JPS61170007A - Protecting device for superconductive magnet - Google Patents

Protecting device for superconductive magnet

Info

Publication number
JPS61170007A
JPS61170007A JP60009921A JP992185A JPS61170007A JP S61170007 A JPS61170007 A JP S61170007A JP 60009921 A JP60009921 A JP 60009921A JP 992185 A JP992185 A JP 992185A JP S61170007 A JPS61170007 A JP S61170007A
Authority
JP
Japan
Prior art keywords
diode
current
voltage
diodes
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60009921A
Other languages
Japanese (ja)
Inventor
Shunji Yamamoto
俊二 山本
Tadatoshi Yamada
山田 忠利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60009921A priority Critical patent/JPS61170007A/en
Publication of JPS61170007A publication Critical patent/JPS61170007A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/001Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for superconducting apparatus, e.g. coils, lines, machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To use an extreamly ordinary diode on the market when an operation current is an ultra heavy current by constituting a diode circuit splitting a current into plural diodes. CONSTITUTION:A diode circuit 9A is composed of both a unit of a diode 12a in which plural of, for instance, two of compact, lightweight and same rating diodes 13 of small current capacity are connected in parallel, and another unit of diode 12b which is connected in reverse parallel with this unit of the diode 12a. When a superconductive breakdown is generated in a permanent current switch 2, a voltage IOP.RN much higher than a turn-on voltage of the diode 13 is added to the diode circuit 9A. As, according to a direction of a current, the plural diodes 13 of either the unit of diode 12a or 12b receive momentarily a voltage higher than all of the turn-on voltages, they turn on. Therefore, almost all of operation currents IOP are split into the diodes 13, a permanent current switch superconductive body 4 of a permanent current switch 2 is completely protected without any burning.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超電導マグネットの保護装置、特に永久電
流運転中の超電導破壊から永久電流スイッチを保護する
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a protection device for a superconducting magnet, and particularly to a device for protecting a persistent current switch from superconductor breakdown during persistent current operation.

〔従来の技術〕[Conventional technology]

第3図は例えば第J/回低温工学研究発表会(に示され
たRi電導マグネットおよび従来の保護装置を示す回路
図である0図中、(10)は冷媒である液体ヘリウム(
3)を満した極低温容器であり、内部に超電導コイル(
1)、永久電流スイッチ(コ)およびダイオード回路(
?)を収納している。これら超電導コイル(1)、永久
電流スイッチ(コ)およびダイオード回路(2)は互に
並列接続されており、そのリード線は極低温容器(10
)の外部に導出されて超電導コイル(1)のための励磁
電源(7)に接続されている。なお。
Figure 3 is a circuit diagram showing the Ri conductive magnet and conventional protection device presented at the J/th Cryogenic Engineering Research Conference (10) is a refrigerant, liquid helium (
It is a cryogenic container that satisfies the requirements of 3) and has a superconducting coil (
1) Persistent current switch (k) and diode circuit (
? ) is stored. These superconducting coils (1), persistent current switches (2), and diode circuits (2) are connected in parallel with each other, and their lead wires are connected to the cryogenic container (10
) and connected to an excitation power source (7) for the superconducting coil (1). In addition.

ダイオード回路(1>は図示のように逆並列接続された
コ個のダイオード(//a)および(//b)からなる
。また、永久電流スイッチ(コ)は、永久電流スイッチ
超電導体【り)、この永久−流スイッチ超電導体(41
)を加熱するためのヒータ(j)並びにこれら、永久電
流スイッチ超電導体(弘)およびヒータ(りを極低温容
器(10’)K満された液体ヘリウム(、?)から断熱
するための熱絶縁物(4)よりなっている。ヒータ(!
1は、そのリード線が極低温容器(10)の外部に導出
されてヒータ電源(flに接続されることにより。
The diode circuit (1> consists of diodes (//a) and (//b) connected in antiparallel as shown in the figure. Also, the persistent current switch (1) consists of a persistent current switch superconductor ), this permanent-current switch superconductor (41
) and thermal insulation to insulate them from the cryogenic vessel (10') filled with liquid helium (?) It consists of (4).A heater (!
1, by leading the lead wire to the outside of the cryogenic container (10) and connecting it to the heater power source (fl).

加路されるようになっている。また、I8は励61[源
(7)の出力電流、ICは超電導コイル(/]の励磁電
流を示している。
It is designed to be supplemented. Further, I8 indicates the output current of the excitation 61 [source (7)], and IC indicates the excitation current of the superconducting coil (/).

次に動作について説明する。超電導コイル(1)を励磁
する場合には、まず、ヒータti)Kより永久電流スイ
ッチ超電導体(4+)を加熱し、超電導破壊を起させて
常電導状態にお(。この常電、導状態における超電導マ
グネットの等価回路は第9図に示すとおりKなる。なお
、RNは永久電流スイッチ超電導体(弘)の常電導状態
における抵抗値である。また。
Next, the operation will be explained. When the superconducting coil (1) is excited, first, the persistent current switch superconductor (4+) is heated by the heater ti)K to cause superconductivity breakdown and enter the normal conducting state (this normal current, conducting state). The equivalent circuit of the superconducting magnet in is K as shown in Fig. 9. Note that RN is the resistance value of the persistent current switch superconductor (Hiro) in the normal conduction state.

ダイオード回路(デ)は、ダイオード(/la>(//
b)のターンオン電圧未満の電圧がダイオード両端に加
わっている限り、そのインピーダン資血限大とな磁電源
(7)よりの出力電流工8を時間的に一定の割合で増加
させてゆく。出力電流Isが運転電流IOPに達したら
電流増加を止め、起電導コイル(1)のインダクタンス
を永久電流スイッチ超電導体(弘)の抵抗11[RNと
から決まる時定数よりも十分長(・時間おいてかう、永
久電流スイッチ(−2)のヒータ(り)の電流をしゃ断
する。その結果、永久It電流イッチ超電導体+lI)
は液体ヘリウム(,71Kよって冷却され・やがて超電
導状態に至る。この超電導状態でを1゜超電導コイル(
1)に運転亀流工。Pが流れており・超電導コイル(1
)の両端がam導状態の永久tL流スイッチ超を導体(
弘)忙よって短絡されている状態K すっている。従っ
て、ここで励磁電源の出力電流I aを減少させれば、
超電導コイル(/lは運転電流IOPで永久電流連転さ
れることKなる。また、この過程を逆にたどれば、超電
導コイル(tlは酒田されることになる。
The diode circuit (de) is a diode (/la>(//
As long as a voltage lower than the turn-on voltage in b) is applied across the diode, the output current 8 from the magnetic power source (7) whose impedance is at its maximum is increased at a constant rate over time. When the output current Is reaches the operating current IOP, the current increase is stopped, and the inductance of the electromotive conductive coil (1) is increased for a period sufficiently longer than the time constant determined from the resistance 11 [RN] of the persistent current switch superconductor (Hiro). Then, the current of the heater of the persistent current switch (-2) is cut off.As a result, the permanent It current switch superconductor +lI)
is cooled by liquid helium (,71K) and eventually reaches a superconducting state.In this superconducting state, a 1° superconducting coil (
1) Driving Kamairuko. P is flowing and the superconducting coil (1
) is a permanent tL current switch superconducting with both ends of the conductor (
Hiroshi) I'm in a state where I'm short-circuited because I'm busy. Therefore, if the output current Ia of the excitation power source is decreased here,
The superconducting coil (/l) is a constant current K that is continuously rotated by the operating current IOP.Furthermore, if this process is followed in reverse, the superconducting coil (tl is Sakata).

ところで、上述の超電導マグネットにおいては。By the way, in the above-mentioned superconducting magnet.

永久−流スイッチ超電導体(弘)が熱絶縁物(6)によ
って冷媒から熱絶縁状態になっているので冷却されにく
い状態にある。また、常な導抵抗@RNを大きくするた
めに1通常永久4流スイッチ超電導体(シ)にクラッド
されている低抵抗の安定化銅が永久電流スイッチ超電導
体(川から取り除かれていることなどから、永久電流ス
イッチ超電導体(4c)は超電導的に不安定であるので
、起電導破壊から保護されていなければならない。そこ
で、上述の超電導マグネットにおいては、保賎装置であ
るダイオード回路(テ)がその保護作用をするようにな
っている。
Since the permanent current switch superconductor (Hiro) is thermally insulated from the refrigerant by the thermal insulator (6), it is difficult to be cooled. In addition, in order to increase the normal conductive resistance @RN, the low-resistance stabilizing copper that is normally clad in the permanent four-current switch superconductor (Si) is removed from the permanent current switch superconductor (River, etc.). Therefore, since the persistent current switch superconductor (4c) is superconductively unstable, it must be protected from electromotive conduction breakdown.Therefore, in the above-mentioned superconducting magnet, a diode circuit (TE) which is a protection device is used. is supposed to have that protective effect.

次に、保護装置であるダイオード回路(テ)について説
明する。このダイオード回路(テ)は図示のように逆並
列接続された1個のダイオードC1ta)および(l/
b)からなるが、まず個別のダイオード(//aH//
b)の特性につい【説明すると、ダイオードの常温にお
ける電圧電流特性は第3図に破線の曲線で示すとおりで
ある。実験に用いたダイオードは三菱電機製FDコOO
B (平均順電流が1/コ℃においてコfLOAの仕様
)である。ダイオードの両端に成る電圧以上の電圧が加
わってダイオードのインピーダンスが十分に小さくなっ
た状態への遷移を、ここではターンオンと呼ぶことにす
る。同図に示したようにターンオンする順方向電圧であ
るターンオン電圧Vi、は通常/V程度である。超電導
コイル(/lの助出電圧(又は酒母電圧)veは17以
上になることが多い。従って、第3図のように接続した
ダイオード回路(デ)を常温で用いると、ダイオードが
助出電圧Meによりターンオンしてしまい、超電導コイ
ル(/]の励磁ができなくなる。ところが、ダイオード
を極低温に冷却すると、その電流電圧特性が第3図の実
線の曲線のようになる。この実線の曲線は液体ヘリウム
(LHe)中における実験結果である。すなわち、極低
温におけるダイオードのターンオン電圧vtJは、常温
におけるダイオードのターンオン電圧vtlに比べて十
分に大きく、この実験結果ではrvlC達している。ダ
イオードの順方向電圧がターンオン電圧Vtuを越える
とダイオード電流が流れ始め、N流増加につれて順方向
電圧降下は小さくなる。これらの特性から明らかなよう
に、超電導コイル(/lの助出電圧veよりダイオード
回路(り)のターンオン電圧を高くしておけば、励磁中
又は消S中のダイオードのインピーダンスはほぼ無限大
である。従って、励磁中のダイオードへの分流電流はほ
と人永久電流スイッチ(、L)に超電導破壊が生ずると
、電圧工。P@RNがダイオード回路(9)に加わるが
、この電圧は通常極低温中のダイオードのターンオン電
圧vtJに比べて十分大キ<、そのためダイオード回路
(デ)は直ちにターンオンされる。その結果。
Next, the diode circuit (TE) which is a protection device will be explained. This diode circuit (Te) consists of one diode C1ta) and (l/
b), but first an individual diode (//aH//
Regarding the characteristic b), [To explain, the voltage-current characteristic of the diode at room temperature is as shown by the broken line curve in FIG. 3. The diode used in the experiment was Mitsubishi Electric FD COOO.
B (specification of fLOA when the average forward current is 1/°C). The transition to a state in which a voltage higher than the voltage across the diode is applied and the impedance of the diode becomes sufficiently small is herein referred to as turn-on. As shown in the figure, the turn-on voltage Vi, which is the forward voltage for turning on, is usually about /V. The supplementary voltage (or starter voltage) ve of the superconducting coil (/l) is often 17 or more. Therefore, if the diode circuit (de) connected as shown in Fig. 3 is used at room temperature, the diode will increase the supplemental voltage. The diode is turned on by Me, and the superconducting coil (/) cannot be excited.However, when the diode is cooled to an extremely low temperature, its current-voltage characteristics become as shown in the solid curve in Figure 3.This solid curve is These are experimental results in liquid helium (LHe). That is, the diode turn-on voltage vtJ at extremely low temperatures is sufficiently larger than the diode turn-on voltage vtl at room temperature, and reaches rvlC in this experimental result. When the direction voltage exceeds the turn-on voltage Vtu, a diode current begins to flow, and as the N current increases, the forward voltage drop becomes smaller.As is clear from these characteristics, the diode circuit ( If the turn-on voltage of the switch (L) is set high, the impedance of the diode during energization or de-energization is almost infinite.Therefore, the shunt current to the diode during energization is almost equal to the permanent current switch (L). When superconducting breakdown occurs in the voltage field, P@RN is applied to the diode circuit (9), but this voltage is usually sufficiently large compared to the diode turn-on voltage vtJ at cryogenic temperatures, so is immediately turned on.The result.

永久電流スイッチ(コ)に流れていた電流のほとんど大
部分がダイオード回路(?)にバイパスされることにな
り、永久電流スイッチ(2)はその焼損が防止されかつ
それ自体が保護される。
Most of the current flowing through the persistent current switch (2) will be bypassed by the diode circuit (?), and the persistent current switch (2) will be prevented from burning out and itself will be protected.

ダイオード回路(9)にはこのように非常に大きな電流
が流れ込む。例えばtoooに程度の電流で運転される
超電導コイル(/lはI#に珍らしいものではなく、今
日では極く普通の超電導コイルといえる。
In this way, a very large current flows into the diode circuit (9). For example, a superconducting coil (/l) that is operated with a current of about too much is not unusual for I#, and can be said to be an extremely common superconducting coil today.

永久電流スイッチ−1の超電導破壊が全するとほとんど
tooo人に近い電流が保護装置であるダイオード回路
(デ)に流れ込む。ところが、toooh級のダイオー
ドというのはパワーエレクトロニクスの分野においては
かなり特殊なものである上、?に流容量の小さなダイオ
ードに比べて著しく高価になると共に、ダイオードの熱
設計が困難になるため、ダイオードの冷却用フィンなど
が大型になり、その体積が著しく増大すると共に重量も
増す。
When the superconducting breakdown of persistent current switch-1 is complete, a current close to that of a human flows into the diode circuit (de), which is a protection device. However, tooh class diodes are quite special in the field of power electronics, and... In addition, it is significantly more expensive than a diode with a small flow capacity, and the thermal design of the diode is difficult, so the cooling fins and the like of the diode become large, resulting in a significant increase in volume and weight.

また、他く最近の大型超電導実験では運転電流が100
00kVC達する場合もある。1個のダイオードにこの
ような超大電流を通電することは現状では不可能に近く
、また価格2体積等の点からも全く実用的ではない。
In addition, in other recent large-scale superconducting experiments, the operating current was 100
It may reach 00kVC in some cases. At present, it is nearly impossible to pass such a large current through one diode, and it is also completely impractical in terms of cost, volume, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の保護装置は以上のように構成されているので、極
低温容器内にダイオードを取り付けるためのかなり大き
な空間を必要とし、そのため極低温容器の表面積が増大
し、容器表面からのふく射熱の侵入が増大した結果、液
体ヘリウムの蒸発量が増大し、超電導コイルの長期連続
運転時間を短縮せざるを得ない問題点があった。また、
超電導マグネットの常温からの初期冷却忙対しても、ダ
イオードの重量増加による被冷却重量の増加により、初
期冷却用の液体ヘリウムの使用量が増大するという問題
点があった。更に、10000A級の超大電流運転の場
合には、ダイオードそのものの開発に多大の労力と期間
と費用を必要とし、本来重要である超電導コイルそのも
のの開発に支障が生じる問題点があった。
Conventional protection devices constructed as described above require a fairly large space for mounting the diode inside the cryocontainer, which increases the surface area of the cryocontainer and prevents the intrusion of radiant heat from the container surface. As a result, the amount of evaporation of liquid helium increases, resulting in the problem that the long-term continuous operation time of the superconducting coil has to be shortened. Also,
Initial cooling of superconducting magnets from room temperature is busy, but there is a problem in that the amount of liquid helium used for initial cooling increases due to an increase in the weight to be cooled due to the increase in the weight of the diode. Furthermore, in the case of ultra-high current operation of the 10,000 A class, there was a problem in that it required a great deal of effort, time, and expense to develop the diode itself, which hindered the development of the superconducting coil itself, which was originally important.

この発明は上記のような問題点を解決するためになされ
たもので、ダイオード回路を小型で軽量にできると共に
低価格にでき、また、超電導マグネットの維持費として
最も高価である液体ヘリウムの消費量を軽減できる保護
装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it allows the diode circuit to be made smaller, lighter, and lower in price.It also reduces the consumption of liquid helium, which is the most expensive maintenance cost for superconducting magnets. The purpose is to obtain a protective device that can reduce the

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る保護装置は、電流容量の小さい小型で軽
量のダイオードを同一電流方向に複数個並列接続したl
単位のダイオードと、このl単位のタイオードに逆並列
接続されたもうl単位のダイオードとからなる。
The protection device according to the present invention consists of a plurality of small, lightweight diodes with low current capacity connected in parallel in the same current direction.
It consists of one diode and another l diode connected anti-parallel to this l diode.

〔作 用〕[For production]

この発明におけるダイオード回路は、l単位のダイオー
ドを構成する各ダイオードの電流容量が小さいために、
各ダイオードは大量生産されている市販品を使用できる
ので、非常に低価格lできる。また、単位電流容量当り
の重量もダイオードの熱投与が容易なために軽減される
In the diode circuit according to the present invention, since the current capacity of each diode constituting the diode in units of l is small,
Since each diode can be a mass-produced commercial item, the cost can be very low. Moreover, the weight per unit current capacity is also reduced because the diode can easily be heated.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、(1)〜(g)および(lO)は第3図に
ついて説明したものと全く同じである。ダイオード回路
(9人)は、第3図のダイオード回路(りと違い、電流
容量の小さい小をで軽量のしかも同一定格の(tJ)を
同一電流方向に複数個例えばλ個差列接続したl単位の
ダイオード(lコミ)と、このl単位のダイオード(l
コミ)に逆並列接続されたもうl単位のダイオード(l
コb)とからなる。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (1) to (g) and (lO) are exactly the same as those explained with respect to FIG. The diode circuit (nine people) was constructed using a diode circuit (unlike the diode circuit shown in Fig. 3), which had a small current capacity, was lightweight, and had the same rating (tJ) connected in the same current direction in multiple series, for example, λ pieces. unit diode (l commi) and this l unit diode (l
Another l unit diode (l
It consists of (b).

永久電流スイッチ(コ)に超電導vZ、mが生じると。When superconductivity vZ,m occurs in the persistent current switch (c).

ダイオード(13)のターンオン電圧よりも十分高い電
圧IOP@Phtがダイオード回路(y*)K加わる。
A voltage IOP@Pht that is sufficiently higher than the turn-on voltage of the diode (13) is applied to the diode circuit (y*)K.

電流の方向によりどちらか一方のl単位のダイオード(
lコミ)又は(lコb)の複数個のダイオード(13)
は、全てターンオン電圧以上の電圧を瞬間的に受けるの
で、ターンオンする。その結果、運転電流ropのほと
んど全部がダイオード(tJ)K分流され、永久電流ス
イッチ(コ)の永久電流スイッチ超電導体(ダ)は焼損
することなく完全に保護される。なお、l単位のダイオ
ード(/コミ)または(/コb)を構成するダイオード
(13)はコ個だけでなく何個あってもよい、従って、
超大電流の運転電流が流れる超電導コイル(1)であっ
ても、市販の働く普通のダイオードを使用できる。
Depending on the direction of the current, either one of the l unit diodes (
Multiple diodes (13) of lcomi) or (lcob)
are turned on because they all momentarily receive a voltage higher than the turn-on voltage. As a result, almost all of the operating current rop is shunted through the diode (tJ)K, and the persistent current switch superconductor (da) of the persistent current switch (k) is completely protected without burning out. Note that there may be any number of diodes (13) constituting l units of diodes (/komi) or (/kob), and therefore,
Even for the superconducting coil (1) through which an extremely large operating current flows, a commercially available working ordinary diode can be used.

次に、ダイオードの種類忙よる機能差を第2図に示した
。この第一図は、三菱電機製の参種類のダイオードスタ
ックについてその体積と重量の積当りの電流を比較した
ものである。出典は”i p三菱半導体データブック”
大電力半導体、スタック編(M文堂新党社刊行、昭和!
2年3月a1日)である、検討に用いたダイオードスタ
ックはFDSroocX、FDF3!0OCP、WDF
3 /&00CJ 、FD83に00CHの参種類であ
り、比較検討したい事柄以外の仕様が公正を期するため
全て同一である電力用ダイオードスタックの全機種であ
る。比較検討の公正を期するために同一の仕様とした事
柄な次に列記す−る。
Next, Figure 2 shows the functional differences depending on the type of diode. Figure 1 compares the current per product of volume and weight for various types of diode stacks made by Mitsubishi Electric. Source: “IP Mitsubishi Semiconductor Data Book”
High power semiconductors, stack edition (published by M Bundo Shintosha, Showa!
The diode stacks used in the study were FDSroocX, FDF3!0OCP, and WDF.
3/&00CJ, FD83 and 00CH, and for the sake of fairness, all models of power diode stacks are the same in terms of specifications other than those to be compared. In order to ensure a fair comparison, the following items have the same specifications.

構造・・・・・・2個組ダイオードスタック結線・・・
・・・センタタップ方式 %式% フィン・・・鋼 製 第2図から明らかなように、ダイオードスタックの重量
と体積の積の単位量当りの自冷出力電流は、ダイオード
スタックの自冷出力1流仕様償カ小さい#まど大きくな
る。すなわち、超電導コイル(/lの運転WL流値ro
pからダイオード回路(9A)の電流容量が定められた
時に、この回路を構成するためにできるだけ自冷出力電
流仕様値の小さな小型ダイオードスタック(当然ながら
小型のダイオードでこのスタックは構成されている)を
数多く並列接続した方が1体積と重量の積が小さくなる
ことを第2図は表わしている。
Structure: 2-piece diode stack connection...
... Center tap method % type % Fin... Made of steel As is clear from Figure 2, the self-cooling output current per unit of the product of the weight and volume of the diode stack is the self-cooling output 1 of the diode stack. Flow compensation force is small #Window becomes larger. That is, the operating WL flow value ro of the superconducting coil (/l)
When the current capacity of the diode circuit (9A) is determined from p, we need a small diode stack with as small a self-cooling output current specification value as possible to configure this circuit (of course, this stack is made up of small diodes). Figure 2 shows that the product of volume and weight becomes smaller when many are connected in parallel.

l単位のダイオード(lコミ)または(z−b)を構成
する各ダイオード(/J)が同一機種ではなく。
The diodes (/J) that make up the diodes (l) or (z-b) in units of l are not the same model.

定格電流容量が異なる場合についても上記実施例と同様
の効果を奏する。
Even when the rated current capacities are different, the same effects as in the above embodiment can be achieved.

また、超電導コイル(1)が超電導破壊しているか否か
は上記実施例では特に問題としなかった。しかし、超電
導コイル(1)が超電導破壊した場合の超電導コイル(
1)そのものの保護機能も合せて有していることを付言
する。すなわち、超電導コイル(1)はダイオード(/
J)の順方向電圧と運転電流IOPの積に相当するエネ
ルギーを消費する装置であり、超電導コイル(1)の有
するエネルギーが減少させられる。また、超電導コイル
両端を短絡していることkより、永久電流スイッチ(コ
)が何らかの原因で断線した場合にも、アーク放電の発
生によるコイル焼損事故を防止できる。
In addition, in the above embodiments, whether or not the superconducting coil (1) had superconductivity breakdown was not a particular issue. However, if the superconducting coil (1) breaks down, the superconducting coil (
1) It should be added that it also has its own protective function. In other words, the superconducting coil (1) is a diode (/
J) is a device that consumes energy equivalent to the product of the forward voltage and the operating current IOP, and the energy possessed by the superconducting coil (1) is reduced. Further, since both ends of the superconducting coil are short-circuited, even if the persistent current switch (C) is disconnected for some reason, it is possible to prevent the coil from burning out due to the occurrence of arc discharge.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、複数個のダイオード
に電流を分流させるダイオード回路を構成したので、運
転電流が超大電流の場合でも市販の極く普通のダイオー
ドを使用でき、ひいては装置を安価にできる効果がある
。また、小型のダイオードを複数個組合せて用いるので
、ダイオード回路全体の体積と重量の積が小さくなる。
As described above, according to the present invention, a diode circuit is constructed that shunts current to a plurality of diodes, so even when the operating current is extremely large, a commercially available ordinary diode can be used, and the device can be made at a low cost. It has the effect of Furthermore, since a plurality of small diodes are used in combination, the product of volume and weight of the entire diode circuit is reduced.

そのため極低温容器はヘリウムの蒸発量の少ない小型の
ものでよく、また、初期冷却重量も軽減されるので、初
期冷均に必要とされる液体ヘリウムも少なくてよい効果
がある。
Therefore, the cryogenic container can be a small one with a small amount of helium evaporation, and the initial cooling weight is also reduced, so there is an effect that less liquid helium is required for initial cooling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による回路図、第2図はこ
の発明の効果を裏づけるダイオードスタックの特性曲線
図、第3図は超電導マグネットおよび従来の保護装置を
示す回路図、第一図は第3図に示した超電導マグネット
の励磁(又は消り中の等価回路図、@!図は従来のダイ
オードの電圧電流特性曲線図である。 (1)・・超電導コイル、(コ)・・永久電流スイッチ
、(J)(り)・拳励3電源、(デA)11・ダイオー
ド回路、(t2e1)・・l単位のダイオード、(1コ
b)・・もうl単位のダイオード、(tJ)・・ダイオ
ードである。 なお1図中、同一符号は同−又は相当部分な示第4図 丁続補lL9 昭和60ヂ3 7し7 日
Fig. 1 is a circuit diagram according to an embodiment of the present invention, Fig. 2 is a characteristic curve diagram of a diode stack that supports the effects of this invention, Fig. 3 is a circuit diagram showing a superconducting magnet and a conventional protection device, Fig. 1 is an equivalent circuit diagram during excitation (or extinguishing) of the superconducting magnet shown in Fig. 3, and @! Figure is a voltage-current characteristic curve diagram of a conventional diode. (1) Superconducting coil, (ko)... Persistent current switch, (J) (ri)・Fist excitation 3 power supply, (DeA) 11・Diode circuit, (t2e1)...Diode in l unit, (1cob)...Diode in l unit, (tJ )...diode. In Figure 1, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 並列接続された超電導コイル、永久電流スイッチおよび
ダイオード回路を収納する極低温容器と、この極低温容
器の外にあつて前記超電導コイルと並列接続された励磁
電源とを備える超電導マグネットにおいて、前記ダイオ
ード回路は、電流容量の小さい小型で軽量のダイオード
を同一電流方向に複数個並列接続した1単位のダイオー
ドと、この1単位のダイオードに逆並列接続されたもう
1単位のダイオードとからなることを特徴とする超電導
マグネットの保護装置。
A superconducting magnet comprising a cryogenic container housing a superconducting coil, a persistent current switch, and a diode circuit connected in parallel, and an excitation power source outside the cryogenic container and connected in parallel with the superconducting coil, wherein the diode circuit is characterized by consisting of one unit of diode, which is a plurality of small, lightweight diodes with small current capacity connected in parallel in the same current direction, and another unit of diode, which is connected in antiparallel to this one unit of diode. A protection device for superconducting magnets.
JP60009921A 1985-01-24 1985-01-24 Protecting device for superconductive magnet Pending JPS61170007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60009921A JPS61170007A (en) 1985-01-24 1985-01-24 Protecting device for superconductive magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60009921A JPS61170007A (en) 1985-01-24 1985-01-24 Protecting device for superconductive magnet

Publications (1)

Publication Number Publication Date
JPS61170007A true JPS61170007A (en) 1986-07-31

Family

ID=11733553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60009921A Pending JPS61170007A (en) 1985-01-24 1985-01-24 Protecting device for superconductive magnet

Country Status (1)

Country Link
JP (1) JPS61170007A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532638A (en) * 1992-09-21 1996-07-02 Hitachi, Ltd. Superconducting energy storage apparatus
JPH09103065A (en) * 1995-10-04 1997-04-15 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Superconducting rotor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945632A (en) * 1972-09-01 1974-05-01
JPS5147600A (en) * 1974-10-22 1976-04-23 Yuasa Battery Co Ltd SETSUKETSUENGENZOHYOHAKUEKINO SAISEIHOHO
JPS593737B2 (en) * 1973-06-29 1984-01-25 富士写真フイルム株式会社 Multilayer color photosensitive material
JPS59218710A (en) * 1983-05-27 1984-12-10 Toshiba Corp Superconductive electromagnet device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945632A (en) * 1972-09-01 1974-05-01
JPS593737B2 (en) * 1973-06-29 1984-01-25 富士写真フイルム株式会社 Multilayer color photosensitive material
JPS5147600A (en) * 1974-10-22 1976-04-23 Yuasa Battery Co Ltd SETSUKETSUENGENZOHYOHAKUEKINO SAISEIHOHO
JPS59218710A (en) * 1983-05-27 1984-12-10 Toshiba Corp Superconductive electromagnet device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532638A (en) * 1992-09-21 1996-07-02 Hitachi, Ltd. Superconducting energy storage apparatus
JPH09103065A (en) * 1995-10-04 1997-04-15 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Superconducting rotor

Similar Documents

Publication Publication Date Title
JP4295189B2 (en) Superconducting resistance type current limiter
US5650903A (en) Superconducting-magnet electrical circuit having voltage and quench protection
US5361055A (en) Persistent protective switch for superconductive magnets
JPS59144106A (en) Device for protecting superconductive magnet coil unit
EP0567293B1 (en) Superconducting current limiting device
de Sousa et al. Investigation of a concentric three-phase HTS cable connected to an SFCL device
US4688137A (en) Superconducting coil device
US20150255200A1 (en) Fast Superconducting Switch for Superconducting Power Devices
Song et al. Quench protection system for the superconducting coil of the KSTAR tokamak
JPH0586052B2 (en)
US4906861A (en) Superconducting current reversing switch
JPS61170007A (en) Protecting device for superconductive magnet
US3187236A (en) Means for insulating superconducting devices
Giese et al. Fault current limiters
US7532443B2 (en) Current-limiting device having a superconductive switching element
JPS6086808A (en) Protective device for superconducting device
JPH10270234A (en) Superconducting coil device
JP2679020B2 (en) Superconducting device and thermal permanent current switch
JPH09233692A (en) Superconuctive current limiter
JPH0432615B2 (en)
Ballarino et al. Scaling of superconducting switches for extraction of magnetic energy
JP2008091923A (en) Superconducting electromagnet device, and superconducting coil excitation method
JPS61168905A (en) Protecting device of superconducting magnet
JP2003109816A (en) Protection circuit for superconducting magnet equipment
JP2566947B2 (en) Specified voltage conducting element for cryogenic temperature and superconducting magnet using this element