JPS6350846B2 - - Google Patents
Info
- Publication number
- JPS6350846B2 JPS6350846B2 JP57162363A JP16236382A JPS6350846B2 JP S6350846 B2 JPS6350846 B2 JP S6350846B2 JP 57162363 A JP57162363 A JP 57162363A JP 16236382 A JP16236382 A JP 16236382A JP S6350846 B2 JPS6350846 B2 JP S6350846B2
- Authority
- JP
- Japan
- Prior art keywords
- power source
- protective resistor
- superconducting coil
- excitation power
- electromagnetic coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000001681 protective effect Effects 0.000 claims description 19
- 230000005284 excitation Effects 0.000 claims description 16
- 230000001172 regenerating effect Effects 0.000 claims description 11
- 238000010791 quenching Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/001—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for superconducting apparatus, e.g. coils, lines, machines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Description
本発明は、励磁停止時の蓄積エネルギを速やか
に放出させて、電磁コイルを保護する保護装置に
係り、特に超電導コイルをクエンチに起因する損
傷から保護するのに好適なものに関する。
一般に、励磁されている電磁コイルの励磁を停
止させるとき、電磁コイルに蓄積されている電磁
エネルギや機械エネルギを、速やかに放出させる
ことを要求される場合がある。
例えば、超電導コイルにおいて、クエンチが発
生し拡大されると、超電導コイル全体が常電導状
態に相転移してしまい、これによつてコイルにお
ける発生熱が急増し、超電導コイルが熱的に損傷
を受けるという虞れがある。そこで、クエンチ等
が発生した場合には、超電導コイルに蓄積された
電磁エネルギを、できる限り急速に放出させて、
コイルを保護しなければならない。
このような電磁コイルに蓄積された電磁エネル
ギを放出させる方法として、電磁コイルの励磁電
源を回生運転することにより、蓄積エネルギを電
力として回生する方法や、保護抵抗器によつて蓄
積エネルギを消費させる方法等が考えられる。
ところが、超電導コイルはコイルの抵抗が殆ど
零であるところから、励磁電源の出力定格は、一
般に低電圧で、大電流のものとなつている。従つ
て前記回生運転方法による場合には、その出力定
格電圧に応じて回生電圧を低く制限しなければな
らないので、蓄積エネルギの放出時間が比較的長
くなつてしまうという欠点がある。
一方、前記の保護抵抗器による方法は、第1図
に示された回路構成のものであり、超電導コイル
1は励磁電源2に開閉器3を介して接続され、超
電導コイル1には保護抵抗4が並列接続されてい
る。また、超電導コイル1にはクエンチ検出器5
が設けられている。このように構成されたもので
あるから、クエンチ発生を検出して開閉器3を開
路させると、超電導コイル1の蓄積エネルギは、
保護抵抗4に流されて消費されることになる。
いま、第1図図示のものにおいて、超電導コイ
ル1の自己インダクタンスをL、保護抵抗器4の
抵抗値をR1、開閉器3を開路したとき超電導コ
イル1に流れる電流の初期値をI0とすると、保護
抵抗器4の回路に流れる放出電流Iは、次式(1)の
ように表わすことができる。なお、(1)式中のεは
自然対数の底であり、tは時間である。
式(1)から明らかなように、放出電流Iは時間と
ともに急速に減衰されるが、その減衰は時間数
L/R1が小さい程、即ちR1が大きい程速い。従つ
て、急速に蓄積エネルギを放出させるにはR1を
できるだけ大きなものとすることにより達成され
る。
しかしながら、R1の値はIによつて生ずる逆
超電圧I・R1が超電導コイル1の耐圧以下とな
るような値に定めなければならないことから、放
出時間が制限される。また、保護抵抗器4によつ
て超電導コイルの蓄積エネルギを全て消費するこ
とになるので、蓄積エネルギがGJ(ギガ・ジユー
ル)級になつた場合には、保護抵抗器及び保護抵
抗器の周辺装置(例えば冷却設備等)が、極めて
大容量の大形な装置になるという欠点がある。
本発明は、上記欠点に鑑みなされたもので、そ
の目的とする所は、超電導コイル等の電磁コイル
の蓄積エネルギを急速に放出させることができ、
装置を小形化することができる電磁コイルの保護
装置を提供することにある。
本発明は、回生運転可能な励磁電源に接続され
た電磁コイルの励磁入力端に、開閉器が並列に接
続された抵抗器を直列に挿入接続するとともに、
与えられる励磁停止指令に基づいて、前記励磁電
源の回生運転指令と前記開閉器の開路指令とを各
出力する制御回路を設けたものとすることによ
り、蓄積エネルギを急速に放出させるとともに、
装置の小形化を達成しようとするものである。
以下、本発明を図示実施例に基づいて説明す
る。
第2図に本発明の一実施例の回路構成図が示さ
れている。同図中第1図と同一符号の付されたも
のは、同一機能、同一構成を有するものである。
第2図に示されたように、超電導コイル1と励
磁電源2と保護抵抗器4とが直列に接続され、開
閉器3は前記保護抵抗器4を短絡することができ
るように接続されている。また、クエンチ検出器
5から出力されるクエンチ検出信号は、制御回路
6に入力されており、この制御回路6は入力され
たクエンチ検出信号に基づいて、励磁電源2に回
生運転指令を出力するとともに、開閉器3に開路
指令を出力するように形成されている。
このように構成されたものであることから、超
電導コイル1にクエンチが発生すると、励磁電源
2が回生運転されると同時に、開閉器4が開路さ
れ、蓄積エネルギは保護抵抗器4によつて消費さ
れるとともに、交流電源側へ回生されて急速に放
出される。このときの放出電流Iは、保護抵抗器
4の抵抗値をR2とし、励磁電源の電圧(インバ
ータ電圧)をEとすると、次式(2)で表わすことが
できる。
即ち、式(2)の右辺第1項は保護抵抗器4による
電流減衰を、同第2項は回生運転による電流減衰
を表わしている。
従つて、式(2)から明らかなように、本実施例に
よれば、放出電流Iを式(1)のものに比べて急速に
減衰させることができるという効果がある。
また、本実施例によれば、蓄積エネルギの一部
を回生させていることから、保護抵抗器によつて
消費させる蓄積エネルギが低減され、しかも電流
減衰時間が短いことから、保護抵抗器及び保護抵
抗器の周辺装置を小容量化することができるとい
う効果がある。これによつて、省エネルギが達成
されるとともに経済性をも向上させることができ
るという効果がある。
なお、本発明の効果をさらに具体的に説明する
ため、実験値の比較データを第1表に示す。
第1表中、VLMAXは超電導コイル1に印加され
る最大電圧を表わしており、耐電圧に相当するも
のである。また、T0は放出電流Iが零になるに
要する時間、QRは保護抵抗器4にて消費される
エネルギ量を表わしている。
The present invention relates to a protection device that protects an electromagnetic coil by quickly discharging stored energy when excitation is stopped, and particularly relates to a protection device suitable for protecting a superconducting coil from damage caused by quenching. Generally, when stopping the excitation of an excited electromagnetic coil, there are cases where it is required to quickly release the electromagnetic energy and mechanical energy stored in the electromagnetic coil. For example, when a quench occurs and expands in a superconducting coil, the entire superconducting coil undergoes a phase transition to a normal conducting state, which causes a rapid increase in the heat generated in the coil, causing thermal damage to the superconducting coil. There is a possibility that. Therefore, when a quench occurs, the electromagnetic energy stored in the superconducting coil is released as quickly as possible.
The coil must be protected. As a method of discharging the electromagnetic energy accumulated in such an electromagnetic coil, there is a method of regenerating the accumulated energy as electric power by regenerative operation of the excitation power source of the electromagnetic coil, or a method of dissipating the accumulated energy with a protective resistor. There are many possible methods. However, since the resistance of the superconducting coil is almost zero, the output rating of the excitation power source is generally low voltage and large current. Therefore, when using the regenerative operation method, the regenerative voltage must be limited to a low level according to the output rated voltage, which has the disadvantage that the time required to release the stored energy becomes relatively long. On the other hand, the method using the protective resistor described above has the circuit configuration shown in FIG. are connected in parallel. In addition, the superconducting coil 1 includes a quench detector 5.
is provided. Since it is configured in this way, when the occurrence of quench is detected and the switch 3 is opened, the stored energy of the superconducting coil 1 is
It is passed through the protective resistor 4 and is consumed. Now, in the case shown in Fig. 1, the self-inductance of the superconducting coil 1 is L, the resistance value of the protective resistor 4 is R1 , and the initial value of the current flowing through the superconducting coil 1 when the switch 3 is opened is I0 . Then, the emission current I flowing through the circuit of the protective resistor 4 can be expressed as shown in the following equation (1). Note that ε in formula (1) is the base of natural logarithm, and t is time. As is clear from equation (1), the emission current I is rapidly attenuated with time, and the attenuation is faster as the number of hours L/R 1 is smaller, that is, as R 1 is larger. Therefore, rapid release of stored energy is achieved by making R 1 as large as possible. However, since the value of R 1 must be determined so that the reverse supervoltage I·R 1 generated by I is equal to or lower than the withstand voltage of the superconducting coil 1, the emission time is limited. In addition, since the protective resistor 4 consumes all the stored energy of the superconducting coil, if the stored energy reaches the GJ (giga joule) class, the protective resistor and the peripheral devices of the protective resistor The drawback is that the equipment (for example, cooling equipment, etc.) becomes a large-sized device with an extremely large capacity. The present invention was made in view of the above-mentioned drawbacks, and its purpose is to rapidly release the stored energy of an electromagnetic coil such as a superconducting coil.
It is an object of the present invention to provide a protection device for an electromagnetic coil, which allows the device to be miniaturized. In the present invention, a resistor with a switch connected in parallel is inserted and connected in series to the excitation input terminal of an electromagnetic coil connected to an excitation power supply capable of regenerative operation, and
By providing a control circuit that outputs a regenerative operation command for the excitation power source and an opening command for the switch based on a given excitation stop command, the stored energy is rapidly released, and
The aim is to downsize the device. Hereinafter, the present invention will be explained based on illustrated embodiments. FIG. 2 shows a circuit diagram of an embodiment of the present invention. Components in the figure with the same reference numerals as in FIG. 1 have the same functions and configurations. As shown in FIG. 2, a superconducting coil 1, an excitation power source 2, and a protective resistor 4 are connected in series, and a switch 3 is connected to short-circuit the protective resistor 4. . The quench detection signal output from the quench detector 5 is input to a control circuit 6, and the control circuit 6 outputs a regenerative operation command to the excitation power source 2 based on the input quench detection signal. , and is configured to output a circuit opening command to the switch 3. With this configuration, when a quench occurs in the superconducting coil 1, the excitation power source 2 is put into regenerative operation, the switch 4 is opened, and the stored energy is dissipated by the protective resistor 4. At the same time, it is regenerated to the AC power source and rapidly released. The discharge current I at this time can be expressed by the following equation ( 2 ), where R2 is the resistance value of the protective resistor 4, and E is the voltage of the excitation power source (inverter voltage). That is, the first term on the right side of equation (2) represents current attenuation due to the protective resistor 4, and the second term represents current attenuation due to regenerative operation. Therefore, as is clear from equation (2), this embodiment has the effect that the emission current I can be attenuated more rapidly than in equation (1). Further, according to this embodiment, since a part of the stored energy is regenerated, the stored energy consumed by the protective resistor is reduced, and the current decay time is short, so the protective resistor and the protective This has the effect that the capacity of the peripheral devices of the resistor can be reduced. This has the effect of not only achieving energy savings but also improving economic efficiency. In order to more specifically explain the effects of the present invention, comparative data of experimental values is shown in Table 1. In Table 1, V LMAX represents the maximum voltage applied to the superconducting coil 1 and corresponds to the withstand voltage. Further, T 0 represents the time required for the emission current I to become zero, and Q R represents the amount of energy consumed by the protective resistor 4.
【表】【table】
【表】
以上説明したように、本発明によれば、電磁コ
イルの蓄積エネルギを急速に放出させることがで
き、装置の小形化と省エネルギ化が達成され、経
済性を向上させることができるという効果があ
り、特に超電導コイルの損傷防止に著しい効果を
有する。[Table] As explained above, according to the present invention, the energy stored in the electromagnetic coil can be rapidly released, the device can be made smaller and energy saving, and the economical efficiency can be improved. It is effective, especially in preventing damage to superconducting coils.
第1図は電磁コイル保護装置の一例を示す回路
構成図、第2図は本発明の一実施例の回路構成図
である。
1…超電導コイル、2…励磁電源、3…開閉
器、4…保護抵抗器、5…クエンチ検出器、6…
制御回路。
FIG. 1 is a circuit configuration diagram showing an example of an electromagnetic coil protection device, and FIG. 2 is a circuit configuration diagram of an embodiment of the present invention. 1... Superconducting coil, 2... Excitation power source, 3... Switch, 4... Protective resistor, 5... Quench detector, 6...
control circuit.
Claims (1)
し、該励磁電源と電磁コイルとの間に開閉器が並
列に接続された保護抵抗器を直列に挿入接続し、
与えられる指令に基づいて前記励磁電源に回生運
転指令と前記開閉器に開路指令とを各々出力する
制御回路を設けて構成されることを特徴とする電
磁コイル保護装置。1. The excitation power source for the electromagnetic coil is formed to enable regenerative operation, and a protective resistor with a switch connected in parallel is inserted and connected in series between the excitation power source and the electromagnetic coil.
An electromagnetic coil protection device comprising a control circuit that outputs a regenerative operation command to the excitation power source and a circuit opening command to the switch based on a given command.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57162363A JPS5952809A (en) | 1982-09-20 | 1982-09-20 | Protection device of magnet coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57162363A JPS5952809A (en) | 1982-09-20 | 1982-09-20 | Protection device of magnet coil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5952809A JPS5952809A (en) | 1984-03-27 |
JPS6350846B2 true JPS6350846B2 (en) | 1988-10-12 |
Family
ID=15753138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57162363A Granted JPS5952809A (en) | 1982-09-20 | 1982-09-20 | Protection device of magnet coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5952809A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0423927A3 (en) * | 1989-08-31 | 1991-07-24 | Westinghouse Electric Corporation | Monitoring system for detecting quench |
US6445555B1 (en) * | 1999-11-24 | 2002-09-03 | American Superconductor Corporation | Method and apparatus for discharging a superconducting magnet |
ATE341848T1 (en) | 1999-11-24 | 2006-10-15 | American Superconductor Corp | VOLTAGE REGULATION OF A POWER NETWORK |
US7091703B2 (en) | 2004-03-04 | 2006-08-15 | American Superconductor Corporation | Dynamic reactive compensation system and method |
US7940029B2 (en) | 2008-07-02 | 2011-05-10 | American Superconductor Corporation | Static VAR corrector |
-
1982
- 1982-09-20 JP JP57162363A patent/JPS5952809A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5952809A (en) | 1984-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4856393B2 (en) | System and method for quench protection of superconductors | |
JPS59144106A (en) | Device for protecting superconductive magnet coil unit | |
US5218505A (en) | Superconductor coil system and method of operating the same | |
JPS6350846B2 (en) | ||
JPS61114509A (en) | Superconductive coil device | |
US3270247A (en) | Protective circuit for removing energy from superconducting coils | |
US3176195A (en) | Superconducting solenoid | |
JPH0581973A (en) | Dc circuit breaker | |
JP2000014173A (en) | Fault resistance power supply circuit | |
JPH0513222A (en) | Superconducting coil device | |
JP2937403B2 (en) | switchboard | |
JPS6359524B2 (en) | ||
JPH0350497B2 (en) | ||
JP2875070B2 (en) | Superconducting coil protection device | |
JPS6156856B2 (en) | ||
EP3308437B1 (en) | A passive electronic fuse for protecting a dc application | |
JPH09233691A (en) | Overcurrent protector | |
JPH06168820A (en) | Power supply for nuclear fusion device | |
JP2653639B2 (en) | Superconducting magnet system | |
JPH0335817B2 (en) | ||
JP2599986B2 (en) | Superconducting magnet protection method and protection device | |
JPS6023926A (en) | Dc current interrupting device | |
JPS58202509A (en) | Protecting circuit for superconductive magnet | |
JPS5972706A (en) | Exciter for electromagnetic coil | |
JPS58165223A (en) | Protecting device |