

上記のように構成された本実施例の動作を以下に説明す
る。
The operation of this embodiment configured as described above will be explained below.

先ず、超電導コイル5に電力を貯蔵していないとき、超
電導導体3を常電導状態に保つと共に、スイッチ制御手
段8がスイッチ2を開放しておく。
First, when no power is stored in the superconducting coil 5, the superconducting conductor 3 is kept in a normal conducting state, and the switch control means 8 keeps the switch 2 open.

この状態で交流系統の電力を貯蔵する場合、交流/直流
変換装置1により、交流電力を直流電力に変換して、超
電導コイル5に直流電流を流す。その電流が所望の大き
さになった時点でスイッチ制御手段8がスイッチ2を閉
成し、続いて、超電導導体3を超電導状態から常電導状
態に移行させると共に、変換器1aを構成する例えばサ
イリスタのゲート信号を全て遮断する。このとき、スイ
ッチ2を閉成するまでは、スイッチ2および超電導導体
3に電流は流れず、スイッチ2を閉成してから超電導導
体3を超電導状態にするまで、超電導導体3の常電導状
態の抵抗値によって抑制された電流が流れ、さらに、超
電導導体3が超電導状態になると共に、変換装置1aを
構成する素子をゲートブロック状態にすると、ここに流
れていた直流電流がスイッチ2および超電導導体3の回
路に転流し、値の大きい還流モードの電流Ioが流れる
。従って、電力貯蔵中の超電導導体3における電力Ii
失を実質的に零にすることができる。また、スイッチ2
の開成時の電流は、超電導導体3の抵抗によって低く抑
えられているため、接点異常を引起こすこともない、 次に、貯蔵中の電力を交流系統に転送する必要が生じた
場合、交流/直流変換装置1を動作させると共に、超電
導導体3を超電導状態から常電導状態に移行させること
により、スイッチ2および超電導導体3に流れていた還
流モードの電流I。
When storing AC power in this state, the AC/DC converter 1 converts the AC power into DC power and causes the DC current to flow through the superconducting coil 5. When the current reaches a desired level, the switch control means 8 closes the switch 2, and then transitions the superconducting conductor 3 from the superconducting state to the normal conducting state, and also switches the superconducting conductor 3, such as a thyristor, constituting the converter 1a. All gate signals are cut off. At this time, no current flows through the switch 2 and the superconducting conductor 3 until the switch 2 is closed. A current suppressed by the resistance value flows, and when the superconducting conductor 3 enters the superconducting state and the elements constituting the converter 1a are placed in the gate blocking state, the direct current flowing there flows through the switch 2 and the superconducting conductor 3. The current Io in the freewheeling mode having a large value flows through the circuit. Therefore, the power Ii in the superconducting conductor 3 during power storage
Loss can be reduced to virtually zero. Also, switch 2
The current at the time of opening is suppressed to a low level by the resistance of the superconducting conductor 3, so it does not cause contact abnormalities.Next, when it becomes necessary to transfer the stored power to the AC system, By operating the DC converter 1 and transitioning the superconducting conductor 3 from a superconducting state to a normal conducting state, a current I in a reflux mode flows through the switch 2 and the superconducting conductor 3.

の大部分を交流/直流変換装置1に流し、この時点でス
イッチ制御手段8がスイッチ2を開放させると、還流モ
ードの電流I。のすべてが交流/直流変換装置1に流れ
る。このとき、スイッチ2を開放するまで常電導状態の
超電導導体3に一部の電流が流れるが、その直後にスイ
ッチ2を開放することにより、電力転送中の超電導導体
3の電力損失を実質的に零にすることができる。また、
超電導導体3を通して流れる電流が小さくなったときに
スイッチ2を開放させるので、その開放時において接点
異常を引起こすことはない。
If the switch control means 8 opens the switch 2 at this point, the current I in the freewheel mode will flow through the AC/DC converter 1. all of which flows to the AC/DC converter 1. At this time, some current flows through the superconducting conductor 3 in the normal conductive state until the switch 2 is opened, but by opening the switch 2 immediately after that, the power loss in the superconducting conductor 3 during power transfer can be substantially reduced. It can be made zero. Also,
Since the switch 2 is opened when the current flowing through the superconducting conductor 3 becomes small, contact abnormality does not occur when the switch 2 is opened.

次に、超電導コイル5に異常が生じ、その蓄積エネルギ
ーを急速に放出する必要が生じた場合について、エネル
ギー貯蔵、転送時と、エネルギーを貯蔵したままの還流
モード時とに分けて説明する。
Next, the case where an abnormality occurs in the superconducting coil 5 and the stored energy needs to be rapidly released will be explained separately in the case of energy storage and transfer, and the reflux mode in which energy is stored.

a)エネルギー貯蔵、転送時 超電導コイル5を保護する必要性が生じたとき、変換器
1aを構成するサイリスタの全てをゲートブロック状態
にする。このとき、スイッチ2は開放状態にあるので、
超電導コイル5を流れる電流が抵抗器4に流れ込み、今
まで蓄えられていたエネルギーがこの抵抗器4に消費さ
れる。
a) When it becomes necessary to protect the superconducting coil 5 during energy storage and transfer, all of the thyristors constituting the converter 1a are placed in a gate-blocked state. At this time, switch 2 is in the open state, so
The current flowing through the superconducting coil 5 flows into the resistor 4, and the energy that has been stored up until now is consumed by this resistor 4.

b)還流モード時 この状態でスイッチ制御手段8はスイッチ2を閉成させ
ており、そこで、超電導コイル5を保護する必要性が生
じたとき、超電導導体3を常電導状態にすると共に、ス
イッチ制御手段8がその直後にスイッチ2を開放する。
b) During reflux mode In this state, the switch control means 8 closes the switch 2, and when it becomes necessary to protect the superconducting coil 5, the superconducting conductor 3 is brought into a normal conduction state, and the switch control means 8 closes the switch 2. Means 8 then open switch 2.

このようにすれば、交流/直流変換装置1は不動作状態
にあることから、還流モードの電流I。が抵抗器4に流
れ込みここでエネルギーが消費される。
In this way, since the AC/DC converter 1 is in an inactive state, the current I in the reflux mode. flows into resistor 4, where energy is consumed.

以上の操作により、超電導コイル5を保護することがで
きる。また、スイッチ2には数百[:KA]の直流電流
が流れるものの、超電導導体3を常電導状態した時点で
オン、オフさせるので、定格容量が僅か百[A)程度の
ものでも十分であり、現状の技術からして十分に実現可
能である。
Through the above operations, the superconducting coil 5 can be protected. Furthermore, although a direct current of several hundred [KA] flows through the switch 2, it is turned on and off when the superconducting conductor 3 is in a normal conduction state, so a switch with a rated capacity of only about 100 [A] is sufficient. , is fully achievable given the current technology.

なお、上記実施例では、交流/直流変換装置1の直流端
子に抵抗器4を直接接続したので、エネルギーの貯蔵、
転送時に電力損失がある。第2図はこの電力損失をなく
するための実施例であり、抵抗器4にサイリスクスイッ
チ6を直列に挿設し、スイッチ制御手段9によって、ス
イッチ2を上述したと同様にオン、オフ操作する他、超
電導コイル5を保護するときだけサイリスクスイッチ6
をオン状態にする。なお、このサイリスクスイッチ6に
電流が流れたとしても、ごく短時間しか流れないので、
仮に、多数のサイリスタを並列接続する構成を採用して
も電流のアンバランスを心配する必要はない。
In the above embodiment, since the resistor 4 was directly connected to the DC terminal of the AC/DC converter 1, energy storage and
There is power loss during transfer. FIG. 2 shows an embodiment for eliminating this power loss, in which a thyrisk switch 6 is inserted in series with the resistor 4, and the switch 2 is turned on and off by the switch control means 9 in the same manner as described above. In addition, the cyrisk switch 6 is used only when protecting the superconducting coil 5.
Turn on. Furthermore, even if current flows through this thyrisk switch 6, it only flows for a very short time, so
Even if a configuration in which many thyristors are connected in parallel is adopted, there is no need to worry about current imbalance.

なおまた、上記実施例ではいずれもスイッチ制御手段に
より、図示省略の超電導冷却システムと連動させてスイ
ッチ2をオン、オフ操作したが、エネルギーの貯蔵およ
び転送が頻繁でない場合には、これを手動操作してもよ
い。
Furthermore, in all of the above embodiments, the switch 2 is turned on and off by a switch control means in conjunction with a superconducting cooling system (not shown), but if energy storage and transfer are not frequent, this may be manually operated. You may.

さらにまた、上記実施例ではスイッチ2として機械的な
開閉器を用いているが、この代わりに無接点スイッチを
用いてもよい。
Furthermore, although a mechanical switch is used as the switch 2 in the above embodiment, a non-contact switch may be used instead.

〔発明の効果〕〔Effect of the invention〕

以上の説明によって明らかなように、この発明によれば
、超電導導体と直列に接続したスイッチを設け、超電導
導体を常電導状態から超電導状態に移行させる直前にこ
のスイッチをオン状態にし、超電導導体を超電導状態か
ら常電導状態に移行した直後にこのスイッチをオフ状態
にしているので、従来装置と比べて電力損失を格段に小
さく抑え、且、経済性に優れた超電導エネルギー貯蔵シ
ステムを得ることができる。
As is clear from the above description, according to the present invention, a switch is provided that is connected in series with the superconducting conductor, and the switch is turned on immediately before the superconducting conductor is transferred from the normal conducting state to the superconducting state. Since this switch is turned off immediately after transitioning from the superconducting state to the normal conducting state, it is possible to significantly reduce power loss compared to conventional devices, and to obtain a superconducting energy storage system that is highly economical. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の構成を示す回路図、第2
図は他の実施例の構成を示す回路図、第3図および、第
4図はそれぞれ従来の超電導エネルギー貯蔵システムの
構成を示す回路図である。 1・・・交流/直流変換装置、2・・・スイッチ、3・
・・超電導導体、4・・・抵抗器、5・・・超電導コイ
ル、6.7・・・サイリスクスイッチ、8,9・・・ス
イッチ制御手段。 出願人代理人  佐  藤  −雄
FIG. 1 is a circuit diagram showing the configuration of an embodiment of the present invention, and FIG.
The figure is a circuit diagram showing the configuration of another embodiment, and FIGS. 3 and 4 are circuit diagrams each showing the configuration of a conventional superconducting energy storage system. 1...AC/DC converter, 2...switch, 3...
...Superconducting conductor, 4...Resistor, 5...Superconducting coil, 6.7...Sirisk switch, 8,9...Switch control means. Applicant's agent Mr. Sato

Claims (1)

【特許請求の範囲】[Claims] 交流/直流電力変換装置の直流端子間に超電導コイルお
よび超電導導体が並列接続され、交流系統と電力の授受
を行うとき前記超電導導体を常電導状態にし、エネルギ
ーの貯蔵中は前記超電導導体を超電導状態にする超電導
エネルギー貯蔵システムにおいて、前記超電導導体と直
列に挿設されたスイッチを備え、前記超電導導体を常電
導状態から超電導状態に移行する直前に前記スイッチを
オン状態にし、前記超電導導体を超電導状態から常電導
状態に移行した直後に前記スイッチをオフ状態にするこ
とを特徴とする超電導エネルギー貯蔵システム
A superconducting coil and a superconducting conductor are connected in parallel between the DC terminals of an AC/DC power converter, and the superconducting conductor is placed in a normal conducting state when transmitting and receiving power to and from an AC system, and the superconducting conductor is placed in a superconducting state while storing energy. A superconducting energy storage system comprising a switch inserted in series with the superconducting conductor, and immediately before transitioning the superconducting conductor from a normal conductive state to a superconducting state, the switch is turned on, and the superconducting conductor is brought into a superconducting state. A superconducting energy storage system characterized in that the switch is turned off immediately after transitioning from a state to a normal conducting state.
JP63000545A 1988-01-05 1988-01-05 Superconducting energy storage system Pending JPH01177839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63000545A JPH01177839A (en) 1988-01-05 1988-01-05 Superconducting energy storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63000545A JPH01177839A (en) 1988-01-05 1988-01-05 Superconducting energy storage system

Publications (1)

Publication Number Publication Date
JPH01177839A true JPH01177839A (en) 1989-07-14

Family

ID=11476705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63000545A Pending JPH01177839A (en) 1988-01-05 1988-01-05 Superconducting energy storage system

Country Status (1)

Country Link
JP (1) JPH01177839A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532638A (en) * 1992-09-21 1996-07-02 Hitachi, Ltd. Superconducting energy storage apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532638A (en) * 1992-09-21 1996-07-02 Hitachi, Ltd. Superconducting energy storage apparatus

Similar Documents

Publication Publication Date Title
US5376828A (en) Shunt connected superconducting energy stabilizing system
US4700257A (en) Superconductive AC current limiter
JPS61262038A (en) Superconductive coil/energy storage circuit
US20150255200A1 (en) Fast Superconducting Switch for Superconducting Power Devices
JPH01177839A (en) Superconducting energy storage system
SU1189306A1 (en) Superconducting gate with automatic protection
US3581113A (en) Switching device for disconnecting cables
JP2000354326A (en) Current-limiting device utilizing superconducting transformer
Mumford Superconducting fault current limiters
JPH01126133A (en) Short-circuit controlling superconductng apparatus
JP2573725B2 (en) Instantaneous power failure protection device using superconducting switch
Chung Medium voltage hybrid transfer switch
SU854217A1 (en) Superconductive switch
WO1998009359A1 (en) Secure voltage bus
JPH0534201Y2 (en)
Tofigh 208 VAC, 20 kHz hybrid remote power controller
JPS62286209A (en) Superconducting electric power storage device
Johnson et al. Superconducting current transfer devices for use with a superconducting LVdc mesh
JPH0427107A (en) Superconducting transformer
JPS58143506A (en) Superconductive device
JPH01255436A (en) Semiconductor circuit breaker
JPH01126140A (en) Superconductive energy storage apparatus
JPH0747960Y2 (en) Balancer
JPH0513222A (en) Superconducting coil device
EP0371275A2 (en) A high speed, current limiting device