JP2599986B2 - Superconducting magnet protection method and protection device - Google Patents

Superconducting magnet protection method and protection device

Info

Publication number
JP2599986B2
JP2599986B2 JP1004524A JP452489A JP2599986B2 JP 2599986 B2 JP2599986 B2 JP 2599986B2 JP 1004524 A JP1004524 A JP 1004524A JP 452489 A JP452489 A JP 452489A JP 2599986 B2 JP2599986 B2 JP 2599986B2
Authority
JP
Japan
Prior art keywords
superconducting magnet
coil
protecting
series
protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1004524A
Other languages
Japanese (ja)
Other versions
JPH02184004A (en
Inventor
利治 冨中
孝司 小林
邦茂 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1004524A priority Critical patent/JP2599986B2/en
Publication of JPH02184004A publication Critical patent/JPH02184004A/en
Application granted granted Critical
Publication of JP2599986B2 publication Critical patent/JP2599986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Protection Of Static Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超電導マグネットの保護に係り、特に超電
導マグネットの超電導状態が破れて常電導状態に転移し
た際に有効な超電導マグネットの保護方法及びその保護
装置に関する。
The present invention relates to the protection of a superconducting magnet, and more particularly to a method for protecting a superconducting magnet which is effective when the superconducting magnet breaks the superconducting state and transitions to a normal conducting state. It relates to the protection device.

〔従来の技術〕[Conventional technology]

超電導マグネットは、臨界温度以下の低温に冷却され
て電気抵抗がゼロとなる超電導体の巻回より構成される
ものである。この超電導体は臨界温度以上の温度になる
こと、あるいは臨界電流以上の電流が流れることなどに
よって、超電導状態を保持できなくなり常電導状態に転
移してしまう。超電導マグネットが常電導状態に転移す
ると電気抵抗ゼロであったものに抵抗が発生し、超電導
マグネットの磁気エネルギーが急激にジュール熱となっ
て放出されることになる。このため、温度上昇又は電圧
の発生によって超電導マグネットの焼損、絶縁破壊など
の重大事故が発生する恐れがあり、これを防止するため
に種々の保護方法が考案されている。
The superconducting magnet is formed by winding a superconductor that is cooled to a low temperature below the critical temperature and has zero electric resistance. When the temperature of the superconductor becomes higher than the critical temperature or a current higher than the critical current flows, the superconductor cannot maintain the superconducting state, and transitions to the normal conducting state. When the superconducting magnet shifts to the normal conducting state, resistance is generated in the superconducting magnet having zero electric resistance, and the magnetic energy of the superconducting magnet is rapidly released as Joule heat. For this reason, there is a possibility that a serious accident such as burnout or dielectric breakdown of the superconducting magnet may occur due to a rise in temperature or generation of a voltage, and various protection methods have been devised to prevent this.

第3図に従来の超電導マグネットの保護回路が示され
る。超電導マグネット16は3個の巻線ブロック(コイ
ル)16a,16b及び16cを直列接続したものである。超電導
マグネット16の保護手段として、超電導マグネット16と
並列に外部に1台の保護抵抗17を設けたものである。超
電導マグネット16はスイッチ18を介して励磁電源19によ
り励磁されているが、何らかの原因で超電導マグネット
16の超電導状態が破れて常電導状態に転移した場合は、
超電導マグネット16を励磁している励磁電源19をスイッ
チ18により切り離す。これによって超電導マグネット16
の磁気エネルギーを超電導マグネット16と並列に接続さ
れた保護抵抗17に放出させ、超電導マグネット16を保護
しようとするものである。ここで、第3図の保護回路に
おいて保護抵抗17について次のような制限がある。即
ち、超電導マグネット16の保護の観点から常電導部分で
の発熱による温度上昇をなるべく低減するために、マグ
ネット電流をすみやかに減衰させる必要がある。このた
めに大きな抵抗値を有する保護抵抗を必要とするが、抵
抗値が大きすぎると保護抵抗17の両端電圧即ち超電導マ
グネット16の両端電圧が許容絶縁電圧を越えてしまう。
従って、少なくとも許容絶縁電圧以下になるように保護
抵抗17の抵抗値を決めなければならない。
FIG. 3 shows a conventional superconducting magnet protection circuit. The superconducting magnet 16 is formed by connecting three winding blocks (coils) 16a, 16b and 16c in series. As a means for protecting the superconducting magnet 16, one protective resistor 17 is provided outside in parallel with the superconducting magnet 16. The superconducting magnet 16 is excited by an excitation power supply 19 via a switch 18, but for some reason the superconducting magnet 16
If the 16 superconducting state breaks and transitions to the normal conducting state,
The excitation power supply 19 for exciting the superconducting magnet 16 is disconnected by the switch 18. This makes the superconducting magnet 16
The magnetic energy is released to a protection resistor 17 connected in parallel with the superconducting magnet 16 to protect the superconducting magnet 16. Here, there are the following restrictions on the protection resistor 17 in the protection circuit of FIG. That is, from the viewpoint of protection of the superconducting magnet 16, it is necessary to rapidly attenuate the magnet current in order to minimize the temperature rise due to heat generation in the normal conducting portion. For this purpose, a protection resistor having a large resistance value is required. However, if the resistance value is too large, the voltage across the protection resistor 17, that is, the voltage across the superconducting magnet 16 exceeds the allowable insulation voltage.
Therefore, the resistance value of the protection resistor 17 must be determined so as to be at least equal to or lower than the allowable insulation voltage.

しかしながら、これまで電源遮断後の超電導マグネッ
ト16の電位分布についてあまり考慮されておらず第3図
の回路での発生電圧に関して次のような問題があった。
即ち、第3図の回路での最高発生電圧は必ずしも保護抵
抗17の両端電圧ではなく超電導マグネット16の内部で最
高電圧が発生することがあるために保護抵抗17の両端電
圧を許容絶縁電圧以下にするだけでは不十分である。
However, the potential distribution of the superconducting magnet 16 after the power is cut off has not been taken into consideration so far, and the following problems have occurred with respect to the voltage generated in the circuit of FIG.
That is, since the highest voltage generated in the circuit of FIG. 3 is not necessarily the voltage across the protection resistor 17 but the highest voltage may be generated inside the superconducting magnet 16, the voltage across the protection resistor 17 is set below the allowable insulation voltage. Just doing is not enough.

第4図は第3図の回路における電源遮断後の超電導マ
グネット16の端子A,B,C及びDのそれぞれの電位を示し
たものである。ここで、超電導マグネット16の一方の端
子の電位はアース電位となり、端子Aと端子Dとの間の
電位差は保護抵抗17の両端電圧に等しくなる。第4図は
巻線ブロック(コイル)16a又は16b又は16cで超電導状
態が破れて常電導状態に転移したそれぞれの場合につい
て、電源遮断後のある時刻におけるそれぞれの電位分布
のプロットを示している。巻線ブロック16cが常電導転
移した場合の電位分布のプロットを実線で示す。同様
に、巻線ブロック16bが常電導転移した場合の電位分布
のプロットを点線で示す。また同様に、巻線ブロック16
cが常電導転移した場合の電位分布のプロットを一点鎖
線で示す。また、第4図の右側に保護抵抗の電圧、それ
ぞれの場合の超電導マグネット16で発生する電圧、即
ち、電位分布のプロットにおける最大値と最小値の差で
ある電位差を示す。まず、一番左に保護抵抗17の両端電
圧、次に左から順番に、巻線ブロック16aが常電導転移
した場合の超電導マグネット16で発生する電圧、巻線ブ
ロック16bが常電導転移した場合の超電導マグネット16
で発生する電圧、巻線ブロック16cが常電導転移した場
合の超電導マグネット16で発生する電圧を示す。従っ
て、これら3通りのうちで、巻線ブロック16bが常電導
転移した場合が一番超電導マグネット16で発生する電圧
が低くなることがわかる。
FIG. 4 shows the respective potentials of the terminals A, B, C and D of the superconducting magnet 16 after the power is cut off in the circuit of FIG. Here, the potential of one terminal of the superconducting magnet 16 becomes the ground potential, and the potential difference between the terminals A and D becomes equal to the voltage across the protection resistor 17. FIG. 4 shows a plot of each potential distribution at a certain time after the power is cut off in each case where the superconducting state is broken and the winding block (coil) 16a or 16b or 16c breaks into the normal conducting state. A solid line shows a plot of the potential distribution when the winding block 16c undergoes normal conduction transition. Similarly, a dotted line shows a plot of the potential distribution when the winding block 16b undergoes a normal conduction transition. Similarly, the winding block 16
A dash-dot line indicates a plot of the potential distribution when c undergoes a normal conduction transition. The right side of FIG. 4 shows the voltage of the protective resistor, the voltage generated by the superconducting magnet 16 in each case, that is, the potential difference which is the difference between the maximum value and the minimum value in the potential distribution plot. First, the voltage at both ends of the protection resistor 17 is the leftmost, and then, in order from the left, the voltage generated in the superconducting magnet 16 when the winding block 16a transitions to the normal conduction, and when the winding block 16b transitions to the normal conduction. Superconducting magnet 16
And the voltage generated by the superconducting magnet 16 when the winding block 16c undergoes normal conduction transition. Therefore, it can be seen that the voltage generated by the superconducting magnet 16 becomes lowest when the winding block 16b undergoes the normal conduction transition among the three methods.

従って第4図に示されるように、端の巻線ブロック16
a又は16cで超電導状態が破れて常電導状態に転移した場
合は、超電導マグネット16の内部で最高電圧が発生する
可能性は大きく、第3図の回路での最高発生電圧は保護
抵抗17の両端電圧より高くなることがある。つまりコイ
ルの両端部に抵抗のある部分が発生し、この部分のイン
ダクタンスlとこの部分の抵抗γとが次式の関係を満た
すときは、 最高発生電圧は保護抵抗の両端電圧RI(Rは保護抵抗17
の抵抗)より大きくなる。しかし、中央の巻線ブロック
16bだけで超電導状態が破れて常電導状態に転移した場
合は、超電導マグネット16の内部で最高電圧が発生する
可能性は小さくなり、ほとんどの場合第3図の回路にお
ける最高発生電圧は保護抵抗17の両端電圧になり、少な
くとも、端の巻線ブロック16a又は16cで超電導状態が破
れて常電導状態に転移した場合に比べて、第3図の回路
での最高発生電圧は低くなる。従って、巻線ブロック16
a又は16cが常電導転移する場合は保護抵抗17の抵抗値が
16bが常電導転移する場合より小さくしなければならな
い。
Therefore, as shown in FIG.
If the superconducting state is broken at a or 16c and the state transits to the normal conducting state, it is highly possible that the highest voltage is generated inside the superconducting magnet 16, and the highest voltage generated in the circuit of FIG. May be higher than voltage. That is, when a portion having resistance occurs at both ends of the coil, and the inductance l of this portion and the resistance γ of this portion satisfy the relationship of the following equation, The highest generated voltage is the voltage RI across the protection resistor (R is the protection resistor 17
Resistance). But the central winding block
If the superconducting state is broken by only 16b and the state changes to the normal conducting state, the possibility that the highest voltage is generated inside the superconducting magnet 16 is reduced, and in most cases, the highest generated voltage in the circuit of FIG. The maximum voltage generated in the circuit of FIG. 3 is lower than at least when the superconducting state is broken and the normal winding state is established in the winding block 16a or 16c at the end. Therefore, the winding block 16
If a or 16c undergoes normal conduction transition, the resistance value of
Must be smaller than when 16b undergoes a normal conduction transition.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の超電導マグネットの保護方法にあっては、直列
接続したコイル(巻線ブロック)の端のコイルが常電導
転移した場合は、超電導マグネットの両端電圧が許容絶
縁電圧を越えてしまう問題点があった。
In the conventional method of protecting a superconducting magnet, there is a problem in that when the coil at the end of a coil (winding block) connected in series undergoes normal conduction, the voltage across the superconducting magnet exceeds the allowable insulation voltage. Was.

本発明の目的は、超電導マグネットの内部で最高電圧
が発生する可能性を少なくして、最高発生電圧が許容絶
縁電圧を越えないようにするとともに、保護抵抗の両端
電圧に等しくなるようにする超電導マグネットの保護方
法及びその保護装置を提供することにある。
It is an object of the present invention to reduce the possibility that a maximum voltage is generated inside a superconducting magnet so that the maximum generated voltage does not exceed an allowable insulation voltage and is equal to a voltage across a protection resistor. An object of the present invention is to provide a method of protecting a magnet and a device for protecting the same.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明に係る超電導マグ
ネットの保護方法は、複数のコイルを直列に接続してな
る超電導マグネットを少なくとも1個の保護抵抗で保護
し、保護抵抗を超電導マグネットと並列に接続するとと
もに超電導マグネットの常電導転移をクエンチ検知器で
検知し、クエンチ検知器からの信号に応じて制御器が作
動し超電導マグネットと保護抵抗とを閉路する超電導マ
グネットの保護方法において、直列のほぼ中央に位置す
るコイル常電導転移を起こさせ、コイルの発生電圧を許
容絶縁電圧以下に制限するように構成されている。
In order to achieve the above object, a method for protecting a superconducting magnet according to the present invention includes the steps of: protecting a superconducting magnet formed by connecting a plurality of coils in series with at least one protection resistor; In the superconducting magnet protection method of connecting the superconducting magnet and detecting the normal conduction transition of the superconducting magnet with a quench detector, the controller operates according to the signal from the quench detector and closes the superconducting magnet and the protective resistor, It is configured to cause a normal conduction transition of the coil located at the center, and to limit the generated voltage of the coil to an allowable insulation voltage or less.

そして、コイルを一本の線材で巻回する際に、磁界が
高くなるコイルの部位を中央に位置させて直列接続する
構成またはコイルを一本の線材で巻回する際に、常電導
転移時に線材の温度が高くなるコイルの部位を中央に位
置させて直列接続する構成とし、 さらに、コイルを一本の線材で巻回する際に、磁界が
低くなるコイルの部位を励磁電源の両端に接続する構
成、またはコイルを一本の線材で巻回する際に、常電導
転移時に線材の温度が高くならないコイルの部位を励磁
電源の両端に接続する構成でも良い。
And, when winding the coil with one wire, the configuration where the part of the coil where the magnetic field is high is located in the center and connected in series or when winding the coil with one wire, at the time of normal conduction transition The coil part where the temperature of the wire rises is located in the center and connected in series.When winding the coil with one wire, the coil part where the magnetic field is low is connected to both ends of the excitation power supply Alternatively, when the coil is wound by one wire, a portion of the coil where the temperature of the wire does not increase during normal conduction transition may be connected to both ends of the excitation power supply.

そして超電導マグネットの保護装置においては、複数
のコイルを直列に接続してなる超電導マグネットを保護
する少くとも1個の保護抵抗と、保護抵抗を超電導マグ
ネットと並列に接続するとともに超電導マグネットの常
電導転移を検知するクエンチ検出器と、クエンチ検知器
からの信号に応じて制御器が作動し超電導マグネットと
保護抵抗とを閉路するスイッチとからなる超電導マグネ
ットの保護装置において、常電導転移を起こすコイルを
直列のほぼ中央に配設した構成とする。
In the superconducting magnet protection device, at least one protection resistor for protecting the superconducting magnet formed by connecting a plurality of coils in series, a protection resistor is connected in parallel with the superconducting magnet, and the normal conduction transition of the superconducting magnet is performed. In the superconducting magnet protection device, which consists of a quench detector that detects the current and a switch that closes the superconducting magnet and the protection resistor when the controller operates in response to a signal from the quench detector, a coil that causes normal conduction transition is connected in series. Is arranged almost at the center.

〔作用〕[Action]

本発明の超電導マグネットの保護方法によれば、複数
の直列接続したコイルの中央で常電導転移を起こさせる
ことによって、コイルの発生電圧は許容絶縁電圧以下と
なる。そして磁界が高くなるコイルの部位を中央に位置
させるか、または磁界が低くなるコイルの部位を励磁電
源の両端に接続することによちぇ常電導転移時に最高発
生電位は低くなり、常電導転移時に線材の温度が高くな
るコイルの部位を中央に位置させるか、または常電導転
移時に線材の温度が高くならないコイルの部位を励磁電
源の両端に接続することによって、例えば外層の巻線部
分は内層の巻線部分より臨界温度が高くなり、外部の保
護抵抗側からの熱浸入の影響が小さくなる。
According to the method for protecting a superconducting magnet of the present invention, by causing normal conduction transition at the center of a plurality of serially connected coils, the generated voltage of the coils becomes equal to or lower than the allowable insulation voltage. By placing the part of the coil where the magnetic field is high at the center or connecting the part of the coil where the magnetic field is low to both ends of the excitation power source, the highest potential generated during normal conduction transition is low, and the normal conduction transition is low. For example, by placing the coil part where the temperature of the wire becomes high in the center, or connecting the coil part where the temperature of the wire does not become high at the time of normal conduction transition to both ends of the excitation power source, for example, the winding part of the outer layer becomes the inner layer. The critical temperature becomes higher than that of the winding part, and the influence of thermal intrusion from the external protective resistance side is reduced.

〔実施例〕〔Example〕

本発明の一実施例を第1図を参照しながら説明する。 One embodiment of the present invention will be described with reference to FIG.

第1図に示されるように、複数のコイル1及び2を直
列に接続してなる超電導マグネット21を少なくとも1個
の保護抵抗17で保護し、保護抵抗17を超電導マグネット
21と並列に接続するとともに超電導マグネット21の常電
導転移をクエンチ検知器(図示せず)で検知し、クエン
チ検知器からの信号に応じて制御器(図示せず)が作動
し超電導マグネット21と保護提供17をスイッチ18を介し
て閉路する超電導マグネットの保護方法において、直列
のほぼ中央に位置するコイルの内層に常電導転移を起こ
させ、コイルの発生電圧を許容絶縁電圧以下に制限する
ように構成とする。
As shown in FIG. 1, a superconducting magnet 21 formed by connecting a plurality of coils 1 and 2 in series is protected by at least one protection resistor 17, and the protection resistor 17 is protected by a superconducting magnet.
The quench detector (not shown) detects the normal conduction transition of the superconducting magnet 21 in parallel with the superconducting magnet 21, and a controller (not shown) operates according to a signal from the quench detector to connect the superconducting magnet 21 to the superconducting magnet 21. In the superconducting magnet protection method in which the protection provision 17 is closed via the switch 18, a normal conduction transition is caused in the inner layer of the coil located substantially in the center of the series so that the generated voltage of the coil is limited to the allowable insulation voltage or less. Configuration.

そして、コイルを一本の線材で巻回する際に、磁界が
高くなるコイルの部位を中央有コイル1,2の内層)に位
置させて直列接続する構成またはコイルを一本の線材で
巻回する際に、常電導転移時に線材の温度が高くなるコ
イルの部位を中央に位置させて直列接続する構成とし、 さらに、コイルを一本の線材で巻回する際に、磁界が
低くなるコイルの部位を外層側の端子4,6を介して励磁
電源19両端に接続する構成、またはコイルを一本の線材
で巻回する際に、常電導転移時に線材の温度が高くなら
ないコイルの部位を外層側の端子4,6を介して励磁電源1
9の両端に接続する構成でも良い。
When the coil is wound with a single wire, the portion of the coil where the magnetic field is high is located in the inner layer of the central coils 1 and 2) and the coil is wound with a single wire. When the coil is wound with a single wire, the magnetic field becomes low when the coil is wound with a single wire. A configuration in which the part is connected to both ends of the excitation power supply 19 via the outer layer terminals 4 and 6, or a part of the coil where the temperature of the wire does not rise during normal conduction transition when the coil is wound with one wire Excitation power supply 1 via terminals 4 and 6
It may be configured to connect to both ends of 9.

そして超電導マグネット21の保護装置においては、複
数のコイル1を直列に接続してなる超電導マグネットを
保護する少なくとも1個の保護する少くとも1個の保護
抵抗17と、保護抵抗17を超電流マグネット21と並列に接
続するとともに超電導マグネット21の常電導転移を検知
するクエンチ検知器(図示せず)と、クエンチ検知器か
らの信号に応じて制御器(図示せず)が作動し超電動マ
グネット21と保護抵抗17とを閉路するスイッチ18とから
なる超電導マグネットの保護装置において、常電導転移
を起こすコイルを直列のほぼ中央に配設した構成とす
る。
In the protection device for the superconducting magnet 21, at least one protection resistor 17 for protecting a superconducting magnet formed by connecting a plurality of coils 1 in series, and at least one protection resistor 17 for protecting the superconducting magnet, are connected to the supercurrent magnet 21. And a quench detector (not shown) for detecting the normal conduction transition of the superconducting magnet 21 and a controller (not shown) operated in response to a signal from the quench detector to In a superconducting magnet protection device comprising a protection resistor 17 and a switch 18 for closing, a coil causing a normal conduction transition is arranged substantially at the center of the series.

本発明は超電導状態が破れて常電導状態に転移する部
位が、超電導マグネット内において巻線の端部ではなく
中央部になるようにすることによって初期の目的は達成
するようにしたものであって、第1図に示されるソレノ
イド巻の巻線ブロック(コイル)1には内層側の端子3
と外層側の端子4とがあり、同様に、巻線ブロック2に
は内層側の端子5の外層側の端子6とがある。第1図に
示されるような配置で、それぞれの巻線ブロックが同一
方向の磁界を発生させる場合において、磁界はそれぞれ
の巻線ブロックの外層の巻線部分より内層の巻線部分に
おいて高くなり、超電導状態から常電導状態への転移は
内層の巻線部分において発生する。従って、内層側の端
子3と内層側の端子5とを接続し、外層側の端子4と6
をそれぞれ外部の保護抵抗17に接続するように、2個の
巻線ブロック1と2を直列接続することにより、全体と
して超電動マグネット21は巻線ブロック1の外層部−巻
線ブロック1の内層部−巻線ブロック2の内層部−巻線
ブロック2の外層部の順に接続したことになる。その結
果、超電導状態が破れて常電導状態に移動する部位(巻
線ブロックの内層部)が、超電導マグネット内において
巻線の端部ではなく中央部になるようにでき、内層側の
端子3と5をそれぞれ外部の保護抵抗に接続する場合に
比べて第3図に示されるような回路での最高発生電圧は
低くなる。ここで、2個の巻線ブロック1と2は互いに
逆向きに巻いてあり、しかも、外層の巻線部分は内層の
巻線部分より磁界は低いため、内層の巻線部分より臨界
温度は高くなり、外部の保護抵抗側からの熱浸入の影響
を小さくできる利点がある。
The present invention achieves the initial object by making the part where the superconducting state breaks and transitions to the normal conducting state be in the center of the superconducting magnet instead of the end of the winding. , An inner layer terminal 3 is provided on a solenoid-wound winding block (coil) 1 shown in FIG.
And the terminal 4 on the outer layer side. Similarly, the winding block 2 has the terminal 6 on the outer layer side of the terminal 5 on the inner layer side. In the arrangement as shown in FIG. 1, when each winding block generates a magnetic field in the same direction, the magnetic field is higher in the inner layer winding part than in the outer layer winding part of each winding block, The transition from the superconducting state to the normal conducting state occurs in the winding part of the inner layer. Therefore, the terminal 3 on the inner layer side and the terminal 5 on the inner layer side are connected, and the terminals 4 and 6 on the outer layer side are connected.
By connecting the two winding blocks 1 and 2 in series such that each of them is connected to an external protection resistor 17, the super electric magnet 21 as a whole is composed of the outer layer of the winding block 1 and the inner layer of the winding block 1. This means that the connection is made in the order of the unit, the inner layer of the winding block 2 and the outer layer of the winding block 2. As a result, the part where the superconducting state is broken and moves to the normal conducting state (the inner layer part of the winding block) can be made not the end part of the winding but the center part in the superconducting magnet, and the terminal 3 on the inner layer side The maximum generated voltage in the circuit as shown in FIG. 3 is lower than in the case where each of the reference numerals 5 is connected to an external protection resistor. Here, the two winding blocks 1 and 2 are wound in opposite directions, and since the magnetic field is lower in the winding portion of the outer layer than in the winding portion of the inner layer, the critical temperature is higher than the winding portion of the inner layer. Therefore, there is an advantage that the influence of thermal intrusion from the external protection resistor side can be reduced.

次に、本発明の他の実施例を第2図を参照しながら説
明する。第2図に示されるようなソレノイド巻の3個の
巻線ブロック(コイル)7,8及び9があり、これらを直
列に接続して使用する場合は、ソレノイド巻の巻線ブロ
ック7には内層側の端子10と外層側の端子11とがあり、
同様に、巻線ブロック8には内層側の端子12と外層側の
端子13とがあり、また同様に、巻線ブロック9には内層
側の端子14と外層側の端子15とがある。ここで、第2図
に示されるようなそれぞれの巻線ブロックの配置におい
て、3個の巻線ブロックのうちで、中央の巻線ブロック
8の磁界が一番高くなり、またそれぞれの巻線ブロック
の内層の巻線部分は外層の巻線部分より磁界が高くな
る。その場合、超電導状態が破れて常電導状態への転移
は、中央の巻線ブロック8の内層の巻線部分において発
生する。従って、外層の巻線ブロック7と9の外層側の
端子11と15をそれぞれ外部の保護抵抗に接続し、外側の
巻線ブロック7の内層側の端子10と中央の巻線ブロック
8の端子12又は13とを接続し、外側の巻線ブロック9の
内装側の端子14と中央の巻線ブロック8の残りの端子と
を接続するように、3個の巻線ブロック7,8及び9を直
列接続することにより、超電導状態が破れて常電導状態
に転移する部位が、超電導マグネット内において巻線の
端部ではなく中央部になるようにすることができ、内層
側の端子をそれぞれ外部の保護抵抗に接続するような場
合に比べて第3図のような回路での最高発生電圧は低く
なる。ここで、巻線ブロック7,8及び9は所望の磁界が
発生するような向きに巻いてあるものとする。
Next, another embodiment of the present invention will be described with reference to FIG. As shown in FIG. 2, there are three solenoid-wound winding blocks (coils) 7, 8 and 9, and when these are connected in series and used, the solenoid-wound winding block 7 has an inner layer. There is a terminal 10 on the side and a terminal 11 on the outer layer,
Similarly, the winding block 8 has terminals 12 on the inner layer side and terminals 13 on the outer layer side. Similarly, the winding block 9 has terminals 14 on the inner layer side and terminals 15 on the outer layer side. Here, in the arrangement of the respective winding blocks as shown in FIG. 2, of the three winding blocks, the magnetic field of the center winding block 8 becomes the highest, and the respective winding blocks become The magnetic field is higher in the inner layer winding portion than in the outer layer winding portion. In this case, the transition from the superconducting state to the normal conducting state occurs in the winding portion of the inner layer of the central winding block 8. Therefore, the outer-layer terminals 11 and 15 of the outer-layer winding blocks 7 and 9 are respectively connected to external protection resistors, and the inner-layer terminal 10 of the outer-side winding block 7 and the terminal 12 of the center-winding block 8 are connected. Or 13 and the three winding blocks 7, 8 and 9 are connected in series such that the terminal 14 on the interior side of the outer winding block 9 and the remaining terminals of the center winding block 8 are connected. By connecting, the part where the superconducting state breaks and transitions to the normal conducting state can be made not the end part of the winding in the superconducting magnet but the center part, and the inner layer terminals are protected externally respectively. The maximum generated voltage in the circuit as shown in FIG. 3 is lower than that in the case of connecting to a resistor. Here, it is assumed that the winding blocks 7, 8, and 9 are wound in such a direction that a desired magnetic field is generated.

〔発明の効果〕〔The invention's effect〕

本発明の超電導マグネットの保護方法及び保護装置に
よれば、直列に接続したコイルの中央のコイルに常電導
転移を起こさせることによって、常電導転移時の最高発
生電圧を低くすることができるため、保護抵抗の抵抗値
を最大限大きく設定することが可能となり、超電導マグ
ネットを保護する効果が向上する。
According to the method and apparatus for protecting a superconducting magnet of the present invention, by causing normal conduction transition in the center coil of the serially connected coils, the maximum generated voltage at the time of normal conduction transition can be reduced. The resistance value of the protection resistor can be set as large as possible, and the effect of protecting the superconducting magnet is improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す構成図、第2図は本発
明の他の実施例を示す構成図、第3図は従来の技術を示
す回路図、第4図は第3図のそれぞれのコイルの常電導
転移時における電位を示すグラフである。 1,2……コイル、17……保護抵抗、 18……スイッチ、19……励磁電源、 21……超電導マグネット。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a block diagram showing another embodiment of the present invention, FIG. 3 is a circuit diagram showing a conventional technique, and FIG. 3 is a graph showing the potential at the time of normal conduction transition of each coil. 1,2… Coil, 17… Protective resistor, 18… Switch, 19… Excitation power supply, 21… Superconducting magnet.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数のコイルを直列に接続してなる超電導
マグネットを少なくとも1個の保護抵抗で保護し、該保
護抵抗を前記超電導マグネットと並列に接続するととも
に該超電導マグネットの常電導転移をクエンチ検知器で
検知し、該クエンチ検知器からの信号に応じて制御器が
作動し前記超電導マグネットと前記保護抵抗とを閉路す
る超電導マグネットの保護方法において、前記直列のほ
ぼ中央に位置する前記コイルに前記常電導転を起こさ
せ、該コイルの発生電圧を許容絶縁電圧以下に制限する
ことを特徴とする超電動マグネットの保護方法。
A superconducting magnet comprising a plurality of coils connected in series is protected by at least one protection resistor, and the protection resistor is connected in parallel with the superconducting magnet and quenches the normal conduction transition of the superconducting magnet. In the method of protecting a superconducting magnet, which is detected by a detector and a controller operates in response to a signal from the quench detector to close the superconducting magnet and the protection resistor, the coil located substantially at the center of the series A method for protecting a super-electric magnet, comprising: causing the normal conduction rotation to occur; and restricting a voltage generated by the coil to an allowable insulation voltage or less.
【請求項2】コイルを一本の線材で巻回する際に、磁界
が高くなる前記コイルの部位を中央に位置させて直列接
続することを特徴とする請求項1記載の超電導マグネッ
トの保護方法。
2. The method for protecting a superconducting magnet according to claim 1, wherein, when the coil is wound by one wire, a portion of the coil where a magnetic field is high is located at a center and connected in series. .
【請求項3】コイルを一本の線材で巻回する際に、常電
導転移時に前記線材の温度が高くなる前記コイルの部位
を中央に位置させて直列接続することを特徴とする請求
項1記載の超電導マグネットの保護方法。
3. When the coil is wound by one wire, the portion of the coil where the temperature of the wire becomes high at the time of normal conduction transition is located at the center and connected in series. The method for protecting the superconducting magnet described.
【請求項4】コイルを一本の線材で巻回する際に、磁界
が低くなる前記コイルの部位を励磁電源の両端に接続す
ることを特徴とする請求項1記載の超電導マグネットの
保護方法。
4. The method for protecting a superconducting magnet according to claim 1, wherein, when the coil is wound by one wire, a portion of the coil where a magnetic field is reduced is connected to both ends of an excitation power supply.
【請求項5】コイルを一本の線材で巻回する際に、常電
導転移時に前記線材の温度が高くならない前記コイルの
部位を励磁電源の両端に接続することを特徴とする請求
項1記載の超電導マグネットの保護方法。
5. The coil according to claim 1, wherein, when the coil is wound by one wire, portions of the coil at which the temperature of the wire does not increase at the time of normal conduction transition are connected to both ends of an excitation power supply. Superconducting magnet protection method.
【請求項6】複数のコイルを直列に接続してなる超電導
マグネットを保護する少なくとも1個の保護抵抗と、該
保護抵抗を前記超電導マグネットと並列に接続するとと
もに該超電導マグネットの常電導転移を検知するクエン
チ検知器と、該クエンチ検知器からの信号に応じて制御
器が作動し前記超電導マグネットと前記保護抵抗とを閉
路するスイッチとからなる超電導マグネットの保護装置
において、前記常電導転移を起こす前記コイルを直列の
ほぼ中央に配設したことを特徴とする超電導マグネット
の保護装置。
6. At least one protection resistor for protecting a superconducting magnet formed by connecting a plurality of coils in series, connecting the protection resistor in parallel with the superconducting magnet, and detecting a normal conduction transition of the superconducting magnet. A quench detector, and a controller that operates in response to a signal from the quench detector and that operates a controller to close the superconducting magnet and the protection resistor. A protection device for a superconducting magnet, wherein a coil is disposed substantially at the center of a series.
JP1004524A 1989-01-11 1989-01-11 Superconducting magnet protection method and protection device Expired - Lifetime JP2599986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1004524A JP2599986B2 (en) 1989-01-11 1989-01-11 Superconducting magnet protection method and protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1004524A JP2599986B2 (en) 1989-01-11 1989-01-11 Superconducting magnet protection method and protection device

Publications (2)

Publication Number Publication Date
JPH02184004A JPH02184004A (en) 1990-07-18
JP2599986B2 true JP2599986B2 (en) 1997-04-16

Family

ID=11586434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1004524A Expired - Lifetime JP2599986B2 (en) 1989-01-11 1989-01-11 Superconducting magnet protection method and protection device

Country Status (1)

Country Link
JP (1) JP2599986B2 (en)

Also Published As

Publication number Publication date
JPH02184004A (en) 1990-07-18

Similar Documents

Publication Publication Date Title
JP4856393B2 (en) System and method for quench protection of superconductors
US7477492B2 (en) Superconducting magnet system
US5650903A (en) Superconducting-magnet electrical circuit having voltage and quench protection
US20110218111A1 (en) High temperature superconducting parallel conductors, high temperature superconducting coil using the same, and high temperature superconducting magnet
JPH0138361B2 (en)
US4812796A (en) Quench propagation device for a superconducting magnet
US5644233A (en) Quench protection for actively shielded magnets
US6507259B2 (en) Actively shielded superconducting magnet with protection means
US6809910B1 (en) Method and apparatus to trigger superconductors in current limiting devices
EP0399481B1 (en) Current limiting device
US6958893B2 (en) Superconducting matrix fault current limiter with current-driven trigger mechanism
US5218505A (en) Superconductor coil system and method of operating the same
JPS6115565B2 (en)
US5333087A (en) Superconducting magnet apparatus with a magnetic shield
JP2599986B2 (en) Superconducting magnet protection method and protection device
JPH0529137A (en) Superconducting electromagnet
US3859566A (en) Arrangement for removing energy from a superconducting magnet
JP2011029227A (en) Coil device, protecting apparatus and induction voltage suppressing method
JPH02202320A (en) Superconducting current limiter
JP3045165B1 (en) Current limiting device
JPS5866313A (en) Protective device for superconductive magnet
JPH0993800A (en) Superconducting coil electric power unit
JPS6156856B2 (en)
JPH01278003A (en) Method of preventing breakdown of superconducting magnet
JPH03145923A (en) Current limiter