JPS6086808A - Protective device for superconducting device - Google Patents

Protective device for superconducting device

Info

Publication number
JPS6086808A
JPS6086808A JP58196452A JP19645283A JPS6086808A JP S6086808 A JPS6086808 A JP S6086808A JP 58196452 A JP58196452 A JP 58196452A JP 19645283 A JP19645283 A JP 19645283A JP S6086808 A JPS6086808 A JP S6086808A
Authority
JP
Japan
Prior art keywords
superconducting
superconducting coil
current switch
current
diode circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58196452A
Other languages
Japanese (ja)
Other versions
JPS6353682B2 (en
Inventor
Tadatoshi Yamada
山田 忠利
Shunji Yamamoto
俊二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58196452A priority Critical patent/JPS6086808A/en
Priority to DE19843490474 priority patent/DE3490474T/en
Priority to GB08513695A priority patent/GB2158309B/en
Priority to PCT/JP1984/000491 priority patent/WO1985001829A1/en
Priority to DE3490474A priority patent/DE3490474C2/de
Publication of JPS6086808A publication Critical patent/JPS6086808A/en
Publication of JPS6353682B2 publication Critical patent/JPS6353682B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/006Supplying energising or de-energising current; Flux pumps
    • H01F6/008Electric circuit arrangements for energising superconductive electromagnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/001Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for superconducting apparatus, e.g. coils, lines, machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To shorten the time constant of a transient phenomena of superconducting coil currents by connecting a diode circuit in parallel with a permanent current switch and mounting the diode circuit in a cryogenic region. CONSTITUTION:A permanent current switch 2 and a diode circuit 9 are connected in parallel with a superconducting coil 1. The coil 1 is excited by an excitation power supply 7, and the switch 2 consists of a permanent current switch superconductor 4, a heater 5 for heating said superconductor and a heat insulator for heat-insulating both from a refrigerant. The circuit 9 is mounted in a cryogenic region, and turn-on voltage vt2 reaches to several V. When the turn- off voltage vt2 of the circuit 9 is made larger than excitation voltage, the resistance of the circuit 9 reaches to infinity. Accordingly, the time constant of the excitation currents of the coil 1 is determined by the inductance of the coil 1 and the normal conductive resistance of the superconductor 4 for the switch 2, and can be reduced.

Description

【発明の詳細な説明】 発明の技術分野 この発明は超電導装置の保護装置、特に永久電流運転中
の超電導破壊から永久電流スイッチを保護する装置に関
するものである。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a protection device for a superconducting device, and more particularly to a device for protecting a persistent current switch from superconductor breakdown during persistent current operation.

従来技術 従来この種の超電導装置として第1図に示すものがあっ
た。1図において、lは超電導コイル、2は永久電流ス
イッチ、3は保護装置に当る保設抵抗、ダは永久電流ス
イッチ超電導体、jはヒータ。
BACKGROUND OF THE INVENTION Conventionally, there has been a superconducting device of this type as shown in FIG. In Figure 1, l is a superconducting coil, 2 is a persistent current switch, 3 is a storage resistor corresponding to a protection device, da is a persistent current switch superconductor, and j is a heater.

6は熱絶縁物、7は励磁電源、tはヒータ電源である。6 is a thermal insulator, 7 is an excitation power source, and t is a heater power source.

また、工8は励磁電源17の出力電流、■。oi、1は
超電導コイルlの励磁電流を示している。超電導コイル
lに対し永久電流1イツチコと保設抵抗3が並列接続さ
れており、超電導コイルlは励磁電源7により励磁され
るようになっている。また。
In addition, engineering 8 is the output current of the excitation power source 17, and ■. oi, 1 indicates the exciting current of the superconducting coil l. A persistent current 1 and a storage resistor 3 are connected in parallel to the superconducting coil 1, and the superconducting coil 1 is excited by an excitation power source 7. Also.

永久電流スイッチコは、永久電流スイッチ超電導体ダと
これt加熱するためのヒータjおよびこの両者を冷媒(
通常、液体ヘリウムが用いられる)から断熱するための
熱絶縁物6よりなっており、ヒータ!はヒータ電源tに
より加熱されるようになっている。超電導コイルlおよ
び永久電流スイッチ2が全体として冷媒により冷却され
るようになっていることはh5までもない。
A persistent current switch consists of a persistent current switch superconductor, a heater for heating it, and a refrigerant (
It consists of a thermal insulator 6 for insulating the heater from the heat (usually liquid helium is used). is heated by a heater power source t. It is not until h5 that the superconducting coil 1 and the persistent current switch 2 are entirely cooled by the refrigerant.

超電導コイルlを励磁する場合には、先ず、ヒータ5に
より永久電流スイッチ超電導体ダを加温し超電導破壊を
起こさせて常電導状態におく。この状態における超電導
装置の等両回路は第2図に示すものとなる。図中γPは
保護抵抗Jの抵抗値。
When the superconducting coil 1 is excited, first, the persistent current switch superconductor DA is heated by the heater 5 to cause superconductivity breakdown and bring it into a normal conducting state. The circuit of the superconducting device in this state is shown in FIG. In the figure, γP is the resistance value of the protective resistor J.

RNは永久電流スイッチ超電導体すの常電導状態におけ
る抵抗値、セしてLは超電導コイルlの自己インダクタ
ンスの値を示している。また、Tsは励磁電源7の出力
電流、IC0LJ、は超電導コイルlの励磁電流を示し
ている。このような状態で励磁電源7よりの出力電流工
sを一定速度で増加させてゆくと、励磁電源りの出力電
流工8と超電導コイルlの励磁電流ICoLJ、、は第
3図に示すように変化する。第3図中1opは超電導コ
イル/の運転電流ビ示す。このとき、励磁電流IcmL
J−の過渡現象を決定する時定数τは、超電導コイクl
の自己インダクタンスL、保襄抵抗γP、永久電流スイ
ッチ超電導体ダの常電導抵抗RNより としてめられ、また、超電導コイルlの励磁が定常状態
になったときの出カ電流工8と励磁′電流工ρ□LJ−
の差は。
RN indicates the resistance value of the persistent current switch superconductor in the normal conduction state, and L indicates the self-inductance value of the superconducting coil I. Further, Ts represents the output current of the excitation power source 7, and IC0LJ represents the excitation current of the superconducting coil l. When the output current s from the excitation power supply 7 is increased at a constant speed in this state, the output current 8 of the excitation power supply and the excitation current ICoLJ of the superconducting coil l become as shown in Fig. 3. Change. In FIG. 3, 1op indicates the operating current of the superconducting coil. At this time, the excitation current IcmL
The time constant τ that determines the transient phenomenon of J- is the superconducting coil l
It is determined from the self-inductance L, the protection resistance γP, and the normal conduction resistance RN of the persistent current switch superconductor da, and the output current 8 and the excitation current when the excitation of the superconducting coil l reaches a steady state. Engineering ρ□LJ-
The difference is.

で与えられ、このとき、右辺第7項は保護抵抗3に分流
している電流、第2項は永久電流スイッチ超電導体グに
分流している電流をそれぞれ表わしている。出力電流工
8が運転電流IOPに達したら、電流増Iaを止め1時
定数τよりも十分に長い時間おいてから、永久電流スイ
ッチコの加温用のヒータ5の電流を遮断する。永久電流
スイッチ超電導体ダは冷媒により冷却されてやがて超電
導状態に至る。この状態では、超電導コイル/に運転電
流Iopが流れており、超電導コイルlの両端が超電導
状態の永久電流スイッチ超電導体ダに短絡されている状
態となっている。従ってここで励磁電源7の出力電流を
減少させれば、超電導コイルlは運転電流Iopで永久
電流運転されることになる。
In this case, the seventh term on the right side represents the current being shunted to the protective resistor 3, and the second term represents the current being shunted to the persistent current switch superconductor 3. When the output current switch 8 reaches the operating current IOP, the current increase Ia is stopped, and after a time sufficiently longer than the time constant τ, the current of the heater 5 for warming the persistent current switch is cut off. The persistent current switch superconductor is cooled by a refrigerant and eventually reaches a superconducting state. In this state, an operating current Iop is flowing through the superconducting coil /, and both ends of the superconducting coil l are short-circuited to the persistent current switch superconductor da in a superconducting state. Therefore, if the output current of the excitation power source 7 is reduced here, the superconducting coil 1 will be operated with a persistent current at the operating current Iop.

また、この過程を逆にたどれば、超電導コイルlは消磁
されることになる。
Moreover, if this process is followed in reverse, the superconducting coil l will be demagnetized.

ところで、上記の超電導装置においては、超電導体ダは
熱絶縁物AKよって冷媒から熱的に絶縁状態になってい
るので冷却されにくい状態にあり、また、常電導抵抗値
RNを大にするために通常超電導体ダにクラッドされて
いる低抵抗の安定化鋼が超電導体ダからはとりのぞかれ
ていることなどから、超電導体lは超電導的に不安定で
あるので、超電導破壊時対して保護されていなければな
らない・たこで上記超電導装置においては、保lll装
置である保護抵抗3がその保護作用をするよ5忙なって
いる。そして、超電導体ダの超電導破壊時の許容通電電
流をhOとすると、保護抵抗値rpは。
By the way, in the above-mentioned superconducting device, the superconductor DA is thermally insulated from the refrigerant by the thermal insulator AK, so it is difficult to be cooled. Since the low-resistance stabilizing steel that is normally clad in the superconductor is removed from the superconductor, the superconductor is unstable in terms of superconductivity, so it is protected against superconductor breakdown. In the above-mentioned superconducting device, the protective resistor 3, which is a holding device, performs its protective function. If the allowable current at the time of superconducting breakdown of the superconductor is hO, then the protective resistance value rp is.

で決定されるが、通常、 lop > Loなので、γ
p << RN ’(ダ) であればよい。この関係を(1)式に適用すると、超電
導コイルlの励磁電源IcoAjの時定数は。
However, since lop > Lo, γ
It suffices if p <<RN' (da). Applying this relationship to equation (1), the time constant of the excitation power source IcoAj of the superconducting coil l is as follows.

τ−L/γP(5) となり、超電導体ダの常電導抵抗RNで決まる時定数(
L/RN )よりより十分に長くなる。また(2)式よ
り、励磁中に超電導体−ダに分流する電流に比べて保護
抵抗3に分流する電流が十分大となり励磁電源7の出力
電流工8と超電導コイルlの励磁電流ICoL1の間の
差が大となる。このような状況は消磁中でも同様である
τ−L/γP(5), and the time constant (
L/RN). In addition, from equation (2), the current shunted to the protective resistor 3 is sufficiently large compared to the current shunted to the superconductor-da during excitation, so that the current shunted to the protective resistor 3 is sufficiently large between the output current line 8 of the excitation power supply 7 and the exciting current ICoL1 of the superconducting coil l. The difference becomes large. This situation is the same even during demagnetization.

以上に説明から容易に理解されるように、従来方式によ
る超電導装置の永久電流スイッチの保護装置においては
、超電導コイルの励磁電流の過渡現象の時定数が長くな
り、超電導コイルの励磁に要する時間が増加すること、
また、励磁電源の出力電流と超電導コイルの励磁電流の
間の差が大となり、超電導コイル電流の制御がやりにく
々なることなどの問題があった。
As can be easily understood from the above explanation, in conventional protection devices for persistent current switches in superconducting equipment, the time constant of the transient phenomenon of the excitation current of the superconducting coil becomes long, and the time required to excite the superconducting coil increases. to increase,
Further, there is a problem that the difference between the output current of the excitation power source and the excitation current of the superconducting coil becomes large, making it difficult to control the superconducting coil current.

発明の概要 この発明は、上記した従来方式による保護装置の問題点
を解決する新規な方式による保護装置を提供するもので
ある。すなわち、この発明によれば、永久電流スイッチ
に従来の保護抵抗に代えてダイオード回路を並列接続し
、このダイオード回路を極低温領域に設置することによ
り、永久電流スイッチの超電導破壊による損傷ン防止す
ると共に、超電導コイルの励磁電流の過渡現象の時定数
を短かくできるので超電導コイルの励磁に要する時間を
減少せしめることができ、更に、励磁電源の出力電流と
超電導コイルの励磁電流間の差も小さくできるので制御
の容易さも確保できるものである。
SUMMARY OF THE INVENTION The present invention provides a novel protection device that solves the problems of the conventional protection devices described above. That is, according to the present invention, a diode circuit is connected in parallel to the persistent current switch instead of a conventional protective resistor, and this diode circuit is installed in an extremely low temperature region, thereby preventing damage to the persistent current switch due to superconducting breakdown. At the same time, the time constant of the transient phenomenon of the excitation current of the superconducting coil can be shortened, so the time required to excite the superconducting coil can be reduced, and furthermore, the difference between the output current of the excitation power supply and the excitation current of the superconducting coil is also small. Therefore, ease of control can be ensured.

発明の実施例 以下、この発F!Aを実施例により詳述する。第ダ図は
、この発明による保護装置?用いた超電導装置の回路図
であり、これは、第1図に示した従来装置の保護抵抗3
に代えてダイオード回路q′%:永久電流スイッチコに
並列接続したものである。その他の部分は第1図と同じ
である。このダイオード回路9は図示のように2個のダ
イオードDが逆並列対をなしており、また超電導コイル
l、永久電流スイッチコと共に極低温域に設置されてい
る。
Examples of the invention are as follows: A will be explained in detail with examples. Is the protection device according to this invention shown in Figure 1? This is a circuit diagram of the superconducting device used, which shows the protective resistor 3 of the conventional device shown in FIG.
Instead, a diode circuit q'% is connected in parallel to the persistent current switch. Other parts are the same as in FIG. As shown in the figure, this diode circuit 9 has two diodes D forming an antiparallel pair, and is installed in an extremely low temperature region together with a superconducting coil I and a persistent current switch.

これらダイオードの働きを理解しやすくするために、ま
ずダイオードの特性につき説明すると。
To make it easier to understand how these diodes work, let's first explain the characteristics of diodes.

ダイオードの常温における電流電圧特性は第S図に示す
とおりである。ターンオンする順方向電圧であるターン
オン電圧vtlは通常lv以下である。
The current-voltage characteristics of the diode at room temperature are as shown in Figure S. The turn-on voltage vtl, which is the forward voltage for turning on, is usually less than lv.

超電導コイルlの励磁電圧(又は消磁電圧) Veは/
V以上になる場合が多い。従って、第ダ図のように接続
したダイオード回路9を常温で使用すると、励磁電圧V
eによりターンオンしてしまい超電導コイルlの励磁が
できなくなる。ところが。
The excitation voltage (or demagnetization voltage) Ve of superconducting coil l is /
It is often more than V. Therefore, when the diode circuit 9 connected as shown in Fig. DA is used at room temperature, the excitation voltage V
It turns on due to e, and the superconducting coil l cannot be excited. However.

ダイオードを極低温に冷却すると、その電流電圧特性が
第6図に示すように変化する。すなわち。
When a diode is cooled to an extremely low temperature, its current-voltage characteristics change as shown in FIG. Namely.

極低温におけるダイオードのターンオン電圧vtJは数
Vにもなる。例えば、tooh用のダイオードではター
ンオン電圧vtコが約ダVを示した。そしてダイオード
の順方向電圧がVt、J’lk越えると。
The turn-on voltage vtJ of a diode at extremely low temperatures can be as high as several volts. For example, a diode for tooh has a turn-on voltage VT of about 2 V. And when the forward voltage of the diode exceeds Vt, J'lk.

ダイオード電流が流れ始め、電流増加につれて順方向電
圧降下は小さくなることを示している。このようなダイ
オードを逆並列対処したときの電流電圧特性は第7図の
如くなる。これらの特性から明らかなように、超電導コ
イルlの励磁電圧’Veよりダイオード回路tのター/
オフ電圧vt(この場合はV t=V tJ )を大き
くすれば、すなわちvt > We (A) の条件を満足するようにしておけば、超電導コイルlの
励磁電流工8の方向に無関係にダイオード回路9の電気
抵抗ははy無限大である。従って。
The diode current begins to flow, and as the current increases, the forward voltage drop becomes smaller. The current-voltage characteristics when such diodes are arranged in antiparallel are as shown in FIG. As is clear from these characteristics, the excitation voltage 'Ve of the superconducting coil l causes the diode circuit t to
If the off-voltage vt (in this case, V t = V tJ ) is increased, that is, if the condition of vt > We (A) is satisfied, the diode can be set regardless of the direction of the exciting current wire 8 of the superconducting coil l. The electrical resistance of the circuit 9 is y infinity. Therefore.

超電導コイルlの励磁電流工8の過渡現象の時定数τは
超電導コイルlのインダクタンスLと永久電流スイッチ
−〇超電導体ダ常電導抵抗RNのみで決定されることに
なり τ = L / RN (?) となる。この値は、従来方式の保護装置における時定数
(式(4=1 、 (j)参照)に比べて十分に小さく
なっている。
The time constant τ of the transient phenomenon of the exciting current circuit 8 of the superconducting coil l is determined only by the inductance L of the superconducting coil l and the persistent current switch −〇 superconductor da normal conducting resistance RN, so τ = L / RN (? ) becomes. This value is sufficiently smaller than the time constant (see formula (4=1, (j)) in the conventional protection device.

ダイオード回路tのターンオン電圧Vtは数■あるので
超電導コイルlの励磁には一般に十分であるが、励磁電
圧Veを更に高くすることが望まれる場合には、ダイオ
ードD’Y複数個直列接続したダイオード群を逆並列接
続してダイオード回路9を構成し、等制約にターンオン
電圧を高めてやればよい。
Since the turn-on voltage Vt of the diode circuit t is several times, it is generally sufficient to excite the superconducting coil l, but if it is desired to further increase the excitation voltage Ve, a diode D'Y connected in series can be used. The diode circuit 9 may be constructed by connecting the groups in antiparallel, and the turn-on voltage may be increased with equal constraints.

また、超電導コイルlの励磁が定常状態になった時の励
磁電源7の出力電流I8と超電導コイル/の励磁電流I
coLfの差は、((2)式でγpY無限大にすればめ
られ、 となる。この値は保護抵抗を使用した従来方式による保
護装置における電流差に比べて十分に小さくので1式(
コ) 、 (#)参照)、超電導コイル電流の制御は容
易となる。
In addition, when the excitation of the superconducting coil l reaches a steady state, the output current I8 of the excitation power source 7 and the excitation current I of the superconducting coil /
The difference in coLf can be determined by setting γpY to infinity in equation (2), and becomes as follows.This value is sufficiently small compared to the current difference in a conventional protection device using a protection resistor, so the equation 1 (
(see ), superconducting coil current can be easily controlled.

また、保護機能についてみると、永久電流ス、イツチコ
に超電導破壊が生じた場合でも vi < 1.P@RN (?) の条件が満足されるように、ダイオード回路9のターン
オン電圧VtV選んでやれば永久電流スイッチコの損傷
は防止される。すなわち、永久電流スイッチコに超電導
破壊が生ずるとその電圧Iop・RNがダイオード回路
9のターンオン電圧Vt+Z−超え、ダイオード回路り
がターンオンされるので永久電流スイッチ2を流れてい
る電流はダイオード回路9にバイパスさることになり、
永久電流スイッチコの損傷は防止される。このとき、超
電導コイル電流の減衰時間が十分長いような場合でもv
t≦ Lo @ RN (/17) の条件を満すよ5にしておけば、永久電流スイッチコの
損傷は生じない。
Regarding the protection function, even if superconducting breakdown occurs in the persistent current, vi < 1. If the turn-on voltage VtV of the diode circuit 9 is selected so that the condition P@RN (?) is satisfied, damage to the persistent current switch can be prevented. That is, when superconducting breakdown occurs in the persistent current switch 2, the voltage Iop·RN exceeds the turn-on voltage Vt+Z- of the diode circuit 9, and the diode circuit is turned on, so the current flowing through the persistent current switch 2 flows into the diode circuit 9. It will be bypassed,
Damage to the persistent current switch is prevented. At this time, even if the decay time of the superconducting coil current is sufficiently long, v
If the condition of t≦Lo @ RN (/17) is satisfied and it is set to 5, no damage will occur to the persistent current switch.

なお、上記実施例では、ダイオード回路9はダイオード
l1l−逆並列に接続したものを用いてもるが、超電導
コイルlの電流方向が常に一方向に決められている場合
には、ダイオード回路9は逆並列対のダイオードを用い
る必要がないことは勿論で、その場合には、1つのダイ
オードを超電導コイル電流に対して順方向接続すれば、
つまり超電導コイルlの励磁時の陽極端子側にそのダイ
オードのカソード側を、陰極端子側にアノード側を接続
すればよい。
In the above embodiment, the diode circuit 9 uses a diode l1l connected in antiparallel, but if the current direction of the superconducting coil l is always determined to be one direction, the diode circuit 9 Of course, it is not necessary to use an anti-parallel pair of diodes; in that case, if one diode is connected forward to the superconducting coil current,
In other words, the cathode side of the diode may be connected to the anode terminal side of the superconducting coil l when it is excited, and the anode side thereof may be connected to the cathode terminal side.

発明の効果 以上、詳述したように、この発明によれば、永久電流ス
イッチにダイオード回路を並列接続し、ダイオード回路
のターンオン電圧を超電導コイルの励磁電圧よりも高く
選定しているので、超電導コイル電流の過渡現象の時定
数を短かくでき、また超電導コイルの励磁に要する時間
を減少せしめることができるものであり、更に、励磁電
源の出力電流と超電導コイルの励磁電流の間の差を小さ
くできるので、超電導コイル電流の制御の容易性を確保
できるものであり、保護機能については。
Effects of the Invention As detailed above, according to the present invention, a diode circuit is connected in parallel to the persistent current switch, and the turn-on voltage of the diode circuit is selected to be higher than the excitation voltage of the superconducting coil. It is possible to shorten the time constant of current transient phenomena, reduce the time required to excite the superconducting coil, and further reduce the difference between the output current of the excitation power source and the excitation current of the superconducting coil. As for the protection function, it can ensure the ease of controlling the superconducting coil current.

ダイオード回路のターンオン電圧vty、−永久電流ス
イッチ超電導体の常電導抵抗RNと常電導許容通電電流
Loの積よりも小さく選定しているので。
The turn-on voltage vty of the diode circuit is selected to be smaller than the product of the normal conduction resistance RN of the persistent current switch superconductor and the normal conduction allowable current Lo.

永久電流スイッチをその超電導破壊による損傷から保護
できるものである。
This can protect persistent current switches from damage caused by superconducting breakdown.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来方式による超電導装置の回路図。 第2図は、第1図に示した回路の常電導状態における等
価回路図、第3図は、第1図に示す超電導コイルおける
励磁電□源の出力電流および超電導コイルの励磁電流の
変化を示す図、第弘図は、この発明による超電導装置の
回路図、第3図は、この発明による保護装置に用いるダ
イオードの常温における電流電圧特性を示す図、第6図
は、この発明による保護装置に用いるダイオードの極低
温における電流電圧特性を示す図、そして、第7図は、
第ダ図に示した逆並列対のダイオードの極低温における
電流電圧特性を示す図である。 l・・超電導コイル、コ・・永久電流スイッチ。 ダ・・永久電流スイッチ超電導体、S・・ヒータ。 6・・熱絶縁物、7・・励磁電源、t・・ヒータ電源、
9・・ダイオード回路、D・・ダイオード。 なお、各図中、同一符号は同−又は相当部分を示す。 代理人 大 岩 増 雄 焔1図 幣2図 雉3図 焔4図 手続補正書(自発) 2、発明の名称 超電導装置の保護装置 3、補正をする者 代表者片由仁へ部 (1)明細書の発明の詳細な説明の欄 6、補正の内容 (1)明細書第6頁第1g行の「庭こで」の記載を「そ
こで」と補正する。 (2) 明細書比7貞第り行の「よりより十分に」の記
載を「より十分に」と補正する。 (3) 明細書筒7頁第is行の「以上に」の記載を「
以上の」と補正する。 (4) 明細書第9頁第13行の「vtl」の記載を「
vtl」と補正する。 (5)明細書第10貞第1行、第3行、第ダ行、第1/
行の「vtl」の記載を「vt2」と補正する。 (6) 明細書第1/頁第17〜1g行の「小さくので
」の記載を「小さいので」と補正する。 (7) 明細書第12頁第11− / 9行の「用いて
もるが、」の記載を「用いているが、」と補正する。
FIG. 1 is a circuit diagram of a conventional superconducting device. Figure 2 is an equivalent circuit diagram of the circuit shown in Figure 1 in a normal conducting state, and Figure 3 shows changes in the output current of the excitation current source and the excitation current of the superconducting coil in the superconducting coil shown in Figure 1. Figure 3 is a circuit diagram of a superconducting device according to the present invention, Figure 3 is a diagram showing current-voltage characteristics at room temperature of a diode used in a protection device according to this invention, and Figure 6 is a diagram showing a protection device according to this invention. Figure 7 shows the current-voltage characteristics of a diode used at extremely low temperatures.
FIG. 2 is a diagram showing the current-voltage characteristics of the anti-parallel pair of diodes shown in FIG. l...superconducting coil, c...persistent current switch. D... Persistent current switch superconductor, S... Heater. 6. Heat insulator, 7. Excitation power supply, t. Heater power supply,
9...Diode circuit, D...Diode. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Masu Oiwa Yuen 1 Illustration 2 Pheasant 3 Illustration Homura 4 Procedural amendment (voluntary) 2. Name of the invention Protective device for superconducting device 3. Person making the amendment Part to representative Katayuni Kata (1) Details Column 6 of the Detailed Description of the Invention of the Book, Contents of Amendment (1) The description of "garden row" on page 6, line 1g of the specification is amended to read "there." (2) The statement "more fully" in the seventh line of the specification is amended to read "more fully." (3) Change the statement “more than” on page 7, line is of the specification cylinder to “
``More than that'' is corrected. (4) Change the description of “vtl” on page 9, line 13 of the specification to “
vtl”. (5) Specification No. 10, line 1, line 3, line D, line 1/
The description of "vtl" in the line is corrected to "vt2". (6) The statement "because it is small" in lines 17 to 1g of page 1 of the specification is amended to "because it is small." (7) On page 12, line 11-/9 of the specification, the statement ``used, but'' is amended to ``used, but''.

Claims (1)

【特許請求の範囲】 (1)超電導コイルに永久電流スイッチが並列接続され
た超電導装置において、前記超電導コイルおよび永久電
流スイッチにダイオード回路を並列接続すると共にこの
ダイオード回路ン前記超電導コイルおよび永久電流スイ
ッチと共に極低温域に設置し、前記ダイオード回路のタ
ーンオン電圧Vtと前記超電導コイルの励磁電圧もしく
は消磁電圧Ve、並びに前記永久電流スイッチの永久電
流スイッチ超電導体の発生電圧IOP”RNおよびLO
”RNの間に Vt > Ve Vt < IOP −RN vt< =、−RN 但し−RN :永久電流スイッチの永久電流スイッチ超
電導体の常電導抵抗、 IOP :超電導コイルの運転電流。 Lo:永久電流スイッチの永久電流スイッチ超電導体の
超電導破壊時の許 容通電電流。 の関係が同時に満足されるようにしたことt特徴とする
超電導装置の保護装置。 (コ) ダイオード回路が超電導コイル電流に対して順
方向接続された1つのダイオードからなる特許請求の範
囲第1項記載の超電導装置の保護装置。 (3) ダイオード回路が逆並列接続されたl対のダイ
オードからなる特許請求の範囲第1項記載の超電導装置
の保護装置。 (ゲ) ダイオード回路が超電導コイル電流に対してそ
れぞれ順方向に直列に接続された所望の数のダイオード
からなる特許請求の範囲第1項記載の超電導装置の保護
装置。 ((至) ダイオード回路が所望の数の逆並列接続され
た/対のダイオードからなる逆並列対を有し。 前記所望の数の逆並列対が直列に接続されてなる特許請
求の範囲第1項記載の超電導装置の保頗装置。 (6) ダイオード回路が所望の数のダイオードが同一
方向に直列接続されている2組のダイオード群を有し、
前記ダイオード群が互に逆並列接続されてなる特許請求
の範囲@1項記載の超電導装置の保護装置。
[Scope of Claims] (1) In a superconducting device in which a persistent current switch is connected in parallel to a superconducting coil, a diode circuit is connected in parallel to the superconducting coil and the persistent current switch, and the diode circuit is connected to the superconducting coil and the persistent current switch. The turn-on voltage Vt of the diode circuit, the excitation voltage or demagnetization voltage Ve of the superconducting coil, and the generated voltages IOP''RN and LO of the persistent current switch superconductor of the persistent current switch are
"Vt during RN > Ve Vt < IOP -RN vt< =, -RN where -RN: normal conduction resistance of persistent current switch superconductor of persistent current switch, IOP: operating current of superconducting coil. Lo: persistent current switch A protective device for a superconducting device characterized by simultaneously satisfying the following relationships: (1) Persistent current switch Permissible current at the time of superconducting breakdown of a superconductor; A protection device for a superconducting device according to claim 1, which comprises one connected diode. (3) A superconducting device according to claim 1, in which the diode circuit comprises l pairs of diodes connected in antiparallel. A protection device for a superconducting device. (G) A protection device for a superconducting device according to claim 1, wherein the diode circuit comprises a desired number of diodes connected in series in the forward direction with respect to the superconducting coil current. (to) The diode circuit has a desired number of anti-parallel pairs of diodes connected in anti-parallel. The desired number of anti-parallel pairs are connected in series. (6) The diode circuit has two diode groups in which a desired number of diodes are connected in series in the same direction,
A protection device for a superconducting device according to claim 1, wherein the diodes are connected in antiparallel to each other.
JP58196452A 1983-10-19 1983-10-19 Protective device for superconducting device Granted JPS6086808A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58196452A JPS6086808A (en) 1983-10-19 1983-10-19 Protective device for superconducting device
DE19843490474 DE3490474T (en) 1983-10-19 1984-10-18 Protective device for a superconducting device
GB08513695A GB2158309B (en) 1983-10-19 1984-10-18 Apparatus for protecting superconductive device
PCT/JP1984/000491 WO1985001829A1 (en) 1983-10-19 1984-10-18 Apparatus for protecting superconductive device
DE3490474A DE3490474C2 (en) 1983-10-19 1984-10-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58196452A JPS6086808A (en) 1983-10-19 1983-10-19 Protective device for superconducting device

Publications (2)

Publication Number Publication Date
JPS6086808A true JPS6086808A (en) 1985-05-16
JPS6353682B2 JPS6353682B2 (en) 1988-10-25

Family

ID=16358043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58196452A Granted JPS6086808A (en) 1983-10-19 1983-10-19 Protective device for superconducting device

Country Status (4)

Country Link
JP (1) JPS6086808A (en)
DE (2) DE3490474C2 (en)
GB (1) GB2158309B (en)
WO (1) WO1985001829A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017535948A (en) * 2014-10-20 2017-11-30 コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーションKorea University Research And Business Foundation Superconducting coil using partially insulated winding and method of manufacturing superconducting coil

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216568A (en) * 1988-09-08 1993-06-01 Mitsubishi Denki Kabushiki Kaisha Superconducting magnet device
FR2636477A1 (en) * 1988-09-12 1990-03-16 Alsthom Gec Cryogenic current limiter
DE4441575C2 (en) * 1994-11-22 1998-08-06 Bruker Analytische Messtechnik Device and method for quickly discharging a superconducting magnet coil
US8384504B2 (en) * 2006-01-06 2013-02-26 Quantum Design International, Inc. Superconducting quick switch

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419835U (en) * 1977-07-13 1979-02-08

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3474294A (en) * 1966-04-19 1969-10-21 Varian Associates Superconductive magnet protected by forward and backward conducting diode pairs
JPS4814158B1 (en) * 1968-08-31 1973-05-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419835U (en) * 1977-07-13 1979-02-08

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017535948A (en) * 2014-10-20 2017-11-30 コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーションKorea University Research And Business Foundation Superconducting coil using partially insulated winding and method of manufacturing superconducting coil

Also Published As

Publication number Publication date
DE3490474C2 (en) 1989-10-05
WO1985001829A1 (en) 1985-04-25
GB2158309B (en) 1987-02-11
GB2158309A (en) 1985-11-06
JPS6353682B2 (en) 1988-10-25
GB8513695D0 (en) 1985-07-03
DE3490474T (en) 1985-11-28

Similar Documents

Publication Publication Date Title
US6147844A (en) Quench protection for persistant superconducting magnets for magnetic resonance imaging
US4559576A (en) Protection device for a superconducting magnetic coil assembly
US4689707A (en) Superconductive magnet having shim coils and quench protection circuits
US20060227471A1 (en) Superconducting magnet system with quench protection circuit
GB2423871A (en) Superconducting magnet with divided coils and quench protection
US4812796A (en) Quench propagation device for a superconducting magnet
US6809910B1 (en) Method and apparatus to trigger superconductors in current limiting devices
US3466504A (en) Continuous shunt protection means for superconducting solenoids
JPH0576162B2 (en)
US3711744A (en) Passive energy dump for superconducting coil protection
JPS6086808A (en) Protective device for superconducting device
US4956740A (en) Protection technique for superconducting magnets
JPS61115308A (en) Superconducting device
JPH10270234A (en) Superconducting coil device
JPS6174308A (en) Superconductive device
JPH09233691A (en) Overcurrent protector
JPH01248931A (en) Current limiting device
JPH0640531B2 (en) Superconducting magnet protector
JP2000324685A (en) Current-limiting device
JPS6156856B2 (en)
JPH0554244B2 (en)
CN116982127A (en) Superconducting magnet device, NMR device, and MRI device
JPH0513222A (en) Superconducting coil device
JPH0584652B2 (en)
JPS61170007A (en) Protecting device for superconductive magnet