JP3231837B2 - Superconducting current limiting device - Google Patents

Superconducting current limiting device

Info

Publication number
JP3231837B2
JP3231837B2 JP12881192A JP12881192A JP3231837B2 JP 3231837 B2 JP3231837 B2 JP 3231837B2 JP 12881192 A JP12881192 A JP 12881192A JP 12881192 A JP12881192 A JP 12881192A JP 3231837 B2 JP3231837 B2 JP 3231837B2
Authority
JP
Japan
Prior art keywords
coil
current
superconducting
coils
trigger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12881192A
Other languages
Japanese (ja)
Other versions
JPH05327039A (en
Inventor
築志 原
武 大熊
和行 ▲つる▼永
大佐 伊藤
えり子 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP12881192A priority Critical patent/JP3231837B2/en
Publication of JPH05327039A publication Critical patent/JPH05327039A/en
Application granted granted Critical
Publication of JP3231837B2 publication Critical patent/JP3231837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、交流電路に生じる事故
電流等の過電流を抑制する超電導限流装置に関し、更に
詳しくは、臨界電流により超電導体が突然常電導体に相
転移する超電導体のクエンチ現象を利用した交流超電導
スイッチである超電導トリガコイルの通電電流密度を増
大させて、限流時のジュール損失を低減し得る超電導限
流装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting current limiting device for suppressing an overcurrent such as an accident current generated in an alternating current circuit, and more particularly to a superconductor in which a superconductor suddenly undergoes a phase transition to a normal conductor due to a critical current. The present invention relates to a superconducting current limiting device that can increase the current density of a superconducting trigger coil, which is an AC superconducting switch utilizing the quench phenomenon, and reduce Joule loss during current limiting.

【0002】[0002]

【従来の技術】配電線等の交流電路に3相短絡や地絡事
故が発生すると、数十kAにも及ぶ事故電流が流れ、系
統及び機器に大きなダメージを与えてしまう。この様な
事故電流を瞬時に検出し抑制する為の限流技術の一つ
に、最近超電導を応用したものが考案されている。
2. Description of the Related Art When a three-phase short circuit or a ground fault occurs in an AC line such as a distribution line, a fault current of several tens of kA flows, causing serious damage to systems and equipment. Recently, superconductivity has been devised as one of current limiting techniques for instantaneously detecting and suppressing such fault currents.

【0003】図4は、その代表的従来の超電導限流器の
回路例を示したもので、既に特開平2−168525号
にて公開されているものである。本例において、1は電
源、2は遮断器、3は限流器、3aは超電導限流コイル
(以下、限流コイルと称す)、3b,3cはトリガコイ
ル、3dはスイッチ、3gはクエンチセンサ、4は負
荷、11は回路の全電流を検出するための変流器、12
はトリガコイル3b,3cのループ電流を検出するため
の変流器、13は制御電源、14はループ電流位相検出
器、15はループ電流位相検出回路を主回路に接離する
ためのスイッチ、16はトリガコイルの両端電圧の位相
を検出するトリガコイル電圧位相検出器、17はトリガ
コイルの電流および電圧の位相差を比較検出する位相比
較器を示している。
FIG. 4 shows a circuit example of a typical conventional superconducting current limiter, which has already been disclosed in Japanese Patent Application Laid-Open No. 2-168525. In this example, 1 is a power supply, 2 is a circuit breaker, 3 is a current limiter, 3a is a superconducting current limiting coil (hereinafter, referred to as a current limiting coil), 3b and 3c are trigger coils, 3d is a switch, and 3g is a quench sensor. 4, a load; 11, a current transformer for detecting the total current of the circuit;
Is a current transformer for detecting the loop current of the trigger coils 3b and 3c, 13 is a control power supply, 14 is a loop current phase detector, 15 is a switch for connecting and disconnecting the loop current phase detection circuit to and from the main circuit, 16 Denotes a trigger coil voltage phase detector for detecting the phase of the voltage across the trigger coil, and 17 denotes a phase comparator for comparing and detecting the phase difference between the current and the voltage of the trigger coil.

【0004】この超電導限流器の動作について、簡単に
説明する。定常時、回路電流は無誘導で超電導(抵抗
零)のトリガコイル3b,3c側を流れ、正常に負荷4
へ給電されつづける。次に負荷4が短絡するなどして、
過大な事故電流が回路に流れ、その値がトリガコイル3
b,3cを構成している超電導線の臨界電流値に達する
と、トリガコイル3b,3cがクエンチして高抵抗体に
転移する。その結果、事故電流は抑制され、トリガコイ
ル3b,3cよりインピーダンスの低い限流コイル3a
側へ転流していく。この間、トリガコイル3b,3cは
常電導体となっているので、発熱して冷媒を消費しつづ
けるのと同時に超電導線の温度も上昇することになる。
スイッチ3dは、トリガコイル3b,3cに流れていた
電流が限流コイル3a側へ転流した直後に開放して、冷
媒の蒸発を抑制すると同時に、トリガコイル3b,3c
の冷却速度を速めて次の事故発生に対応できるようトリ
ガコイル3b,3cの超電導復帰を助ける。トリガコイ
ル3b,3cの超電導復帰は、各位相検出器14,16
とその比較器17によって検出され、系統の事故が復旧
したことおよび前記トリガコイル3b,3cが超電導復
帰したことの2条件が揃うとスイッチ3dが閉成して定
常状態に復帰できる。
The operation of the superconducting current limiter will be briefly described. In the normal state, the circuit current flows through the superconducting (zero resistance) trigger coils 3b and 3c without induction and the load 4
Power continues to be supplied. Next, the load 4 is short-circuited, etc.
Excessive fault current flows through the circuit and the value is
When the critical current value of the superconducting wires constituting b and 3c is reached, the trigger coils 3b and 3c are quenched and transit to a high resistance body. As a result, the fault current is suppressed, and the current limiting coil 3a having a lower impedance than the trigger coils 3b and 3c.
Commutation to the side. During this time, since the trigger coils 3b and 3c are normal conductors, the temperature of the superconducting wire rises at the same time as it continues to generate heat and consume the refrigerant.
The switch 3d is opened immediately after the current flowing in the trigger coils 3b and 3c is diverted to the current limiting coil 3a, thereby suppressing the evaporation of the refrigerant, and at the same time, the trigger coils 3b and 3c.
To help the trigger coils 3b and 3c return to the superconducting state so that the next cooling event can be dealt with by increasing the cooling rate of the trigger coil. The superconducting return of the trigger coils 3b and 3c is performed by the phase detectors 14 and 16 respectively.
The switch 3d is closed and the state can be returned to the steady state when the two conditions of the recovery of the system fault and the return of the superconductivity of the trigger coils 3b and 3c are met.

【0005】上述した従来の超電導限流器は、動作速度
が極めて速く、短絡電流のような急峻な立ち上がりを持
つ過電流に対しても、第1波から限流できる優れた特徴
を有する反面、超電導体をクエンチさせる方式のため、
限流動作(クエンチ)時にかなりのジュール損失Pjが
発生する。その値は電源電圧Vが一定であれば、次式に
示すようにトリガコイルのクエンチ抵抗値Rqに反比例
する。
The above-described conventional superconducting current limiter has an excellent feature that the operation speed is extremely high and the current can be limited from the first wave even for an overcurrent having a steep rise such as a short-circuit current. Because of the method to quench the superconductor,
A considerable Joule loss Pj occurs during the current limiting operation (quench). If the power supply voltage V is constant, the value is inversely proportional to the quench resistance value Rq of the trigger coil as shown in the following equation.

【0006】Pj=(V2 /Rq)・t (J) t:クエンチ発生後の通電時間(sec) 従って、クエンチ抵抗値Rqが大きいほど、超電導体を
冷却している冷媒の消費(気化)は、少なくなり経済的
な装置とすることができる。このクエンチ抵抗Rqを大
きくする方法として、超電導線のマトリクス(安定化
材)を高抵抗化する方法が考えられる。
Pj = (V 2 / Rq) · t (J) t: energization time after occurrence of quench (sec) Therefore, the larger the quench resistance value Rq, the more the refrigerant cooling the superconductor is consumed (vaporization). Can be reduced and the apparatus can be made more economical. As a method of increasing the quench resistance Rq, a method of increasing the resistance of the matrix (stabilizing material) of the superconducting wire can be considered.

【0007】図5は、超電導マグネットなどに一般的に
使用されている銅(Cu)をマトリクスとする超電導線
と、この種トリガコイルに使用されるCu−Ni(30
%)マトリクス超電導線の固有抵抗値の温度特性比較図
である。同図から分かるとおり、Cu−Ni(30%)
マトリクス超電導線の固有抵抗値は、Cuマトリクス超
電導線の固有抵抗値に対して、常温において約25倍、
10Kにおいては1000倍以上にも達する。
FIG. 5 shows a superconducting wire having a matrix of copper (Cu) generally used for a superconducting magnet and a Cu-Ni (30) used for a trigger coil of this type.
FIG. 5 is a diagram illustrating a temperature characteristic comparison of the specific resistance value of the matrix superconducting wire. As can be seen from the figure, Cu-Ni (30%)
The specific resistance of the matrix superconducting wire is about 25 times that of the Cu matrix superconducting wire at room temperature,
At 10K, it reaches 1000 times or more.

【0008】従って、トリガコイルにCu−Ni(30
%)マトリクス超電導線を適用することにより、大きな
クエンチ抵抗が得られ、限流時の冷媒消費を格段に抑制
することができる。しかしその反面、マトリクスを高抵
抗化することによって安定性が低下し、擾乱に対して弱
くなることから、通電電流密度が低下することも分かっ
てきた。
Accordingly, the trigger coil is made of Cu-Ni (30
%) By using a matrix superconducting wire, a large quench resistance can be obtained, and the consumption of the refrigerant at the time of current limiting can be remarkably suppressed. However, on the other hand, it has also been found that increasing the resistance of the matrix lowers the stability and makes the matrix less susceptible to disturbances, thereby lowering the current density.

【0009】一般に超電導導体の通電容量を上げるに
は、通常の電線と同様に、撚線にする方法が用いられ
る。しかし、前述のように高抵抗マトリクスで比較的安
定度の低い超電導線において撚線構成を採用した場合、
交流通電時の電磁力などによって、撚線内部に微小な素
線の動きが生じ、その時の摩擦熱によりクエンチするケ
ースが出てくる。
Generally, in order to increase the current-carrying capacity of the superconducting conductor, a twisted wire method is used in the same manner as a normal electric wire. However, as described above, when a stranded wire configuration is adopted in a superconducting wire with relatively low stability in a high resistance matrix,
Due to the electromagnetic force at the time of the alternating current, a minute movement of the strand occurs inside the stranded wire, and in some cases, quench occurs due to frictional heat at that time.

【0010】図6は、直径φ0.2mmの交流用Nb−T
i極細多心線(Cu−Ni(30%)マトリクス)を撚
線(1次及び2次)したときの素線あたりの交流クエン
チ電流値Iqの減少傾向を電流の時間変化di/dtに
対して示す図である。同図から分かるとおり、超電導導
体のクエンチ電流値は電流の時間変化(di/dt)値
によっても多少変化するが、高いdi/dt領域ではほ
ぼ一定となる。この飽和領域での撚線によるクエンチ電
流値を比較すると、撚次数が増大する毎に超電導導体を
構成している素線一本あたりのクエンチ電流値が低下し
ている。すなわち、素線では約100Aの通電容量があ
る線でも1次撚線にすると67〜75Aに、さらに2次
撚線にすると23〜30Aまで低下する。撚線にしてク
エンチ電流値が低下したり不規則にばらつくのは超電導
線に機械的な動きが起きていることによるものと考えら
れる。
FIG. 6 shows an Nb-T for AC having a diameter of 0.2 mm.
The decreasing tendency of the AC quench current value Iq per strand when the i ultra-fine multi-core wire (Cu-Ni (30%) matrix) is stranded (primary and secondary) is plotted against the current time change di / dt. FIG. As can be seen from the figure, the quench current value of the superconducting conductor slightly changes depending on the time change (di / dt) value of the current, but becomes substantially constant in a high di / dt region. Comparing the quench current value due to the stranded wire in the saturation region, the quench current value per one wire constituting the superconducting conductor decreases as the twist order increases. In other words, in the case of a strand having a current carrying capacity of about 100 A, the primary stranded wire is reduced to 67 to 75 A and the secondary stranded wire is further reduced to 23 to 30 A. The reason why the quench current value is reduced or irregularly varied with the stranded wire is considered to be due to mechanical movement of the superconducting wire.

【0011】従って、トリガコイルの通電電流密度を向
上させるためには、撚次数の低い導体でコイルを作り、
それらコイルを並列に構成した方が効果的と思える。
Therefore, in order to improve the current density of the trigger coil, the coil is made of a conductor having a low twist order.
It seems more effective to configure these coils in parallel.

【0012】図7および図8はこのような考えに基いて
製作したトリガコイルの構成とその内部接続を示す図で
ある。両図において、トリガコイルは内側の無誘導コイ
ル3b,3cと外側の無誘導コイル3d,3eの2組か
ら構成されており、各コイルの導体には前述の2次撚線
が用いられている。同種の超電導導体を用いて全コイル
同時にクエンチさせようとしても、クエンチ電流値は前
述した超電導導体自身の不安定性や、コイル内部の磁界
分布、さらにはコイル巻枠との整合の程度などによって
同一とはならない場合が多い。このようなコイルを用い
て短絡試験を行ったところ数回の試験で動作電流が低下
していく劣化が発生した。
FIG. 7 and FIG. 8 are diagrams showing the configuration of the trigger coil manufactured based on such a concept and its internal connection. In both figures, the trigger coil is composed of two sets of inner non-inductive coils 3b and 3c and outer non-inductive coils 3d and 3e, and the above-described secondary stranded wire is used as a conductor of each coil. . Even when attempting to quench all coils simultaneously using the same type of superconducting conductor, the quench current value is the same due to the instability of the superconducting conductor itself, the magnetic field distribution inside the coil, and the degree of matching with the coil winding frame, etc. Often not. When a short-circuit test was performed using such a coil, deterioration occurred in which the operating current decreased in several tests.

【0013】図9はこのコイルの特性劣化後の短絡試験
結果であり、コイル3b,3c側を流れる電流I31と
コイル3d,3e側電流I32との間に複雑な電流のや
り取り(転流/再転流)が見られる(図中のEはトリガ
コイルの両端電圧)。この複雑な電流変化は、無誘導コ
イルを並列化したことに起因しておりこの様なコイル特
性のため劣化が生じたと考えられる。
FIG. 9 shows the result of a short-circuit test after the characteristic deterioration of the coil, and shows the complicated exchange of current (commutation / return) between the current I31 flowing through the coils 3b and 3c and the current I32 on the coils 3d and 3e. (E in the figure is a voltage across the trigger coil). This complicated current change is caused by paralleling non-inductive coils, and it is considered that such coil characteristics have caused deterioration.

【0014】すなわち、各々の無誘導コイル間には相互
誘導が無く独立したインピーダンス素子となっており、
クエンチ後のインピーダンス成分は殆ど抵抗性である。
従って、短絡電流が流れ始めると、まずクエンチ電流値
が小さい方のコイル、例えば3b,3cが最初にクエン
チ(”A”点)するが、この時のクエンチは極めて狭い
範囲に留まる可能性がある。何故ならクエンチした側の
回路電流は発生抵抗が極僅かであっても、相手コイルの
インピーダンスがより小さいと、その上昇が抑制さ
れ(”B”点)、まだクエンチしていない相手コイル3
d,3e側へ電流が転流していくからである。
That is, there is no mutual induction between the non-inductive coils, and there are independent impedance elements.
The impedance component after quenching is almost resistive.
Therefore, when the short-circuit current starts to flow, first, the coil having the smaller quench current value, for example, the coils 3b and 3c quench (point "A") first, but the quench at this time may remain in a very narrow range. . The reason is that the circuit current on the quenched side, even if the generated resistance is extremely small, is suppressed if the impedance of the partner coil is smaller (point "B"), and the partner coil 3 which has not been quenched yet
This is because the current commutates to the d and 3e sides.

【0015】一方、相手コイル3d,3eにはコイル3
b,3cからの転流電流と自身を流れていた電流が重畳
するため、前述した電流I31より大きなdi/dt値
を有する電流が流れることになる。この種コイルには、
印加電流のdi/dt値が大きいほどクエンチ領域も広
い範囲に及ぶ傾向がある。
On the other hand, coils 3d and 3e
Since the commutation current from b and 3c and the current flowing through itself are superimposed, a current having a larger di / dt value than the above-described current I31 flows. In this kind of coil,
The larger the di / dt value of the applied current, the wider the quench region tends to be.

【0016】クエンチ領域が広い範囲に起こると、コイ
ル3d,3eのクエンチ抵抗値も大きなものとなり、急
激な再転流電流が部分的にクエンチしているコイル3
b,3c側へ流れる(”C”点)。この再転流電流によ
って、既にクエンチしているコイル3b,3cの常電導
部には大きなジュール損失が発生して温度が上昇し、熱
劣化や焼損が生じることになる。
When the quench region occurs in a wide range, the quench resistance of the coils 3d and 3e also becomes large, and the coil 3d in which the sudden recommutation current partially quench.
It flows to the b, 3c side ("C" point). Due to this recommutation current, a large Joule loss occurs in the normal conducting portions of the coils 3b and 3c that have already been quenched, the temperature rises, and thermal deterioration and burnout occur.

【0017】[0017]

【発明が解決しようとする課題】上述したように、従来
の技術においては、トリガコイルの通電電流密度と通電
容量を増大させようとする場合において、使用する超電
導導体の撚次数を上げる方法では素線の動きによって通
電効率が低下し、また低次数の撚線を用いてコイルをた
だ単に並列化する方法ではトリガコイルに多重クエンチ
が生じてコイル特性が劣化する問題がある。
As described above, in the prior art, when the current density and current capacity of the trigger coil are to be increased, the method of increasing the twist order of the superconducting conductor to be used is difficult. The energization efficiency is reduced by the movement of the wire, and the method of simply parallelizing the coils using low-order stranded wires has a problem that multiple quench occurs in the trigger coil and the coil characteristics are deteriorated.

【0018】本発明は、上記に鑑みてなされたもので、
その目的とするところは、極力低次数の撚線を用いて通
電電流密度の高い大容量の超電導トリガコイルを得ると
ともに、特性の劣化を防止すべく短絡電流による多重ク
エンチを防止し得る超電導限流装置を提供することにあ
る。
The present invention has been made in view of the above,
The purpose is to obtain a large-capacity superconducting trigger coil with a high current density using a low-order stranded wire as much as possible, and a superconducting current limit that can prevent multiple quench due to short-circuit current to prevent deterioration of characteristics. It is to provide a device.

【0019】[0019]

【課題を解決するための手段】上記目的を達成するた
め、本発明の超電導限流装置は、超電導体の臨界電流値
によるクエンチ現象を利用して交流電路に生じる過電流
を抑制する超電導トリガコイルを有する超電導限流装置
であって、前記超電導トリガコイルは、各々所定の複数
条数、所定の巻方向および所定の巻回数を有し、互い
に負の相互インダクタンスを有するように同軸に設けら
れるとともに、互いに無誘導となるように並列接続され
または直列接続され且つこれが並列接続された複数の
超電導コイルから構成されることを要旨とする。
In order to achieve the above object, a superconducting current limiting device according to the present invention uses a quench phenomenon caused by a critical current value of a superconductor to suppress an overcurrent generated in an alternating current circuit. Wherein the superconducting trigger coil comprises a plurality of
Number of conditions, having a predetermined winding direction and a predetermined number of turns, with provided coaxially so as to have a negative mutual inductance each other and which are connected in parallel or in series connected in a non-inductive mutually parallel The gist consists of a plurality of connected superconducting coils.

【0020】[0020]

【作用】本発明の超電導限流装置では、超電導トリガコ
イルを構成する複数の超電導コイルは互いに負の相互イ
ンダクタンスを有するとともに、互いに無誘導となるよ
うに並列接続、または直列接続され且つこれが並列接続
されている。
In the superconducting current limiting device according to the present invention, the plurality of superconducting coils constituting the superconducting trigger coil have a mutual mutual inductance and are connected in parallel or in series so as to be non-inductive with each other and are connected in parallel. <br/>

【0021】[0021]

【実施例】以下、図面を用いて本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】図1は、本発明の一実施例に係わる超電導
限流装置に適用される超電導トリガコイルの構成を示す
斜視図である。同図に示す超電導トリガコイルは、第1
の超電導コイルである内側コイル31および該内側コイ
ル31に対して同軸的に外側に巻装された第2の超電導
コイルである外側コイル32から構成されている。
FIG. 1 is a perspective view showing a configuration of a superconducting trigger coil applied to a superconducting current limiting device according to one embodiment of the present invention. The superconducting trigger coil shown in FIG.
, And an outer coil 32 as a second superconducting coil wound coaxially outside the inner coil 31.

【0023】図2は、図1に示す超電導トリガコイルの
内部接続を示す回路図であるが、図1,2に示すよう
に、内側コイル31は右巻きの超電導コイル31a,3
1b,31cが3条に巻装され、外側コイル32は左巻
きの超電導コイル32a,32b,32cが同様に3条
に巻装されている。また、内側コイル31の両側端子3
1d,31eおよび外側コイル32の両側端子32d,
32eは、図2に示すように、3条のコイルが2並列に
なるように接続されている。
FIG. 2 is a circuit diagram showing the internal connection of the superconducting trigger coil shown in FIG. 1. As shown in FIGS. 1 and 2, the inner coil 31 has right-handed superconducting coils 31a, 3a.
1b and 31c are wound in three turns, and the outer coil 32 is similarly wound left-handed superconducting coils 32a, 32b and 32c in three turns. Also, both terminals 3 of the inner coil 31
1d, 31e and both terminals 32d of the outer coil 32,
32e, as shown in FIG. 2, three coils are connected so as to be two in parallel.

【0024】従って、本実施例の超電導限流装置に適用
される超電導トリガコイルは、従来の超電導トリガコイ
ルのような1層1条の巻線構成でなく、1層のコイル巻
枠に複数条(本実施例では3条)のねじ溝加工を施し、
3条の超電導コイルを巻装したことを特徴としている。
すなわち、通電効率が高くて比較的直径の細い1次撚線
を1層3条に巻装し、この3条コイルの両端を互いに接
続することにより1次撚線を3並列に構成した超電導コ
イルを得ている。
Therefore, the superconducting trigger coil applied to the superconducting current limiting device of the present embodiment does not have a single-layer, single-layer winding structure as in the conventional superconducting trigger coil, but includes a plurality of single-layer coil windings. (3 threads in this embodiment)
It is characterized by winding three superconducting coils.
That is, a superconducting coil in which a primary stranded wire having a high current-carrying efficiency and a relatively small diameter is wound around three layers in one layer and both ends of the three-layer coil are connected to each other to form three primary stranded wires in parallel. Have gained.

【0025】更に、この3条巻コイルを少なくとも2個
(1組)同軸に近接して構成し、これらのコイルの巻方
向を互いに超磁力が打ち消し合うように逆巻に巻装し、
2個のコイルの両端を互いに短絡接続することにより、
6条の超電導コイルが並列かつ電磁気的に無誘導となる
ように密に結合された超電導トリガコイルを構成してい
るのである。
Further, at least two (one set) of these three-coil coils are formed coaxially close to each other, and these coils are wound in reverse winding so that the supermagnetic forces cancel each other out in the winding direction.
By short-circuiting both ends of the two coils to each other,
The six superconducting coils constitute a superconducting trigger coil which is closely coupled in parallel and electromagnetically non-inductive.

【0026】以上のように構成される超電導トリガコイ
ルを利用した超電導限流装置では、超電導トリガコイル
が3条2並列のコイルとなっているので、1次撚線の通
電容量の6倍に相当する連続通電容量を得ることができ
る。
In the superconducting current limiting device using the superconducting trigger coil configured as described above, since the superconducting trigger coil is a three-row, two-parallel coil, it is equivalent to six times the current carrying capacity of the primary stranded wire. Continuous power capacity can be obtained.

【0027】図3(a)は、上述した超電導トリガコイ
ルの動作状態の電気的等価回路図である。同図に示す超
電導トリガコイルは、内側コイル31および外側コイル
32がそれぞれ自己インダクタンスL31,L32を有
して示され、定常電流に対しては両コイル31,32と
も超電導状態を維持し、互いの自己インダクタンスL3
1,L32を互いに打ち消すように負に磁気結合(−
M)しているため、図3(b)に示すように該超電導ト
リガコイルのインピーダンスはほぼゼロになっている。
FIG. 3A is an electrical equivalent circuit diagram of the operation state of the above-described superconducting trigger coil. In the superconducting trigger coil shown in the figure, an inner coil 31 and an outer coil 32 are shown to have self-inductances L31 and L32, respectively, and both coils 31, 32 maintain a superconducting state with respect to a steady current, and each other. Self inductance L3
1 and L32 are negatively magnetically coupled to cancel each other (−
M), the impedance of the superconducting trigger coil is almost zero as shown in FIG.

【0028】また、短絡電流等の過電流が流れて、超電
導コイル31,32のいずれか一方の例えば内側コイル
31がクエンチした時の状態が図3(c)に示されてい
るが、この状態ではクエンチした方の内側コイル31に
クエンチ抵抗R31が発生して、コイル電流I31を減
衰(限流)させる。このように内側コイル31の電流が
低減すると、内側コイル31の発生磁束も減少するた
め、コイル31,32の間の無誘導状態が崩れ、まだク
エンチしていない方の外側コイル32にはリアクトル作
用が発生する。
FIG. 3C shows a state in which an overcurrent such as a short-circuit current flows and one of the superconducting coils 31, 32, for example, the inner coil 31 is quenched. Then, a quench resistor R31 is generated in the quenched inner coil 31, and the coil current I31 is attenuated (current-limited). When the current of the inner coil 31 is reduced in this manner, the magnetic flux generated by the inner coil 31 is also reduced, so that the non-inductive state between the coils 31 and 32 is broken, and the outer coil 32 that has not been quenched has a reactor action. Occurs.

【0029】このコイル間の相互誘導による限流動作
は、電磁気的な現象であるので、短絡電流のような急峻
な上昇電流に対しても遅れなく応答する。また、この作
用は常に内側コイル31と外側コイル32との間の分流
アンバランスを解消するように作用するので、一方のコ
イルのみがクエンチした時、または図3(d)に示すよ
うに両コイルが共にクエンチし、かつそのクエンチ抵抗
値が大きく相違したとしても、従来のコイルのようにコ
イル間で短絡電流のやりとりを生じて、コイルが劣化し
たり焼損することがなくなる。
Since the current limiting operation by mutual induction between the coils is an electromagnetic phenomenon, it responds to a steep rising current such as a short-circuit current without delay. Also, since this action always acts to eliminate the shunt imbalance between the inner coil 31 and the outer coil 32, when only one of the coils is quenched, or as shown in FIG. Are quenched together, and even if the quench resistance values are significantly different, short-circuit current is exchanged between the coils as in the conventional coils, and the coils are not deteriorated or burnt out.

【0030】以上のように、本超電導トリガコイルは、
内側コイル31と外側コイル32とが磁気的に密に結合
しているので、種々の回路条件下でもいずれか一方のコ
イルにクエンチが発生すると、ほぼ同時かつ均等に短絡
電流を分担して限流動作を行うことができる。
As described above, the present superconducting trigger coil
Since the inner coil 31 and the outer coil 32 are magnetically tightly coupled with each other, even if quench occurs in one of the coils even under various circuit conditions, the short-circuit current is shared almost simultaneously and uniformly to limit the current. Actions can be taken.

【0031】次に、図1に示す超電導トリガコイルの具
体的構成の一例として、トリガコイル用導体に上述した
図7で示した1次撚線、すなわち交流クエンチ電流が6
7A〜75A/素線のものを用いた場合について説明す
る。
Next, as an example of a specific configuration of the superconducting trigger coil shown in FIG. 1, the primary stranded wire shown in FIG.
A case where a wire of 7A to 75A / wire is used will be described.

【0032】1次撚線は線径が2次撚線の1/3以下と
細く、またターン間に発生する電磁力(通電電流の2乗
に比例)も1/4となるので、その分巻線ピッチを狭く
できる。従って、コイル外形が従来のコイルと同じであ
れば、1条当りの導体の長さは従来の1条巻コイルと同
等にすることができる。
The primary stranded wire is as thin as 1/3 or less of the secondary stranded wire, and the electromagnetic force generated between turns (proportional to the square of the conducting current) is also reduced to 1/4. The winding pitch can be reduced. Therefore, if the outer shape of the coil is the same as that of the conventional coil, the length of the conductor per strip can be made equal to that of the conventional single-wound coil.

【0033】従来のコイルは素線36本からなる2次撚
線を用いて並列無誘導コイルを構成しているので、72
本の超電導素線が並列に使用されていることになる。
In the conventional coil, a parallel non-inductive coil is formed by using a secondary stranded wire composed of 36 strands.
This means that the superconducting wires are used in parallel.

【0034】この従来のコイルの連続通電容量は2次撚
線における素線容量の72倍、すなわち23A×72=
1656Aとなる。
The continuous current carrying capacity of the conventional coil is 72 times the wire capacity of the secondary stranded wire, that is, 23 A × 72 =
1656A.

【0035】これに対して、本実施例の超電導トリガコ
イルは、素線6本が撚り合わされた1次撚を6本並列接
続しているので、超電導素線の数量は36本となり、従
来のコイルの1/2の導体断面積となっている。しかし
ながら、連続通電容量は1次撚における素線通電容量の
36倍、すなわち67A×36=2412Aとなり、従
来のコイルの約1.5倍の通電容量が得られる。
On the other hand, in the superconducting trigger coil of the present embodiment, the number of superconducting wires is 36 since six primary wires in which six wires are twisted are connected in parallel. The conductor cross-sectional area is 1/2 of the coil. However, the continuous current carrying capacity is 36 times the wire current carrying capacity in the primary twist, that is, 67 A × 36 = 2412 A, and a current carrying capacity approximately 1.5 times that of the conventional coil can be obtained.

【0036】このように本実施例の超電導トリガコイル
は、従来のコイルと比較して、1/2の通電断面積で約
1.5倍の通電容量を有するとともに、約2400Aま
での回路電流に対して安定して、インピーダンスがほぼ
ゼロの超電導状態を維持し、これ以上の電流が流れる
と、クエンチして限流作用を行う。
As described above, the superconducting trigger coil of the present embodiment has a current carrying capacity of about 1.5 times as large as that of the conventional coil with a current carrying sectional area of 2 and a circuit current up to about 2400 A. On the other hand, the superconducting state is maintained in a state where the impedance is almost zero, and when a current exceeding this level flows, it is quenched to perform a current limiting action.

【0037】次に、このようなトリガコイル31,32
を図4に示す回路にトリガコイル3b,3cの代りに適
用した場合の作用について説明する。
Next, such trigger coils 31, 32
Will be described in the case where is applied to the circuit shown in FIG. 4 instead of the trigger coils 3b and 3c.

【0038】まず、遮断器2が閉路して負荷4への通電
が開始されると、回路電流は、図3(b)に示すように
超電導でほぼ無誘導のトリガコイル31,32を通って
正常に負荷4へ給電される。次に、例えば負荷4に短絡
事故が発生して、短絡電流が流れ、この短絡電流の波高
値が2400Aを超え、トリガコイル31の方にクエン
チが発生すると、トリガコイル31には抵抗R31が生
じてトリガコイル31の回路電流を限流する。トリガコ
イル31の回路電流が減少すると、コイル32には前述
したようなインピーダンス作用が生じてトリガコイル3
2側の回路電流もほぼ同時に限流される(図3
(c))。
First, when the circuit breaker 2 is closed and energization to the load 4 is started, the circuit current passes through the superconducting and almost non-inductive trigger coils 31 and 32 as shown in FIG. Power is normally supplied to the load 4. Next, for example, when a short-circuit accident occurs in the load 4 and a short-circuit current flows, the peak value of the short-circuit current exceeds 2400 A, and a quench occurs in the trigger coil 31, a resistor R31 is generated in the trigger coil 31. To limit the circuit current of the trigger coil 31. When the circuit current of the trigger coil 31 decreases, the impedance action described above occurs in the coil 32, and the trigger coil 3
The circuit current on the second side is also limited almost simultaneously (see FIG. 3).
(C)).

【0039】この場合、短絡電流はトリガコイル31の
抵抗分とコイル32のリアクタンス分によって限流され
るが、短絡電流の上昇が著しい場合には、トリガコイル
31がクエンチした後も回路電流は上昇を続け、その値
がコイル32のクエンチ電流値を超えると、コイル32
にもクエンチが生じる。その結果、短絡電流は、両コイ
ル31,32のクエンチ抵抗値とそれらコイル電流のア
ンバランス度に応じて生じるリアクタンス分によって所
定値に限流される(図3(d))。
In this case, the short-circuit current is limited by the resistance of the trigger coil 31 and the reactance of the coil 32. However, if the short-circuit current increases significantly, the circuit current increases even after the trigger coil 31 is quenched. Subsequently, when the value exceeds the quench current value of the coil 32, the coil 32
Also quench. As a result, the short-circuit current is limited to a predetermined value by the quench resistance values of the two coils 31 and 32 and the reactance generated according to the degree of imbalance of the coil currents (FIG. 3D).

【0040】なお、上記実施例では、一次撚線で3条巻
きしたコイルについて説明したが、本発明はこれに限定
されるものでなく、このようなコイルに適用される超電
導導体の撚次数および巻条数は任意のものでよい。ま
た、コイルの組み合せも本実施例のように1組の2並列
無誘導コイルで説明したものに限定されず、複数並列ま
たは直列接続したものを並列で複数組のコイル構成にし
ても同様に作用効果を得ることができる。
In the above embodiment, a coil wound three turns with a primary stranded wire has been described. However, the present invention is not limited to this, and the number of turns of the superconducting conductor applied to such a coil and The number of windings may be arbitrary. Also, combinations of coils are not limited to those described in a set of second parallel non-inductive coil as in this embodiment, effects similarly to the plurality of sets of coils constituting those multiple parallel or series connected in parallel The effect can be obtained.

【0041】[0041]

【発明の効果】以上説明したように、本発明によれば、
超電導トリガコイルを構成する複数の超電導コイルは互
いに負の相互インダクタンスを有するとともに、互いに
無誘導となるように並列接続、または直列接続され且つ
これが並列接続されているので、低い次数の撚線で大容
量の超電導トリガコイルを構成でき、1条当りの巻線の
長さも従来のコイルと同等にすることができ、通電断面
積が小さくなった分クエンチ抵抗を増大することができ
る。また、種々の短絡条件下やトリガコイルのクエンチ
電流にばらつきがあっても、超電導コイル間の相互誘導
作用により多重クエンチによるトリガコイルの特性劣化
を防止することができる。更に、超電導トリガコイルの
超電導線の損失は導体体積に比例し、通電電流密度が向
上した分、使用する超電導導体の体積が減少するので、
その交流損失も減少し、超電導トリガコイルを冷却する
冷凍機のコンパクト化および省電力化を図ることができ
る。
As described above, according to the present invention,
The plurality of superconducting coils constituting the superconducting trigger coil have negative mutual inductance with each other, and are connected in parallel or in series so as to be non-inductive with each other , and
Since they are connected in parallel , a large-capacity superconducting trigger coil can be constructed with a low-order stranded wire, the length of the winding per wire can be made equal to that of the conventional coil, and the current-carrying cross-sectional area becomes smaller. The quench resistance can be increased accordingly. Further, even under various short-circuit conditions and variations in the quench current of the trigger coil, it is possible to prevent the deterioration of the trigger coil characteristics due to multiple quench due to the mutual induction between the superconducting coils. Furthermore, the loss of the superconducting wire of the superconducting trigger coil is proportional to the conductor volume, and the volume of the superconducting conductor used decreases as the current carrying density increases,
The AC loss is also reduced, and the refrigerator for cooling the superconducting trigger coil can be made compact and power saving.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係わる超電導限流装置に適
用される超電導トリガコイルの構成を示す斜視図であ
る。
FIG. 1 is a perspective view showing a configuration of a superconducting trigger coil applied to a superconducting current limiting device according to one embodiment of the present invention.

【図2】図1に示す超電導トリガコイルの内部接続を示
す回路図である。
FIG. 2 is a circuit diagram showing an internal connection of the superconducting trigger coil shown in FIG.

【図3】図1に示す超電導トリガコイルの動作状態の電
気的等価回路図である。
FIG. 3 is an electrical equivalent circuit diagram of an operation state of the superconducting trigger coil shown in FIG.

【図4】従来の超電導限流装置の回路図である。FIG. 4 is a circuit diagram of a conventional superconducting current limiting device.

【図5】超電導体のマトリクスとなる銅および銅ニッケ
ルの電気抵抗の温度特性を示す図である。
FIG. 5 is a diagram showing temperature characteristics of electric resistance of copper and copper nickel serving as a matrix of a superconductor.

【図6】銅ニッケルをマトリクスとするNb−Ti極細
多心線クエンチ電流の撚線次数による低下特性を示す図
である。
FIG. 6 is a diagram showing a decrease characteristic of a quench current of an Nb-Ti ultrafine multi-core wire having a matrix of copper nickel depending on a twisted wire order.

【図7】通電容量を増大するための従来の一般的なコイ
ル構成を示す図である。
FIG. 7 is a diagram showing a conventional general coil configuration for increasing a current carrying capacity.

【図8】図7のコイルの内部接続および電流とコイル起
磁力方向との関係を示す図である。
8 is a diagram showing the internal connection of the coil of FIG. 7 and the relationship between the current and the direction of the magnetomotive force of the coil.

【図9】図7に示すコイルの短絡試験における電圧電流
波形を示す図であり、横軸は時間変化を示し、縦軸のE
はトリガコイルの両端電圧波形、I31は内層コイル3
b,3cの合成電流の変化、I32は外層コイル3d,
3eの合成電流の変化を示している。
9 is a diagram showing a voltage-current waveform in a short-circuit test of the coil shown in FIG. 7, in which the horizontal axis represents a time change and the vertical axis represents E;
Is the voltage waveform across the trigger coil, I31 is the inner layer coil 3.
b, 3c, the change of the combined current, I32 is the outer layer coil 3d,
3e shows a change in the combined current.

【符号の説明】[Explanation of symbols]

31 内側コイル 32 外側コイル 31a,31b,31c 内側コイルの超電導コイル 32a,32b,32c 外側コイルの超電導コイル 31 inner coil 32 outer coil 31a, 31b, 31c inner coil superconducting coil 32a, 32b, 32c outer coil superconducting coil

フロントページの続き (72)発明者 ▲つる▼永 和行 東京都府中市東芝町1番地 株式会社東 芝 府中工場内 (72)発明者 伊藤 大佐 神奈川県川崎市幸区小向東芝町1 株式 会社東芝 総合研究所内 (72)発明者 米田 えり子 神奈川県川崎市幸区小向東芝町1 株式 会社東芝 総合研究所内 (56)参考文献 特開 平2−202320(JP,A) 特開 平1−214223(JP,A) 特開 平2−26224(JP,A) 特開 平3−145922(JP,A) 特表 平3−503945(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 39/16 - 39/20 H01L 39/00 H02H 9/02 H01F 5/08 H01F 7/22 Continuing on the front page (72) Inventor ▲ Tsuru ▼ Kazuyuki Naga Toshiba, Fuchu-shi, Tokyo 1 Toshiba Corporation Fuchu Factory (72) Inventor Osamu Ito 1 Komukai Toshiba-cho, Kochi-ku, Kawasaki-shi, Kanagawa Prefecture Co., Ltd. In the Toshiba Research Institute (72) Inventor Eriko Yoneda 1 in Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture In the Toshiba Research Institute (56) References JP-A-2-202320 (JP, A) JP-A-1-214223 (JP, A) JP-A-2-26224 (JP, A) JP-A-3-145922 (JP, A) JP-A-3-503945 (JP, A) (58) Fields investigated (Int. Cl. 7) H01L 39/16-39/20 H01L 39/00 H02H 9/02 H01F 5/08 H01F 7/22

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超電導体の臨界電流値によるクエンチ現
象を利用して交流電路に生じる過電流を抑制する超電導
トリガコイルを有する超電導限流装置であって、前記超
電導トリガコイルは、各々所定の複数の条数、所定の巻
方向および所定の巻回数を有し、互いに負の相互インダ
クタンスを有するように同軸に設けられるとともに、互
いに無誘導となるように並列接続されたまたは直列接続
され且つこれが並列接続された複数の超電導コイルから
構成されることを特徴とする超電導限流装置。
1. A superconducting current limiting device having a suppressing superconducting trigger coil overcurrent occurring in the superconductor utilized to AC circuit quenching phenomenon by the critical current value of the superconducting trigger coil, each predetermined plurality number of conditions, having a predetermined winding direction and a predetermined number of turns, with provided coaxially so as to have a negative mutual inductance each other, or connected in series which are connected in parallel so as to be non-inductive with each other
And a superconducting current limiting device comprising a plurality of superconducting coils connected in parallel .
JP12881192A 1992-05-21 1992-05-21 Superconducting current limiting device Expired - Fee Related JP3231837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12881192A JP3231837B2 (en) 1992-05-21 1992-05-21 Superconducting current limiting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12881192A JP3231837B2 (en) 1992-05-21 1992-05-21 Superconducting current limiting device

Publications (2)

Publication Number Publication Date
JPH05327039A JPH05327039A (en) 1993-12-10
JP3231837B2 true JP3231837B2 (en) 2001-11-26

Family

ID=14994008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12881192A Expired - Fee Related JP3231837B2 (en) 1992-05-21 1992-05-21 Superconducting current limiting device

Country Status (1)

Country Link
JP (1) JP3231837B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100389530C (en) * 2002-12-19 2008-05-21 中国科学院电工研究所 Current-limiting energy-storing circuit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1681731A1 (en) * 2005-01-12 2006-07-19 Nexans Compact superconducting current limiting component in coil configuration with low inductance
KR100662754B1 (en) * 2005-12-02 2007-01-02 엘에스산전 주식회사 Resistive type superconducting fault current limiter
CN104917477A (en) * 2015-06-02 2015-09-16 青岛海信电器股份有限公司 Filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100389530C (en) * 2002-12-19 2008-05-21 中国科学院电工研究所 Current-limiting energy-storing circuit

Also Published As

Publication number Publication date
JPH05327039A (en) 1993-12-10

Similar Documents

Publication Publication Date Title
KR100662754B1 (en) Resistive type superconducting fault current limiter
KR100929394B1 (en) Current Limiting Module and Hybrid Current Limiter Using Heterogeneous Superconducting Wires
US20020018327A1 (en) Multi-winding fault-current limiter coil with flux shaper and cooling for use in an electrical power transmission/distribution application
JPH10501120A (en) Current limiting device
Kozak et al. Tests and performance analysis of coreless inductive HTS fault current limiters
JPS62138021A (en) Ac current limiter
Ito et al. 6.6 kV/1.5 kA-class superconducting fault current limiter development
JPH0458725A (en) Superconducting current limiter
EP0567293B1 (en) Superconducting current limiting device
Tixador et al. Hybrid superconducting AC fault current limiter principle and previous studies
JP2000032654A (en) Current limiting element using oxide superconductor, and current limiter thereof
JP3231837B2 (en) Superconducting current limiting device
Liang et al. Experimental test of two types of non-inductive solenoidal coils for superconducting fault current limiters use
JP2941833B2 (en) Superconducting current limiting device
JP2000354326A (en) Current-limiting device utilizing superconducting transformer
JPH05176450A (en) Superconducting current limiter
JP2901068B2 (en) Current limiting device
Verhaege et al. Protection of superconducting AC windings
JP3045165B1 (en) Current limiting device
Min-Cheol et al. Fault Current Limiting Characteristic of Non-inductively Wound HTS Magnets in Sub-cooled $ LN_2 $ Cooling System
JPH09182285A (en) Superconductive current limiter
JPH03145922A (en) Current limiter
JP2533119B2 (en) Superconducting device for short circuit suppression
JP2002262450A (en) Transformer current-limiting method using superconducting membrane and current-limiting device
JP2947275B1 (en) Current limiting device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070914

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees