JPS5897806A - Superconductive magnet protection device - Google Patents

Superconductive magnet protection device

Info

Publication number
JPS5897806A
JPS5897806A JP56197198A JP19719881A JPS5897806A JP S5897806 A JPS5897806 A JP S5897806A JP 56197198 A JP56197198 A JP 56197198A JP 19719881 A JP19719881 A JP 19719881A JP S5897806 A JPS5897806 A JP S5897806A
Authority
JP
Japan
Prior art keywords
energy
superconducting magnet
voltage
rotary machine
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56197198A
Other languages
Japanese (ja)
Inventor
Haruhiko Nomura
晴彦 野村
Kenichi Koyama
健一 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56197198A priority Critical patent/JPS5897806A/en
Publication of JPS5897806A publication Critical patent/JPS5897806A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/001Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for superconducting apparatus, e.g. coils, lines, machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To prevent the generation of abnormal high voltage, when normal conductive transfer generates, and convert the accumulated energy into the other form of energy as rapid as possible, by using a rotary machine as the load for emitting the accumulated energy. CONSTITUTION:Since the rotary machine 7 performs the mutual conversion between electrical energy and mechanical energy and is all constituted of a rotor and a stator in the structure, the rotor has the moment of inertia in a considerable scale. This moment of inertia can store the rotational energy in the form of kinetic energy. When the voltage over the fixed level is detected in a superconductive magnet 3 by a voltage detector 6, and a switch 2 opens, electromotive force is generated in a reverse direction. But, even when this electromotive force is impressed on the rotary machine 7 via a diode 4, the rotor stands still at that point, and therefore the impedance of the rotary machine 7 is only a winding resistance resulting in the approximate short-circuit between A and B.

Description

【発明の詳細な説明】 この発明は、超電導磁石か何らかの原因で超電導状態が
破られることに伴って放出される磁気エネルギによって
電磁石が破壊されるのを防止するための超電導磁石像I
Il装置に関するものである。
Detailed Description of the Invention The present invention provides a superconducting magnet image I for preventing an electromagnet from being destroyed by magnetic energy released when the superconducting state of the superconducting magnet is broken for some reason.
It concerns an Il device.

近年、超電導磁石も各S*業界で実用段階となり、核融
★用、MHD発電用、高エネルギ粒子加速用、高密度エ
ネルギ貯薦用、磁気浮上列車用。
In recent years, superconducting magnets have entered the practical stage in various S* industries, and are used for nuclear fusion*, MHD power generation, high-energy particle acceleration, high-density energy storage, and magnetic levitation trains.

電子線利用の収束電子レンズ用、医書機器用、レーザ電
源層等に大規模化あるいは高性能化して使用され、その
用途も多岐にわたっている。
They are used in large-scale or high-performance applications such as convergent electron lenses using electron beams, medical writing equipment, and laser power layers, and their applications are wide-ranging.

そして、これらの電磁石は、電磁石Jl独として存在す
ることは少なく、はとんど弛の電源系・計橢・制御系あ
るいは人間工学系とシステム的に給金され【使用されて
いるので、超電導磁石の保護とし【従来の高電圧発生濶
の保Ii装置では、これらの各基に、着し〜1損傷を与
える虞れがあった。
These electromagnets rarely exist as individual electromagnets, and are mostly used in systems such as power supply systems, control systems, control systems, or ergonomics systems, so they are used in superconducting systems. In order to protect the magnets, there was a risk of damage to each of these groups in the conventional high voltage protection device.

もともと、超電導4体は、その臨界電流、臨界磁界およ
び臨界温度の範囲内で超電導特性、すなわち通常的な電
気抵抗か零の特性を有し、その高い電流密度性と耐高磁
界性のため、巨大な磁気エネルギを内蔵することが可能
となり、・大規模な電磁石を製作することができる。
Originally, four superconducting bodies had superconducting properties, that is, normal electrical resistance or zero properties within their critical current, critical magnetic field, and critical temperature range, and because of their high current density and high magnetic field resistance, It becomes possible to store a huge amount of magnetic energy, making it possible to manufacture large-scale electromagnets.

しかし、超電導磁石は本質的に前記3臨界条件の範囲内
において始めて超電導状mt−維持できるものであるが
、超電導4体の性質として発熱K[!めて敏感であるた
め、冷却や熱伝達の条件如何によっては、たとえ前記臨
界条件を満していても大規模な磁気エネルギを安定に保
持することが維持できない場合が生じ、そのIIKは大
きな磁気エネルギの放出が急使に発生する。このような
事態に到ったとき、蓄積せる磁気エネルギを速やかに電
気エネルギの形で有効的に取り出すことが必要であった
However, superconducting magnets can essentially maintain their superconducting state mt- only within the range of the three critical conditions mentioned above, but the property of the four superconducting bodies is that they generate heat K[! Therefore, depending on the cooling and heat transfer conditions, it may not be possible to stably hold a large amount of magnetic energy even if the critical conditions mentioned above are met. A release of energy occurs in the courier. When such a situation occurs, it is necessary to quickly and effectively extract the stored magnetic energy in the form of electrical energy.

第1図は従来のエネルギS収装置によって磁気エネルギ
を取り出し、超電導磁石を保護する原理図を示すもので
、超電導状態では開閉器2が閉じて、電源(定電流源)
1から電流が超電導磁石3に流され、同時に磁気エネル
ギも貯えられていく。
Figure 1 shows the principle of how a conventional energy S harvesting device extracts magnetic energy and protects a superconducting magnet.
Electric current is passed from superconducting magnet 3 to superconducting magnet 3, and magnetic energy is stored at the same time.

このとき、超電導磁石3が正常に励磁されていることを
電圧検出器@によって監視しながら励磁を行う。
At this time, the superconducting magnet 3 is excited while being monitored by the voltage detector @ to make sure that it is being normally excited.

超電導磁石8に何んらかの原因により常電導転移等が生
じて、電圧検出器6にある設定レベル以上の電圧が検出
された場合、−図示しない装置によって開閉器2が開く
ように制御すると、このとき超電導磁石3の正極ム、負
極Bの関係が逆転し、電圧は負IIBの方か正極Aより
高くなり、ダイオード4が順方向となるので、超電導磁
石3に蓄積されている電磁エネルギは、ダイオード4を
介して保護抵抗SK流出し、保護抵抗Sの発@により【
消費されるよ5Kしたものである。
If a normal conduction transition or the like occurs in the superconducting magnet 8 for some reason and a voltage higher than the set level in the voltage detector 6 is detected, - if the switch 2 is controlled to open by a device not shown; At this time, the relationship between the positive pole B and the negative pole B of the superconducting magnet 3 is reversed, and the voltage becomes higher on the negative pole than the positive pole A, and the diode 4 is in the forward direction, so the electromagnetic energy stored in the superconducting magnet 3 is flows out from the protective resistor SK through the diode 4, and due to the output of the protective resistor S, [
It cost 5K to be consumed.

以上のような従来の保sis路の動作は、その前提条件
として、電圧検出器6によって常電導への転移あるいは
異常電圧が十分小さいうちに、前記動作かなされなけれ
ばならない、さもなければ、超電導磁石3は発熱に弱い
ので磁石の破損を招く。
As a prerequisite for the operation of the conventional protection circuit as described above, the operation must be carried out before the transition to normal conductivity or abnormal voltage is sufficiently small as determined by the voltage detector 6, otherwise, the operation of The magnet 3 is susceptible to heat generation, which may lead to damage to the magnet.

したかって、エネルギー収の時定数か非常に重要となり
、前述したごとくこの時定数は小さいことが要求される
Therefore, the time constant of energy harvesting is very important, and as mentioned above, this time constant is required to be small.

今、この時定数狙τ(秒)とすると、発生電圧の最大値
V、、ItM器2の開放時の電流■・(A)、超電導磁
石3に蓄積されているエネルギE、の関係は次のようK
なる。
Now, assuming that this time constant is aimed at τ (seconds), the relationship between the maximum value of the generated voltage V, the current when the ItM device 2 is open ■ (A), and the energy E stored in the superconducting magnet 3 is as follows. Noyo K
Become.

τ=1   ・・・・・・・・・−・・・・・(sec
)・・・・・・(2)凡 E、=TL■、・・・・・・・・−・・・・・・〔jo
u1c〕・・・・・・(3)(但り、Lは超電導磁石3
のインダクタンス、Bは保S抵抗値である) 第(1)式から明らかのよ5に、蓄積磁気エネルギを早
く堆り出そうとして時定数τを小さくすると、発生電圧
の最大値vmは非常に大きな値とならざるを得な馳、試
みに現在比較的大型とされる超電導11:fllK例を
求J66と、l、 = 60MJ、 I@−JOOOム
とすれば、発生電圧の最大値−は次式のよ5になる。
τ=1 ・・・・・・・・・−・・・・・・(sec
)・・・・・・(2) E,=TL■,・・・・・・・・・−・・・・・・[jo
u1c]...(3) (L is superconducting magnet 3
(B is the inductance, and B is the S resistance value.) As is clear from equation (1), if the time constant τ is made small in order to quickly release the stored magnetic energy, the maximum value vm of the generated voltage becomes very large. However, if we take the example of superconducting 11:fllK, which is currently relatively large, as J66, l, = 60MJ, I@-JOOOOm, the maximum value of the generated voltage is as follows. The following equation becomes 5.

v、=2Xlo、x7=6×104/τ(v)・曲・(
1)′発生電圧の最大値Va Kは、超電導磁石3の構
造上制限があり、たとえ電磁石の保−のためとはいえ、
時定数τは勝手に小さくできない、エネルギ闘収を急ぐ
ためTを小さくすると、保S抵抗R(Ω)を大きくせざ
るを得す、その結果、非常に大きな電圧が開閉器2の開
放時に発生する。この発生電圧によって、超電導磁石3
内、あるいは電源系・制御系が破壊されるという事故が
あとを断たなかった。
v, = 2Xlo, x7 = 6 x 104/τ(v)・song・(
1) The maximum value of the generated voltage VaK is limited due to the structure of the superconducting magnet 3, and even if it is for the purpose of maintaining the electromagnet,
The time constant τ cannot be made arbitrarily small.If T is made small in order to speed up the energy recovery, the holding S resistance R (Ω) has to be made large, and as a result, a very large voltage is generated when the switch 2 is opened. do. This generated voltage causes the superconducting magnet 3 to
There was no end to accidents in which the interior, power supply, and control systems were destroyed.

との尭明は、このような問題点を解決せんがためになさ
れたもので、li伝機を保lI抵抗に変わる能動素子と
して使用し、安全性の高い超電導磁石像■装置を提供す
るものである。
Keimei's research was made to solve these problems, and uses the Li transmission as an active element to replace the I resistance, and provides a highly safe superconducting magnet image system. It is.

前述したように超電導磁石な保護するためK。As mentioned above, superconducting magnets are protected by K.

短時間で保護1111にエネルギを回収しようとすると
高電圧が発生する。そのため、保護抵抗の抵抗値は比較
的大きくなければならない。
If the protection 1111 attempts to recover energy in a short period of time, a high voltage will be generated. Therefore, the resistance value of the protective resistor must be relatively large.

第2mは発生電圧と時定数の関係をグラフとしたもので
、破線τ1.τ1.に示すよ5に、時定数1秒で60M
Jの蓄積エネルギを闘収するには60 KVの電圧が発
生し、時定数10秒にとっても6KVの電圧が発生する
The second m is a graph showing the relationship between the generated voltage and the time constant, and the broken line τ1. τ1. As shown in 5, 60M with a time constant of 1 second
To recover the stored energy of J, a voltage of 60 KV is generated, and even with a time constant of 10 seconds, a voltage of 6 KV is generated.

1秒圏収時の保護抵抗の抵抗値はL=30Hとすると、
8=309必要であり、10秒闘回収の保護抵抗は3g
必要となる。しかし、超電導磁石のよ5に1通常、極低
電圧および大電流形で動作する「定電流源」に対して、
かかる凡=30g。
Assuming that the resistance value of the protective resistor at the time of 1 second coverage is L = 30H,
8=309 is required, and the protective resistance for 10 seconds of recovery is 3g.
It becomes necessary. However, unlike superconducting magnets, which are ``constant current sources'' that usually operate at extremely low voltage and high current,
This amount = 30g.

R=39という保lI抵抗値は、むしろ過大といわざる
を得ない。
The constant resistance value of R=39 must be said to be rather excessive.

以下、この発明の超電導磁石の保護装置について説明す
る。
The superconducting magnet protection device of the present invention will be explained below.

第3図はこの発明の一実施例を示す原理図で、第1図の
保護抵抗SK代えて、一転機1および機械的負荷8を設
けたもので、他の符号は第1図と同一部分を示す。この
同転機1は主として直流機であるか、第4図に示すよう
に直流・交流変換器lv介して結線されている電動機ま
たは同期機T′でもよい。
FIG. 3 is a principle diagram showing an embodiment of the present invention, in which a switching device 1 and a mechanical load 8 are provided in place of the protective resistor SK in FIG. 1, and other symbols are the same parts as in FIG. 1. shows. The rotary machine 1 may be primarily a DC machine, or it may be an electric motor or a synchronous machine T' connected via a DC/AC converter lv, as shown in FIG.

以下、この発明で使用される一転機1について説明する
Hereinafter, the turning machine 1 used in the present invention will be explained.

回転機1はいずれKしても、電気エネルギと機械エネル
ギの相亙変換を行うものであり、構造的にもすべ″′C
l1i1転子と固定子から構成されているので、−転子
には相轟規模の慣性モーメントを有している。そして、
この慣性モーメントには、よく知られているように%−
回転エネルギ運動エネルギの形で貯えることができる。
The rotating machine 1 performs mutual conversion between electrical energy and mechanical energy, and is structurally simple.
Since it is composed of an l1i1 trochanter and a stator, the - trochanter has a moment of inertia on the scale of a phase roar. and,
As is well known, this moment of inertia has %−
Rotational energy can be stored in the form of kinetic energy.

次に一転機1の持つ著しい411景は、始動時には最大
のトルクが必要とされ、そのためには大きな電流を必要
とすることである0通常、静止状態から定格−転速度に
なるまで、負荷電流と回転速度との関係は第5図のよう
に双−線状になる。
Next, the remarkable feature of the turning machine 1 is that the maximum torque is required at startup, which requires a large current.Normally, the load current increases from a standstill state to the rated speed. The relationship between the rotation speed and the rotation speed is bilinear as shown in FIG.

このような特性は、従来の保護抵抗には見られない能動
効果をもたらす、すなわち、113図あるいは第4図に
おいて、超電導磁石swclA定レベル以上の電圧が電
圧検出器6によって検知されて、開閉器2f開くと、前
述したように逆方肉に起電力が生じるが、この起電力が
ダイオード4を介して同転機7に印加されても、その時
点では回転子は目止しているので、一転機Tのインピー
ダンスは巻線抵抗のみであり、#tW A 1間は短絡
に近い。。
Such characteristics bring about an active effect not seen in conventional protective resistors. In other words, in FIG. 113 or FIG. When 2f is opened, an electromotive force is generated in the reverse wall as described above, but even if this electromotive force is applied to the rotating machine 7 via the diode 4, the rotor is closed at that point, so the The impedance of the turning point T is only the winding resistance, and #tW A 1 is almost a short circuit. .

これは従来の保lI抵抗に比べ【一般に3桁も小さいの
で、開閉s2が開放された瞬間にも過大な電圧を発生さ
せないばかりでなく、大きな始動トルクを一転機1の關
転子に付与するととKなる。
This is generally three orders of magnitude smaller than the conventional holding resistor, so it not only does not generate an excessive voltage at the moment the switch s2 is opened, but also prevents large starting torque from being applied to the rotor of the switching machine 1. and K.

こうして、超電導磁石svc常電導転移が検出されて、
開閉器2が開かれると回転機Tの界磁子に大きな電流が
流れ、それと同時に8転子は回転を開始する。この際、
前述の第5図に示したよ5K。
In this way, the superconducting magnet svc normal conduction transition is detected,
When the switch 2 is opened, a large current flows through the field element of the rotating machine T, and at the same time, the eight trochanters start rotating. On this occasion,
5K as shown in Figure 5 above.

−転機1は一般Km転速度口と負荷電#lIが反比例す
る関係にあるので、始動時には大電流を特徴とする特性
から、始動電流を超電導磁石3に通電されている電流値
に採れるので緘KjlKかなっている。しかも、この天
竜flKよりH転子の回転エネルギという形で蓄積エネ
ルギが速やかに機械エネルギに置換可能となる。しかも
、回転エネルギは、回転数の2乗に比例するのと、回転
数の増加とともに、回転機1.の内部インピーダンスが
増加するので、負荷電流が減少し、かつ好ましいととK
は超電導磁石3から放出される磁気エネルギも減少して
くるので、この同転機1が暴走することもない。
- Since the turning machine 1 has a general Km turning speed port and the load current #lI in an inversely proportional relationship, it is characterized by a large current at the time of starting, so the starting current can be taken as the current value flowing through the superconducting magnet 3. KjlK is true. Furthermore, the stored energy in the form of rotational energy of the H trochanter can be quickly replaced with mechanical energy by this Tenryu flK. Moreover, the rotational energy is proportional to the square of the rotational speed, and as the rotational speed increases, the rotational energy of the rotating machine 1. Since the internal impedance of K increases, the load current decreases and is preferable.
Since the magnetic energy emitted from the superconducting magnet 3 also decreases, the rotating machine 1 will not run out of control.

第2図で実線■は回転機Tか単極機(直流機)の番台、
実線11には回転機1が直流電動機の番台の発生電圧を
示す、この図から理解できるように回転機1を保護装置
として使用すれば、発生電圧が一定値以下に低減できる
ことが理解される。
In Figure 2, the solid line ■ is the number of the rotary machine T or single-pole machine (DC machine),
The solid line 11 indicates the generated voltage of the DC motor number of the rotating machine 1. As can be understood from this figure, if the rotating machine 1 is used as a protection device, the generated voltage can be reduced to a certain value or less.

従来の保S抵抗によるエネルギー収は、純粋な抵抗成分
であるので、超電導磁石3かも流出する電流と、発生電
圧は同相で、直接高電圧が発生するが、−転機1のとき
は、超電導磁石3かも流出する電流を回転子系の慣性モ
ーメントに、−たん−転エネルギとして変換できるので
、このことが電圧の相を電流に比べ遅らせ、かつ低減で
きるからに峰かならな−い。
Since the energy harvested by the conventional S-holding resistor is a pure resistance component, the current flowing out of the superconducting magnet 3 and the generated voltage are in phase, and a high voltage is directly generated. 3. Since the flowing current can be converted into the moment of inertia of the rotor system as transduction energy, this is a must because the phase of the voltage can be delayed and reduced compared to the current.

この発明のもう一つの利点は、回転エネルギを種々の負
荷の給金によって、電気エネルギ、機械エネルギ、化学
エネルギおよび熱エネルギ等の他の有効なエネルギに変
換−収可能であることにある。かよる点から、従来の保
護機能にはない点も具備していることが分かる。
Another advantage of the invention is that rotational energy can be converted to other useful energies such as electrical, mechanical, chemical and thermal energy by feeding various loads. It can be seen from the above that it also has features that conventional protection functions do not have.

・41に第4図で示すようKli転機1として交流機1
′を用いる。と超電導磁石3の磁気エネルギを単に目板
エネルギに転換するのみならず、直流・交流変換器−を
介するととKより交流電流とし【一般商用線、あるいは
通常の交流負荷の機器に超電導磁石3の磁気エネルギを
有効に取り出すことも可能である。
・As shown in Fig. 4, AC machine 1 is used as Kli turning point 1.
’ is used. The magnetic energy of the superconducting magnet 3 is not only converted into batten energy, but also converted into alternating current from the superconducting magnet 3 via a DC/AC converter. It is also possible to effectively extract the magnetic energy of .

超電導磁石3の機械強度、電気絶縁強度、熱特性などを
考慮して、エネルギ回収の時定数な決めなければならな
いか、回転機1の機械的時定数は、回転子の慣性モーメ
ントに比例することが明らかであるので、慣性モーメン
トが回転子のみでは不足する番台は、回転子に適轟な弾
み車効果を有する慣性モーメン)1連結すれば、所望す
る時定数を有したエネルギの目状か可能となる。
The time constant for energy recovery must be determined in consideration of the mechanical strength, electrical insulation strength, thermal characteristics, etc. of the superconducting magnet 3, or the mechanical time constant of the rotating machine 1 must be proportional to the moment of inertia of the rotor. Since it is clear that the moment of inertia is insufficient with the rotor alone, by connecting the rotor with a moment of inertia (with a suitable flywheel effect), it is possible to obtain an energy profile with the desired time constant. Become.

第6図は超電導磁石3の蓄積エネルギを電圧検出器6で
制御される開閉器2.10により【行うもので、常電導
転移か検出されたとき、開閉器2を開くと同時に開閉器
10を閉じるように制御したものである。この第6図の
実施例では開閉器2゜100動作タイiングを任意に設
定できるので、手動で超電導磁石3の励磁を停゛止させ
るときKも利用することができる− 以上詳述したように、この発明の超電導磁石の保繰装置
は、−転、機を蓄積エネルギの放出負荷として使用する
ようにしたので、常電導転移か発生したとき、異常な高
電圧が発生することを防止し、可及的速やかに蓄積エネ
ルギを弛のエネルギの形に変換することかできるので、
超電導磁石な含む装置の損焼、破かいなどを有効に防止
することができるとともに、エネルギの有効利用が計れ
るという大きな利点を有するものである。
In Fig. 6, the stored energy of the superconducting magnet 3 is transferred by a switch 2.10 controlled by a voltage detector 6.When a normal conduction transition is detected, the switch 2 is opened and at the same time the switch 10 is opened. It is controlled to close. In the embodiment shown in Fig. 6, since the switch 2゜100 operation timing can be set arbitrarily, K can also be used when manually stopping the excitation of the superconducting magnet 3. In addition, since the superconducting magnet storage device of the present invention uses the -transfer as a load for releasing stored energy, it is possible to prevent abnormally high voltage from being generated when a normal conduction transition occurs. , since it is possible to convert the stored energy into the form of relaxation energy as quickly as possible,
This has the great advantage of being able to effectively prevent equipment including superconducting magnets from burning out and breaking, as well as allowing for effective use of energy.

【図面の簡単な説明】[Brief explanation of the drawing]

111図は従来の超電導磁石の保1Iijl路の原理図
、第**は超電導磁石の発生電圧と時定数の関係を示す
園、第s@tはこの発明の一実施例を示す超電導磁石の
原」L第4図および第6図はこの発明の他の実施例を示
す原理図、第5WAは一転機の回転速度と、負荷電流の
関係を示す図である。 図中、1は電源、2,1・は−閉器、3は超電導磁石、
4はダイオード、Sは保St抵抗、6は電圧検出器、T
は一転機、魯は機械的負荷、−は直第1図 第3図 第4図 ム
Fig. 111 is a principle diagram of a conventional superconducting magnet's holding path, Fig. ** is a diagram showing the relationship between the generated voltage and time constant of a superconducting magnet, and Fig. 111 is a diagram of the original superconducting magnet showing an embodiment of the present invention. 4 and 6 are principle diagrams showing other embodiments of the present invention, and 5WA is a diagram showing the relationship between the rotational speed of the single-turning machine and the load current. In the figure, 1 is a power supply, 2,1 is a -closer, 3 is a superconducting magnet,
4 is a diode, S is a resistor, 6 is a voltage detector, T
1, 3, 4, 1, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 3, 4

Claims (3)

【特許請求の範囲】[Claims] (1)  超電導磁石において、常電導転移が検出され
たとき蓄積エネルギを放出するための同転機を前記超電
導磁石に給金することを特徴とする超電導磁石保曖装置
(1) A superconducting magnet stabilizing device, characterized in that the superconducting magnet is supplied with a co-rotating machine for releasing stored energy when a normal conduction transition is detected in the superconducting magnet.
(2)回転機が電気的または機械的な負荷に納金されて
いることを特徴とする特許請求の範l!l菖(11項記
載の超電導磁石像層装置。
(2) Claim l characterized in that the rotating machine is connected to an electrical or mechanical load! Iris (superconducting magnet image layer device according to item 11).
(3)回転機が直流・交流変換器を介して接続されてい
る交流機であることを特徴とする特許請求の範囲第(1
)項記載の超電導磁石保S装置。
(3) Claim No. 1 characterized in that the rotating machine is an AC machine connected via a DC/AC converter.
) The superconducting magnet retaining device described in item 2.
JP56197198A 1981-12-08 1981-12-08 Superconductive magnet protection device Pending JPS5897806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56197198A JPS5897806A (en) 1981-12-08 1981-12-08 Superconductive magnet protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56197198A JPS5897806A (en) 1981-12-08 1981-12-08 Superconductive magnet protection device

Publications (1)

Publication Number Publication Date
JPS5897806A true JPS5897806A (en) 1983-06-10

Family

ID=16370438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56197198A Pending JPS5897806A (en) 1981-12-08 1981-12-08 Superconductive magnet protection device

Country Status (1)

Country Link
JP (1) JPS5897806A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014219A1 (en) * 1992-12-10 1994-06-23 Twix Equipment Ag Device and process for reversibly storing electric power by its reversible transformation
GB2471705A (en) * 2009-07-09 2011-01-12 Siemens Magnet Technology Ltd Superconducting magnet energy removal system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014219A1 (en) * 1992-12-10 1994-06-23 Twix Equipment Ag Device and process for reversibly storing electric power by its reversible transformation
EP0626108A1 (en) * 1992-12-10 1994-11-30 Twix Equipment Ag Device and process for reversibly storing electric power by its reversible transformation.
US5550444A (en) * 1992-12-10 1996-08-27 Twix Equipment Ag Device and process for the reversible storage of electric energy by its reversible conversion to kinetic energy
GB2471705A (en) * 2009-07-09 2011-01-12 Siemens Magnet Technology Ltd Superconducting magnet energy removal system
GB2471705B (en) * 2009-07-09 2011-07-27 Siemens Magnet Technology Ltd Methods and apparatus for storage of energy removed from superconducting magnets
US8699199B2 (en) 2009-07-09 2014-04-15 Siemens Plc. Portable magnet power supply for a superconducting magnet and a method for removing energy from a superconducting magnet using a portable magnet power supply

Similar Documents

Publication Publication Date Title
Gray et al. A superconducting fault‐current limiter
Masson et al. Design of HTS axial flux motor for aircraft propulsion
JP4856393B2 (en) System and method for quench protection of superconductors
JPS62138021A (en) Ac current limiter
Holla Energy storage methods-Superconducting magnetic energy storage-A Review
Jiang et al. Fully controlled hybrid bridge type superconducting fault current limiter
JPH0138361B2 (en)
US5532638A (en) Superconducting energy storage apparatus
Ross et al. Turboelectric distributed propulsion protection system design trades
MX2011003907A (en) Fault current superconductive limiter.
EP2104198B1 (en) Systems And Methods Involving Protection Of Superconducting Generators For Power Applications
Tuvdensuren et al. Structural design and heat load analysis of a flux pump-based HTS module coil for a large-scale wind power generator
Liang et al. Exploration and verification analysis of YBCO thin film in improvement of overcurrent stability for a battery unit in a SMES-battery HESS
JPH0586052B2 (en)
JPS5897806A (en) Superconductive magnet protection device
Nolan et al. Voltage-based current-compensation converter control for power electronic interfaced distribution networks in future aircraft
Qian et al. Electromagnetic and thermal design of superconducting fault current limiters for DC electric systems using superconducting
Masson et al. Safety torque generation in HTS propulsion motor for general aviation aircraft
KR101486753B1 (en) System for super conducting electric power generation
Morandi et al. Conduction Cooling and Fast Recovery in $\hbox {MgB} _ {2} $-Based DC Resistive SFCL
Yilmaz et al. Shortening recovery time with bypass breaker for resistive superconductor fault current limiters
JPH01255436A (en) Semiconductor circuit breaker
JPH0819179A (en) System stabilization system using secondary battery
RU2254655C2 (en) Current limiter
JPS6350846B2 (en)