JPH01255436A - Semiconductor circuit breaker - Google Patents

Semiconductor circuit breaker

Info

Publication number
JPH01255436A
JPH01255436A JP63082026A JP8202688A JPH01255436A JP H01255436 A JPH01255436 A JP H01255436A JP 63082026 A JP63082026 A JP 63082026A JP 8202688 A JP8202688 A JP 8202688A JP H01255436 A JPH01255436 A JP H01255436A
Authority
JP
Japan
Prior art keywords
superconducting
semiconductor element
circuit breaker
series
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63082026A
Other languages
Japanese (ja)
Inventor
Kazuaki Koyama
和昭 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63082026A priority Critical patent/JPH01255436A/en
Publication of JPH01255436A publication Critical patent/JPH01255436A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/023Current limitation using superconducting elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To effectively protect a power semiconductor element with a simple structure by connecting a superconducting element having critical value control means in series with a semiconductor element. CONSTITUTION:A high temperature superconducting element 3 is connected in series with a semiconductor element 1, and a control coil for controlling the critical value of the element 3 by applying a magnetic field is provided. The element 3 is cooled by liquid nitrogen to become a superconducting state at a normal time, and conducted without loss. When an overcurrent is generated due to a short-circuit of a load, it is detected by a detector, not shown, and the control 4 is energized. Thus, the magnetic field given by the element 3 exceeds the superconducting critical magnetic field intensity of the element 3 to destroy the superconducting state, thereby generating a current limiting operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この究明は、電力供給回路のオン・オフに使用される半
導体遮断器の過電流保護に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This research relates to overcurrent protection of a semiconductor circuit breaker used to turn on and off a power supply circuit.

〔従来の技術〕[Conventional technology]

第4図は従来の半導体遮断器の構成を示すもので、(1
)は例えばGTOと称されるゲートターンオフサイリス
タあるいはシリコン制御整流素子のような電力用半導体
素子であり互いに逆方向に向けて並列状態に接続されて
いる。(2)は高速限流ヒユーズであり上記電力用半導
体素子(1)に直列に接続されている。A、Bは端子で
、それぞれこの電力供給回路のWt源あるいは負荷に接
続される。なお、第4図においては単相の例を示してい
るが、3相の場合は、第4図に示すものを3個並べて使
用する0 次に動作について説明する。正常な状態においては、第
4(2)において互いに逆方向に向けて並列般続された
電力用半導体素子(1)を通して、電力が電源側から負
荷側へ供給される。この時、例えば負荷側で短絡事故が
生じた場合、非常に大きな電流が上記電力用半導体素子
(1)を流れることになるが、電力用半導体素子(1)
は一般に熱容鎗、熱時定数が小さく、このため回路の開
閉機能を消失してしまうという問題がある。この保護の
目的で設けられているのが高速限流ヒユーズ(2)であ
り、回路に短絡事故が生じて非常に大きな°直流が電力
用半導体素子(1)を流れる前に短時間で限流・遮断を
行い電力用半導体素子(1)を保護する。
Figure 4 shows the configuration of a conventional semiconductor circuit breaker.
) are power semiconductor elements such as gate turn-off thyristors or silicon-controlled rectifiers called GTOs, and are connected in parallel in opposite directions. (2) is a high speed current limiting fuse, which is connected in series to the power semiconductor element (1). A and B are terminals connected to the Wt source or load of this power supply circuit, respectively. Although FIG. 4 shows a single-phase example, in the case of three-phase, three of the devices shown in FIG. 4 are used in parallel.The operation will now be described. In a normal state, power is supplied from the power supply side to the load side through the power semiconductor elements (1) connected in parallel in opposite directions in the fourth (2). At this time, for example, if a short circuit accident occurs on the load side, a very large current will flow through the power semiconductor element (1).
Generally, the heat capacity and thermal time constant are small, so there is a problem that the circuit opening/closing function is lost. A high-speed current-limiting fuse (2) is provided for this purpose, and it quickly limits the current before a short-circuit occurs in the circuit and a very large DC current flows through the power semiconductor device (1). - Protect the power semiconductor element (1) by shutting off.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体遮断器は以上のように構成されているので
、高速限流ヒユーズ(2)が半導体素子(1)の法論動
作を行った場合、必ず高速限流ヒユーズ(2)を収り替
えねばならず、敗り替えのために停電が必四という問題
があった。また、高速限流ヒユーズ(2)の限流動作に
おいても、ヒユーズの溶fiまでの短時間ではあるが、
大きな直流が半導体素子(1)を流れるという問題があ
った。この発明は、上記のような問題点を解消するため
に成されたもので、短絡のような事故が生じて大電流が
流れようとしても確実に限流できると共に、保護動作後
も取り替えの不要な半導体遮断器を得ることを目的とす
る0 〔課題を解決するだめの手段〕 この発明に係わる半導体遮断器は、半導体素子に対して
直列に超電導素子を接続したものである。
Since the conventional semiconductor circuit breaker is configured as described above, when the high-speed current-limiting fuse (2) performs the legal operation of the semiconductor element (1), the high-speed current-limiting fuse (2) must be replaced. However, there was the problem that power outages were inevitable in order to replace the defeat. Also, in the current limiting operation of the high speed current limiting fuse (2), although it is a short time until the fuse melts,
There was a problem that a large direct current flows through the semiconductor element (1). This invention was made to solve the above-mentioned problems, and it can reliably limit the current even if a large current attempts to flow due to an accident such as a short circuit, and also eliminates the need for replacement even after the protective function is activated. [Means for Solving the Problem] A semiconductor circuit breaker according to the present invention has a superconducting element connected in series to a semiconductor element.

〔作用〕[Effect]

この開明に係わる半導体遮断器は、半導体素子に対して
直列に接続した超電動素子の超電導状態から常電導状態
への相変化を利用して、事故による過電流発生時には超
電動素子の超電導状態を破壊して抵抗を生じさせて限流
動作をさせ、事故点除去後は超電動素子の超電導状態を
回復させて給“亀を継続させるものである。
The semiconductor circuit breaker related to this invention utilizes the phase change of a superelectric element connected in series with a semiconductor element from a superconducting state to a normal conducting state, and changes the superconducting state of the superelectric element when an overcurrent occurs due to an accident. This destroys the superelectric element to create resistance and perform current-limiting operation, and after the point of failure is removed, the superconducting state of the superelectric element is restored to continue supplying electricity.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図において、(1)は上記従来例で説明したものと同様
の半導体素子、(3)は上記半導体素子(1)に直列に
接続された例えばイツトリウム系あるいはビスマス系の
酸化物セラミックからなる高温超電動素子、(4)は励
磁により上記超電導素子(3)K磁場を与えることによ
り上記超電動素子(3)の超VJt導臨界値を制御する
制御コイル、(5)は上記超電動素子(3)およびは制
御コイ/’(4)を収納し、図示しない液体窒素補給手
段からの補給を受けて内部に液体窒素を貯溜する保温夕
〈り、(6)は上記制御コイル(4)の端子で図示しな
い制御装置に接続されている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (1) is a semiconductor element similar to that explained in the above conventional example, and (3) is a high-temperature superstructure made of, for example, yttrium-based or bismuth-based oxide ceramic connected in series to the semiconductor element (1). An electric element (4) is a control coil that controls the super-VJt conduction critical value of the super-electric element (3) by applying a K magnetic field to the super-electric element (3) by excitation; ) and (6) are the terminals of the control coil (4), which house the control coil (4) and store liquid nitrogen inside after receiving supply from a liquid nitrogen supply means (not shown). is connected to a control device (not shown).

A、Bはそれぞれ電源、負荷に接続される端子である。A and B are terminals connected to a power source and a load, respectively.

第11¥1は1相分を示しておシ、3相回路の場合は上
記のものを3個使用することになる。
No. 11\1 indicates one phase, and in the case of a three-phase circuit, three of the above will be used.

次に動作について説明する。第1図において、正常時に
は超電動素子(3)は液体窒素によって超電導の臨界温
度以下に冷却されているため、超電導状態となっており
電源から供給される電力は超電動素子(3)でロスを生
じること無く半導体素子(1)を曲って負荷に供給され
る。もし、負荷側で短絡等の事故が生じて大きな電流が
流れようとした場合、図示しない主回路電流監視手段に
より主回路の異常が検知され、超電動素子(3) を超
電導状態から常7jl導状態への移行Iii′lj岬指
令が出力指令る。具体的には、端子(6)をdして制御
コイル(4)が励磁されこれによって超1tv動素子(
3)に与えられる@場が超゛ゼ4素子(3)の超電導臨
界磁界強度をこえ、この結果超″tイ動素子(3)の超
電導状態が破壊され抵抗が生じて限流作用を生じる。
Next, the operation will be explained. In Figure 1, under normal conditions, the superelectric element (3) is cooled by liquid nitrogen to below the critical temperature of superconductivity, so it is in a superconducting state and the power supplied from the power source is lost in the superelectric element (3). The semiconductor element (1) is bent and supplied to the load without causing any damage. If an accident such as a short circuit occurs on the load side and a large current attempts to flow, an abnormality in the main circuit is detected by the main circuit current monitoring means (not shown), and the superelectric element (3) is switched from the superconducting state to normal conduction. Transition to state Iii'lj Cape command output command. Specifically, the terminal (6) is d to excite the control coil (4), which causes the super 1TV dynamic element (
The @ field applied to 3) exceeds the superconducting critical magnetic field strength of the super 4 element (3), and as a result, the superconducting state of the super 4 element (3) is destroyed, resistance is generated, and current limiting action occurs. .

なお、超電動素子(3)の超゛イ導臨界は磁界の強度の
他、電流密度によっても影響される。超電導臨界両流密
度を越えた直流が流れて超電導状態が破壊された場合、
超電導素子+3)を流れる電流はほぼ一定の値となるの
で第3図のように上記の制御コイル(4)が無くても限
流機能を得ることは出来る。
The superconductive criticality of the superelectric element (3) is affected not only by the strength of the magnetic field but also by the current density. If a direct current exceeding the superconducting critical current density flows and the superconducting state is destroyed,
Since the current flowing through the superconducting element (+3) has a substantially constant value, the current limiting function can be obtained even without the control coil (4) as shown in FIG.

しかし、超114素子(3)の製作時に生じる部材寸法
のバラツキによってその限流開始直流の値にかなりのバ
ラツキが生じるので半導体素子<1)のようなものの保
護を行うためには、制御コイル(4)を用いて限流開始
電流をより精度よく制御することが望ましい。
However, due to variations in component dimensions that occur during the fabrication of the super 114 element (3), there will be considerable variation in the value of the current limiting starting DC. It is desirable to use 4) to control the current limiting start current more accurately.

なお、上記実施例では制御コイル(4)は図示しない他
の制御手段によって制御する例を示したが、第2図に示
すように主回路に対して直列に制御コイル(4)を接続
しても上記実施例と同等の効果を奏する。
In the above embodiment, the control coil (4) is controlled by another control means (not shown), but as shown in FIG. 2, the control coil (4) may be connected in series with the main circuit. Also, the same effect as the above embodiment is achieved.

また、この実施例では液体窒素冷却によって超爾導現象
を生じる超電導累子(3)の例を示したが、これよりも
高い臨界温度、例えば室温、を有する超電動素子(3)
であれば保温タンク(5)が不要になることは言うまで
もない。
In addition, although this example shows an example of a superconducting element (3) that produces a superconductive phenomenon by cooling with liquid nitrogen, a superelectric element (3) having a higher critical temperature, such as room temperature,
In that case, it goes without saying that the heat insulating tank (5) becomes unnecessary.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、半導体素子に対して臨
界値制御手段を有する超電導素子を直列に接続したので
、簡単な構成で過電流に対しても電力用半導体素子を確
実に保護することの出来る電力用半導体遮断器を得るこ
とができるという効果がある。
As described above, according to the present invention, since the superconducting element having a critical value control means is connected in series with the semiconductor element, the power semiconductor element can be reliably protected against overcurrent with a simple configuration. This has the effect that it is possible to obtain a power semiconductor circuit breaker that can perform.

また、以上のように更に池の発明によれば、半導体素子
に対して超電動素子を直列に接続したので、間琳な構成
で過電流に対しても電力用半導体素子を確実に保護する
ことの出来る電力用半導体遮断器を得ることができると
いう効果がある。
Furthermore, as described above, according to Ike's invention, since the superelectric element is connected in series with the semiconductor element, the power semiconductor element can be reliably protected against overcurrent with a simple configuration. This has the effect that it is possible to obtain a power semiconductor circuit breaker that can perform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による半導体遮断2gの構
成を示す回路図、第2図はこの発明の他の実施例による
半導体遮断器の構成を示す回路図、第3図はこの発明の
更に他の実施例を示す回路図、第4図は従来の半導体遮
断器の構成を示す回路図である。 図において、(1)は半導体素子、(3)は超電動素子
、(4)は制御コイルである。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a circuit diagram showing the configuration of a semiconductor circuit breaker 2g according to an embodiment of the invention, FIG. 2 is a circuit diagram showing the configuration of a semiconductor circuit breaker according to another embodiment of the invention, and FIG. FIG. 4 is a circuit diagram showing still another embodiment. FIG. 4 is a circuit diagram showing the configuration of a conventional semiconductor circuit breaker. In the figure, (1) is a semiconductor element, (3) is a superelectric element, and (4) is a control coil. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体素子と、この半導体素子に対して直列に接
続された臨界値制御手段を有する超電動素子とを少なく
とも備えた半導体遮断器。
(1) A semiconductor circuit breaker comprising at least a semiconductor element and a superelectric element having critical value control means connected in series to the semiconductor element.
(2)半導体素子と、この半導体素子に対して直列に接
続された超電導素子とを少なくとも備えた半導体遮断器
(2) A semiconductor circuit breaker including at least a semiconductor element and a superconducting element connected in series to the semiconductor element.
JP63082026A 1988-04-01 1988-04-01 Semiconductor circuit breaker Pending JPH01255436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63082026A JPH01255436A (en) 1988-04-01 1988-04-01 Semiconductor circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63082026A JPH01255436A (en) 1988-04-01 1988-04-01 Semiconductor circuit breaker

Publications (1)

Publication Number Publication Date
JPH01255436A true JPH01255436A (en) 1989-10-12

Family

ID=13763016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63082026A Pending JPH01255436A (en) 1988-04-01 1988-04-01 Semiconductor circuit breaker

Country Status (1)

Country Link
JP (1) JPH01255436A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050140A (en) * 2007-08-20 2009-03-05 Korea Electric Power Corp Hybrid superconducting current limiter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050140A (en) * 2007-08-20 2009-03-05 Korea Electric Power Corp Hybrid superconducting current limiter
JP4533433B2 (en) * 2007-08-20 2010-09-01 韓国電力公社 Hybrid superconducting fault current limiter

Similar Documents

Publication Publication Date Title
KR100505054B1 (en) Resistive type superconducting fault current limiter
JPS62138021A (en) Ac current limiter
US5532638A (en) Superconducting energy storage apparatus
JPS61114509A (en) Superconductive coil device
JPH0586052B2 (en)
JPH0429315B2 (en)
JPH01255436A (en) Semiconductor circuit breaker
JP3749512B2 (en) Power stable supply device
JPH01248931A (en) Current limiting device
JP3854036B2 (en) Superconducting current limiter and superconducting current limiting method using the same
JPS6086808A (en) Protective device for superconducting device
JPH01126133A (en) Short-circuit controlling superconductng apparatus
JP2875070B2 (en) Superconducting coil protection device
JPS62166503A (en) Protecting method for superconducting coil
GB2225164A (en) Current limiting device
Elmitwally New Hybrid Superconducting Fault Current Limiter for Primary Distribution Systems.
JPS5897806A (en) Superconductive magnet protection device
JP2001333537A (en) Power supply facility
JPH0199498A (en) Exciter of synchronous machine
JPH0513222A (en) Superconducting coil device
JPH01117233A (en) Protective method of superconductive transmission circuit
JPH02269413A (en) Current limiting device
JPH09233691A (en) Overcurrent protector
JPH0345163A (en) Dc power source device
JPS6369419A (en) Dc source