JPH01126140A - Superconductive energy storage apparatus - Google Patents

Superconductive energy storage apparatus

Info

Publication number
JPH01126140A
JPH01126140A JP62282245A JP28224587A JPH01126140A JP H01126140 A JPH01126140 A JP H01126140A JP 62282245 A JP62282245 A JP 62282245A JP 28224587 A JP28224587 A JP 28224587A JP H01126140 A JPH01126140 A JP H01126140A
Authority
JP
Japan
Prior art keywords
superconducting coil
current switch
superconducting
persistent current
cryogenic chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62282245A
Other languages
Japanese (ja)
Other versions
JPH0667141B2 (en
Inventor
Takatou Yamagoshi
山腰 喬任
Yoshimitsu Onoda
小野田 芳光
Shunichiro Hayase
早瀬 俊一郎
Yoshio Muraichi
村市 良夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Elevator Engineering and Service Co Ltd
Original Assignee
Hitachi Elevator Engineering and Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Elevator Engineering and Service Co Ltd filed Critical Hitachi Elevator Engineering and Service Co Ltd
Priority to JP62282245A priority Critical patent/JPH0667141B2/en
Publication of JPH01126140A publication Critical patent/JPH01126140A/en
Publication of JPH0667141B2 publication Critical patent/JPH0667141B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To prevent generation of ordinary conductive parts in a superconducting coil to operate an apparatus stably by housing said superconducting coil and a permanent current switch in cryogenic baths thermally separated from each other. CONSTITUTION:A superconducting coil 1 is connected with an AC electric system bus 12 via a power converter 5. In parallel with said superconducting coil are connected a permanent current switch 8 and further a protective resistance 6 and a switch 7. A cryogenic bath is divided into two parts, and the superconducting coil 1 is placed in a first cryogenic bath 11 and a permanent current switch in a second cryogenic bath 9. Even when the refrigerant temperature of the second cryogenic bath 9 rises by operation of the permanent current switch 8, no fluctuation is generated in the refrigerant temperature in the first cryogenic bath 11 and the superconducting coil 1 is kept stable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気的エネルギーを超電導コイルにより貯蔵
する超電導エネルギー貯蔵装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting energy storage device that stores electrical energy using a superconducting coil.

〔従来の技術〕[Conventional technology]

電気的エネルギーを超電導コイルにより貯蔵するこの種
の超電導エネルギー貯蔵装置としては、従来第2図に構
成を示すものが知られている。
As a superconducting energy storage device of this type that stores electrical energy using a superconducting coil, one having a configuration shown in FIG. 2 is conventionally known.

第2図に示すように、従来の超電導エネルギー貯蔵装置
では、超電導コイル1に対して閉回路を形成可能に、0
N−OFF動作を行なう永久電流スイッチ2が接続され
、前述の超電導コイル1と永久電流スイッチ2とは、極
低温槽3内に配設されている。
As shown in FIG. 2, in the conventional superconducting energy storage device, a closed circuit can be formed with respect to the superconducting coil 1.
A persistent current switch 2 that performs an N-OFF operation is connected, and the above-mentioned superconducting coil 1 and persistent current switch 2 are arranged in a cryogenic chamber 3.

また、超電導コイルlと永久電流スイッチ2との接続点
が、それぞれ接続端子4a+4bによって、極低温槽3
外に熱絶縁状態で導出されている。
Further, the connection points between the superconducting coil l and the persistent current switch 2 are connected to the cryogenic chamber 3 through connection terminals 4a and 4b, respectively.
It is led out in a thermally insulated state.

そして、前述した接続端子4a、4bによる極低温槽3
外への導出端子間に、抵抗値が常電導状態下にある超電
導コイルlの抵抗値よりも充分に小さな保護抵抗6とス
イッチ7とが、互いに直列に接続されている。
Then, the cryogenic chamber 3 is connected to the connection terminals 4a and 4b described above.
A protective resistor 6 and a switch 7, whose resistance value is sufficiently smaller than the resistance value of the superconducting coil 1 in the normal conduction state, are connected in series between the terminals leading to the outside.

さらに、この保護抵抗6とスイッチ7との直列接続回路
に並列に変換器5が接続され、この変換器5には交流電
力系統母線12が接続されている。
Further, a converter 5 is connected in parallel to the series connection circuit of the protective resistor 6 and the switch 7, and the AC power system bus 12 is connected to the converter 5.

ここで、変換器5は図示していないが、交流電力系統母
線12からの交流を昇降圧する変圧器とサイリスタとで
構成され、交流電流を直流電流に変換する順変換器、或
は直流電流を交流電流に変換する逆変換器として使用す
ることが可能となっている。
Although the converter 5 is not shown, it is composed of a transformer and a thyristor that step up and down the AC from the AC power system bus 12, and is a forward converter that converts the AC current into a DC current, or a forward converter that converts the AC current into a DC current. It can be used as an inverse converter to convert into alternating current.

そして、超電導コイルlと永久電流スイッチ2とが配設
される極低温槽3には、液体ヘリウムなどの冷媒が充填
され、この冷媒によって超電導コイルlと永久電流スイ
ッチ2とで形成される閉回路に、極低温槽3内において
超電導状態が設定されるようになっている。
The cryogenic chamber 3 in which the superconducting coil l and the persistent current switch 2 are disposed is filled with a refrigerant such as liquid helium, and this refrigerant creates a closed circuit formed by the superconducting coil l and the persistent current switch 2. A superconducting state is set within the cryogenic chamber 3.

このような構成の従来の超電導エネルギー貯蔵装置にお
いて、電気的エネルギーを貯蔵するには、先ず、永久電
流スイッチ2をOFFにして極低温槽3内で超電導コイ
ル1を超電導状態とする。
In the conventional superconducting energy storage device having such a configuration, in order to store electrical energy, first, the persistent current switch 2 is turned off to bring the superconducting coil 1 into a superconducting state in the cryogenic chamber 3.

次いで、変換器5を順変換器として作動させて交流電力
系統母線12の交流電流を直流電流に変換し、この直流
電流で超電導コイル1を励磁し、最大許容電流値に達す
るまで超電導コイル1に電流を供給する。
Next, the converter 5 is operated as a forward converter to convert the alternating current of the AC power system bus 12 into a direct current, and this direct current excites the superconducting coil 1 until the maximum allowable current value is reached. Supply current.

このようにして、超電導コイル1に最大許容電流値に達
するまで電流を供給した後に、永久電流スイッチ2をO
Nにすると、永久電流が超電導コイルlと永久電流スイ
ッチ2で形成される閉回路内を環流して、電気的エネル
ギーが貯蔵される。
In this way, after supplying current to the superconducting coil 1 until the maximum allowable current value is reached, the persistent current switch 2 is turned off.
When set to N, persistent current circulates in the closed circuit formed by superconducting coil 1 and persistent current switch 2, and electrical energy is stored.

また、前述のように超電導コイル1と永久電流スイッチ
2で形成される閉回路に貯蔵された電気的エネルギーを
交流電力系統母線12に取り出す場合は、変換器5を逆
変換器として作動させておいて、永久電流スイッチ2を
OFFにすると、超電導コイル1に生ずる電圧により交
流電力系統母線12に電気的エネルギーを取り出すこと
が出来る。
Furthermore, when the electrical energy stored in the closed circuit formed by the superconducting coil 1 and the persistent current switch 2 is extracted to the AC power system bus 12 as described above, the converter 5 is operated as an inverse converter. When the persistent current switch 2 is turned off, electrical energy can be taken out to the AC power system bus 12 by the voltage generated in the superconducting coil 1.

一般に、超電導コイル1は励磁用の電流が臨界電流密度
を越えると、或は電流はしn界電流密度以下であっても
、わずかのしよう乱によって生じる磁気不安定性によっ
て、超電導コイル1の一部で超電導がこわれて常電導部
分が発生するクエンチ現象が発生することが知られてい
る。
In general, when the excitation current exceeds a critical current density, or even if the current is below the n-field current density, a part of the superconducting coil 1 may be damaged due to magnetic instability caused by slight disturbances. It is known that a quench phenomenon occurs in which the superconductor is broken and a normal conducting part is generated.

そこで、前述のように超電導コイル1の一部で超電導が
こわれて常電導部分が発生する事態が誘起した場合には
、永久電流スイッチ2をすばやくOFFとし、スイッチ
7をONにして貯蔵エネルギーを保護抵抗6へ分流させ
る。
Therefore, if a situation occurs in which the superconductivity is broken in a part of the superconducting coil 1 and a normal conducting part is generated as described above, the persistent current switch 2 is quickly turned OFF and the switch 7 is turned ON to protect the stored energy. The current is shunted to resistor 6.

このようにすることにより、超電導コイル1の一部に発
生する常電導部分の拡大を防ぎ、超電導コイルlの両端
に発生する高電圧による超電導コイル1の絶縁破壊を防
止し、且つ常電導部分に発生するジュール熱による極低
温槽3内の冷媒の急激な気化を阻止することが出来る。
By doing this, it is possible to prevent the expansion of the normal conductive part that occurs in a part of the superconducting coil 1, to prevent the dielectric breakdown of the superconducting coil 1 due to the high voltage that occurs at both ends of the superconducting coil 1, and to prevent the normal conductive part that occurs in the part of the superconducting coil 1 from expanding. It is possible to prevent the refrigerant in the cryogenic chamber 3 from rapidly vaporizing due to the generated Joule heat.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述したような従来の超電導エネルギー貯i!’装置に
対して繰り返して行なわれた発明者等の理論的検討及び
実験によると、永久電流スイッチ2の作動時に、極低温
槽3内の永久電流スイッチ2の近傍の冷媒温度が局部的
に上昇し、このしよう乱によって磁界のゆらぎが生じそ
れが原因で、超電導コイル1の一部に常電導部分が発生
し、急激に常電導状態に転移する場合が多いことが判明
した。
Conventional superconducting energy storage i! 'According to the inventors' theoretical studies and experiments repeatedly conducted on the device, when the persistent current switch 2 is activated, the temperature of the refrigerant near the persistent current switch 2 in the cryogenic chamber 3 locally increases. However, it has been found that this disturbance causes fluctuations in the magnetic field, which causes a normal conduction part to occur in a part of the superconducting coil 1, which often rapidly transitions to a normal conduction state.

この場合、極低温槽3の容積を大きくし冷媒量を増加し
、極低温槽3内での超電導コイル1と永久電流スイッチ
2間の距離を大きくすることにより、永久電流スイッチ
2の作動により生ずる超電導コイル1での常電導部分の
発生を減少させることは可能である。
In this case, by increasing the volume of the cryogenic chamber 3, increasing the amount of refrigerant, and increasing the distance between the superconducting coil 1 and the persistent current switch 2 in the cryogenic chamber 3, the problem caused by the operation of the persistent current switch 2. It is possible to reduce the occurrence of normally conducting parts in the superconducting coil 1.

しかし、この方法では極低温槽3の大型化に伴って超電
導エネルギー貯蔵装置全体が大型化し、且つ冷媒の使用
量が増加するので運転コストの面でも不利である。
However, this method is disadvantageous in terms of operating costs because as the cryogenic chamber 3 becomes larger, the entire superconducting energy storage device becomes larger and the amount of refrigerant used increases.

本発明は、前述したような超電導エネルギー貯蔵装置の
現状に漏みてなされたものであり、その目的は超電導コ
イルにおける常電導部分の発生を、簡単な構造によって
防止し、貯蔵エネルギーの横失による放出量を大幅に減
少させて、高効率運転が行なわれ冷媒の気化による消耗
を抑えて、全体が小型化されると共に運転コストを減少
させることが可能な超電導エネルギー貯蔵装置を提供す
ることにある。
The present invention has been made in view of the current state of superconducting energy storage devices as described above, and its purpose is to prevent the generation of normal conducting portions in superconducting coils with a simple structure, and to prevent the release of stored energy due to sideways loss. To provide a superconducting energy storage device which can greatly reduce the amount of refrigerant, perform highly efficient operation, suppress consumption due to vaporization of refrigerant, downsize the whole, and reduce operating costs.

〔問題点を解決するための手段〕[Means for solving problems]

前述の問題点を解決するために、本発明では超電導コイ
ルと、この超電導コイルと閉回路を形成可能に前記超電
導コイルに接続される永久電流スイッチと、前記超電導
コイルと前記永久電流スイッチが収容され、前記閉回路
に超i!導状態を設定する極低温槽とを有する超電導エ
ネルギー貯蔵装置において、前記極低温槽が前記超電導
コイルを収納する第1の極低温槽と、前記永久電流スイ
ッチを収納する第2の極低温槽とに分離された構成とな
っている。
In order to solve the above-mentioned problems, the present invention includes a superconducting coil, a persistent current switch connected to the superconducting coil so as to form a closed circuit with the superconducting coil, and a persistent current switch that accommodates the superconducting coil and the persistent current switch. , the closed circuit has super i! A superconducting energy storage device having a cryogenic chamber for setting a conducting state, the cryogenic chamber comprising a first cryogenic chamber housing the superconducting coil, and a second cryogenic chamber housing the persistent current switch. It has a separate structure.

〔作 用〕[For production]

本発明によると、超電導コイルは第1の極低温槽に収納
され、永久電流スイッチば第2の極低温槽に分離して収
納されている。
According to the present invention, the superconducting coil is housed in the first cryogenic chamber, and the persistent current switch is housed separately in the second cryogenic bath.

このように、超電導コイルと永久電流スイッチとが、互
いに熱的に分離されてそれぞれ第1及び第2の極低温槽
に収納されているので、永久電流スイッチの作動によっ
て第2の極低温槽内の永久電流スイッチの近傍の冷媒温
度が局部的に上昇しても、第1の極低温槽内の冷媒が温
度変化を受けることがない。
In this way, the superconducting coil and the persistent current switch are thermally separated from each other and housed in the first and second cryogenic chambers. Even if the temperature of the refrigerant in the vicinity of the persistent current switch increases locally, the refrigerant in the first cryogenic chamber does not undergo a temperature change.

従って、超電導コイルに常電導部分を発生させる主要な
原因である、永久電流スイッチの動作時における永久電
流スイッチ近傍の冷媒温度の局部的な上昇による、超電
導コイル近傍の冷媒の温度ゆらぎが防止される。
Therefore, the temperature fluctuation of the refrigerant near the superconducting coil due to the local increase in the refrigerant temperature near the persistent current switch during operation of the persistent current switch, which is the main cause of generating normal conductive parts in the superconducting coil, is prevented. .

このために、超電導コイルにおける常電導部分の発生が
大幅に減少されるので、貯蔵エネルギーの保護抵抗への
放出及び冷媒の気化が少ない安定した高効率運転が行な
われる。
For this reason, the occurrence of normally conducting portions in the superconducting coil is greatly reduced, resulting in stable and highly efficient operation with less release of stored energy to the protective resistance and less vaporization of the refrigerant.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図を用いて詳細に説明する
Embodiments of the present invention will be described in detail below with reference to FIG.

ここで、第1図は本発明の実施例の構成を示す回路図で
あり、第2図と同一部分には同一符号が付されている。
Here, FIG. 1 is a circuit diagram showing the configuration of an embodiment of the present invention, and the same parts as in FIG. 2 are given the same symbols.

第1図に示すように、本発明の実施例においては、極低
温槽が第1の極低温槽1)と第2の極低温槽9とに分離
され、第1の極低温槽ll内に超電導コイル1が配設さ
れ、第2の極低温槽9内に永久電流スイッチ8が配設さ
れている。
As shown in FIG. 1, in the embodiment of the present invention, the cryogenic chamber is separated into a first cryogenic chamber 1) and a second cryogenic chamber 9. A superconducting coil 1 is disposed, and a persistent current switch 8 is disposed within a second cryogenic chamber 9.

そして、超電導コイル1の両端と永久電流スイッチ8の
端子間が、それぞれ接続端子10a、10bによって熱
的に絶縁された状態で、互いに接続されている。
Both ends of the superconducting coil 1 and the terminals of the persistent current switch 8 are connected to each other while being thermally insulated by connection terminals 10a and 10b, respectively.

その他の部分の構成は、すでに第2図を用いて説明した
従来の超電導エネルギー貯蔵装置と同一なので、重複説
明は省略する。
The configuration of other parts is the same as that of the conventional superconducting energy storage device already explained using FIG. 2, so redundant explanation will be omitted.

このような構成の本発明の実施例の動作を、次に説明す
る。
The operation of the embodiment of the present invention having such a configuration will be described next.

本発明の実施例においては、電気的エネルギーを超電導
コイル1によって貯蔵するには、先ず第1の極低温槽1
)内で超電導コイル1を超電導状態に設定し、第2の極
低温槽9内で永久電流スイッチ8を超電導温度下に保持
する。
In an embodiment of the invention, in order to store electrical energy by the superconducting coil 1, first the first cryostat 1 is stored.
), the superconducting coil 1 is set to a superconducting state, and the persistent current switch 8 is maintained at superconducting temperature in the second cryogenic chamber 9.

次いで、変換器5を順変換器として作動させて交流電力
系統母線12の交流電流を直流電流に変換し、この直流
電流で超電導コイルlを励磁して最大許容電流値に達す
るまで超電導コイルlに電流を供給する。
Next, the converter 5 is operated as a forward converter to convert the alternating current of the AC power system bus 12 into a direct current, and this direct current excites the superconducting coil l until the maximum allowable current value is reached. Supply current.

この状態で永久電流スイッチ8をON動作させると、超
電導コイル1.接続端子10B、永久電流スイッチ8及
び接続端子10bで形成される閉回路内を永久電流が環
流し、電気的エネルギーが貯蔵される。
When the persistent current switch 8 is turned ON in this state, the superconducting coil 1. A persistent current circulates in a closed circuit formed by the connection terminal 10B, the persistent current switch 8, and the connection terminal 10b, and electrical energy is stored.

このようにして、前述の閉回路に貯蔵された電気的エネ
ルギーを交流電力系統母!12に取り出すには、変換器
5を逆変換器として作動させ、永久電流スイッチ8をO
FFとすると、超電導コイル1に生じる電圧が変換器5
で変換され、交流電力系統母線12に電気的エネルギー
が取り出される。
In this way, the electrical energy stored in the aforementioned closed circuit is transferred to the AC power system mother! 12, the converter 5 is operated as an inverse converter and the persistent current switch 8 is set to O.
FF, the voltage generated in the superconducting coil 1 is the voltage generated in the converter 5.
The electrical energy is converted into AC power and extracted to the AC power system bus 12.

本発明の実施例では、仮に永久電流スイッチ8の作動に
よって、第2の極低温槽9の永久電流スイッチ8近傍の
冷媒温度が上昇しても、第2の極低温槽9と分離して配
設されている第1の極低温槽1)内の冷媒温度にゆらぎ
が生じることはなく、超電導コイル1の一部を超電導が
こわれて常電導部分が発生することがない。
In the embodiment of the present invention, even if the temperature of the refrigerant near the persistent current switch 8 of the second cryogenic chamber 9 rises due to the operation of the persistent current switch 8, the second cryogenic chamber 9 is arranged separately from the second cryogenic chamber 9. There is no fluctuation in the temperature of the refrigerant in the first cryogenic chamber 1) provided, and there is no possibility that the superconductivity of a part of the superconducting coil 1 is broken and a normal conducting part is generated.

このようにして、本発明の実施例によると永久電流スイ
ッチ8の動作によって、超電導コイル1の一部で超電導
がこわれて常電導部分が発生することを防止することが
出来る。
In this way, according to the embodiment of the present invention, the operation of the persistent current switch 8 can prevent the superconductivity from being broken in a part of the superconducting coil 1 and creating a normal conducting part.

前述したように、この種の超電導エネルギー貯蔵装置で
は、超電導コイルlの一部で常伝導部分が発生するクエ
ンチ現象の原因の多くは、永久電流スイッチ8の動作に
よる冷媒の温度上昇にあった。
As mentioned above, in this type of superconducting energy storage device, the quench phenomenon in which a normal conduction portion occurs in a part of the superconducting coil l is mostly caused by the temperature rise of the refrigerant due to the operation of the persistent current switch 8.

このため、本発明の実施例によると超電導コイル1での
部分的な常電導部分の発生が大幅に減り、高効率で安全
な運転を行なうことが出来る。
Therefore, according to the embodiment of the present invention, the occurrence of partial normal conductive portions in the superconducting coil 1 is greatly reduced, and highly efficient and safe operation can be performed.

前述の永久電流スイッチ8の動作以外の原因で、仮に超
電導コイルlの一部に常電導部分が発生し、常電導転移
が発生した場合、永久電流スイッチ8をすばや<OFF
とし、スイッチ7をONにしてエネルギーを保護抵抗6
に吸収する。
If a normal conduction portion is generated in a part of the superconducting coil l due to a cause other than the operation of the persistent current switch 8 described above, and a normal conduction transition occurs, the persistent current switch 8 can be quickly turned OFF.
Then, turn on the switch 7 to transfer the energy to the protective resistor 6.
absorb into.

構造的に分離された第1及び第2の極低温槽1)゜9は
、それぞれ超電導コイル1及び永久電流スイッチ8を超
電導状態とすればよいので、形状の設計上で自由度が増
し、作動効率がよくそれぞれ超電導コイル1及び永久電
流スイッチ8に対応した小型形状のものを作成すること
が出来る。
The first and second cryogenic chambers 1)゜9, which are structurally separated, need only have the superconducting coil 1 and the persistent current switch 8 in the superconducting state, respectively, which increases the degree of freedom in design of the shape and the operation. It is possible to create a small-sized structure that is efficient and corresponds to the superconducting coil 1 and the persistent current switch 8, respectively.

第1図においては、永久電流スイッチとして通常の接点
が機械的0N−OFF動作を行なう構造のものを使用し
たが、永久電流スイッチとして温度制御により超電導ま
たは常電導に状態転移する無接点スイッチを用いること
も出来る。
In Figure 1, a normal persistent current switch with a structure in which the contacts perform mechanical ON-OFF operation is used, but a non-contact switch that changes state to superconductivity or normal conductivity by temperature control is used as the persistent current switch. You can also do that.

この場合には、永久電流スイッチに機械的可動部分がな
く、作動時に永久電流スイッチ近傍の冷媒の温度が上昇
することがないので、第2の極低温槽をさらに小型化す
ることが可能となり、温度管理の応答性も向上させるこ
とが出来る。
In this case, the persistent current switch has no mechanically moving parts, and the temperature of the refrigerant near the persistent current switch does not rise during operation, so it is possible to further downsize the second cryogenic chamber. The responsiveness of temperature management can also be improved.

この際、無接点スイッチとして使用される素材としては
、金属の他にセラミックスを使用することも可能で、セ
ラミックスを使用すると絶縁性がよく運転上の安全性が
向上する。
In this case, as the material used for the non-contact switch, it is also possible to use ceramics in addition to metals, and the use of ceramics has good insulation properties and improves operational safety.

また、セラミックスは超電導温度が高いために、冷媒を
液体窒素にすることが可能で、設備費及び維持費を低減
することが出来る。
Furthermore, since ceramics have a high superconducting temperature, it is possible to use liquid nitrogen as the refrigerant, which reduces equipment costs and maintenance costs.

このように、本発明の実施例によると、超電導コイル1
における常i!導転移の発生を大幅に減少させ、超電導
コイル1の絶縁破壊と冷媒の気化による消耗を防ぎ、エ
ネルギー損失のない高効率で安全な運転を行なうことが
出来る。
Thus, according to the embodiment of the present invention, the superconducting coil 1
The usual i! The occurrence of conductive transitions is greatly reduced, dielectric breakdown of the superconducting coil 1 and consumption due to vaporization of the refrigerant are prevented, and highly efficient and safe operation without energy loss can be performed.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によると超電導コイ
ルの常電導転移を大幅に減少し、エネルギー損失の少な
い高効率運転を行なうことが可能で、全体が小型化され
製造コスト及び運転維持コストも低減可能な超電導エネ
ルギー貯蔵装置を提供することが出来る。
As explained in detail above, according to the present invention, the normal conduction transition of the superconducting coil can be significantly reduced, and highly efficient operation with less energy loss can be performed. A superconducting energy storage device that can reduce energy consumption can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成を示す回路図、第2図は
従来使用されている超電導エネルギー貯蔵装置の構成を
示す回路図である。 1・・・超電導コイル、4a、4b・・・接続端子、5
・・・変換器、6・・・保護抵抗、7・・・スイッチ、
8・・・永久電流スイッチ、9・・・第2の極低温槽、
10a、 10b・・・接続端子、1)・・・第1の極
低温槽、12・・・交流電力系統母線。
FIG. 1 is a circuit diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is a circuit diagram showing the configuration of a conventionally used superconducting energy storage device. 1... Superconducting coil, 4a, 4b... Connection terminal, 5
...Converter, 6...Protection resistor, 7...Switch,
8... Persistent current switch, 9... Second cryogenic chamber,
10a, 10b... Connection terminal, 1)... First cryogenic chamber, 12... AC power system bus bar.

Claims (2)

【特許請求の範囲】[Claims] (1)超電導コイルと、この超電導コイルと閉回路を形
成可能に前記超電導コイルに接続される永久電流スイッ
チと、前記超電導コイルと前記永久電流スイッチが収容
され、前記閉回路に超電導状態を設定する極低温槽とを
有する超電導エネルギー貯蔵装置において、前記極低温
槽が前記超電導コイルを収納する第1の極低温槽と、前
記永久電流スイッチを収納する第2の極低温槽とに分離
されていることを特徴とする超電導エネルギー貯蔵装置
(1) A superconducting coil, a persistent current switch connected to the superconducting coil so as to be able to form a closed circuit with the superconducting coil, the superconducting coil and the persistent current switch being housed, and setting a superconducting state in the closed circuit. In a superconducting energy storage device having a cryogenic chamber, the cryogenic chamber is separated into a first cryogenic chamber housing the superconducting coil and a second cryogenic chamber housing the persistent current switch. A superconducting energy storage device characterized by:
(2)永久電流スイッチが、温度制御により超電導また
は常電導に状態転移する無接点スイッチであることを特
徴とする特許請求の範囲第(1)項記載の超電導エネル
ギー貯蔵装置。
(2) The superconducting energy storage device according to claim (1), wherein the persistent current switch is a non-contact switch whose state changes to superconductivity or normal conductivity through temperature control.
JP62282245A 1987-11-10 1987-11-10 Superconducting energy storage device Expired - Lifetime JPH0667141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62282245A JPH0667141B2 (en) 1987-11-10 1987-11-10 Superconducting energy storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62282245A JPH0667141B2 (en) 1987-11-10 1987-11-10 Superconducting energy storage device

Publications (2)

Publication Number Publication Date
JPH01126140A true JPH01126140A (en) 1989-05-18
JPH0667141B2 JPH0667141B2 (en) 1994-08-24

Family

ID=17649942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62282245A Expired - Lifetime JPH0667141B2 (en) 1987-11-10 1987-11-10 Superconducting energy storage device

Country Status (1)

Country Link
JP (1) JPH0667141B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962158A (en) * 1987-02-25 1990-10-09 Showa Denko Kabushiki Kaisha Radical polymerizable composition containing a compound having pi-electron conjugated structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283186A (en) * 2009-06-05 2010-12-16 Hitachi Ltd Refrigerator-cooled superconducting magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515207A (en) * 1978-07-19 1980-02-02 Toshiba Corp Ultra conduction device
JPS63277435A (en) * 1987-05-09 1988-11-15 Mitsubishi Electric Corp Superconductive electric power storage system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515207A (en) * 1978-07-19 1980-02-02 Toshiba Corp Ultra conduction device
JPS63277435A (en) * 1987-05-09 1988-11-15 Mitsubishi Electric Corp Superconductive electric power storage system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962158A (en) * 1987-02-25 1990-10-09 Showa Denko Kabushiki Kaisha Radical polymerizable composition containing a compound having pi-electron conjugated structure

Also Published As

Publication number Publication date
JPH0667141B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
Al'tov Stabilization of superconducting magnetic systems
JP4295189B2 (en) Superconducting resistance type current limiter
EP0470762B1 (en) Superconductive switch
GB1163027A (en) An Electrical current-limiting Arrangement
Mcfee Applications of superconductivity to the generation and distribution of electric power
US3800256A (en) Energy storage and switching with superconductors
US4486800A (en) Thermal method for making a fast transition of a superconducting winding from the superconducting into the normal-conducting state, and apparatus for carrying out the method
US6897749B2 (en) Magnetic energy storage device
JPH10285792A (en) Current limiter
US3479569A (en) Method and apparatus for releasing electric energy
JPH01126140A (en) Superconductive energy storage apparatus
JPH10189328A (en) Superconducting magnet
Mito et al. Development of UPS-SMES as a protection from momentary voltage drop
US3176195A (en) Superconducting solenoid
US3613006A (en) Stable superconducting magnet
CN110428949B (en) Magnetic circuit coupling-based active energy release device and method for non-contact superconducting magnet
EP3553839B1 (en) Superconducting fault current limiter
JP2004111581A (en) Superconducting magnet unit
Homer et al. A thermally switched flux pump
JPH10107333A (en) Persistent-current switching device for refrigerator cooled type superoconducting magnet
JP2778040B2 (en) Superconducting transformer
SU1130148A1 (en) Powerful cryotron
JPH01248931A (en) Current limiting device
JP3092829B2 (en) Superconducting coil device
JPS62244110A (en) Superconducting coil device