JPS5866313A - Protective device for superconductive magnet - Google Patents

Protective device for superconductive magnet

Info

Publication number
JPS5866313A
JPS5866313A JP56165028A JP16502881A JPS5866313A JP S5866313 A JPS5866313 A JP S5866313A JP 56165028 A JP56165028 A JP 56165028A JP 16502881 A JP16502881 A JP 16502881A JP S5866313 A JPS5866313 A JP S5866313A
Authority
JP
Japan
Prior art keywords
magnets
magnet
superconducting
current
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56165028A
Other languages
Japanese (ja)
Inventor
Mitsugi Yamaguchi
貢 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56165028A priority Critical patent/JPS5866313A/en
Publication of JPS5866313A publication Critical patent/JPS5866313A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/001Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for superconducting apparatus, e.g. coils, lines, machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To control the occurrence of an overvoltage for a disconnection accident and to positively protect superconductive magnets from electrical destruction by a method wherein protective resistors are individually connected to a plurality of respective series-connection superconductive magnets. CONSTITUTION:Superconductive magnets 11, 12 are respectively housed in vacuum heat insulating containers 21, 22 and a DC current is supplied from an exciting DC power supply 3 through a protective switch 4. In such a circuit, protective resistors 51, 52 are independently connected to series-connection magnets 11, 12 in parallel. In this way, even if a disconnection accident occurs in the series circuit, an overvoltage caused by Ldi/dt (L is the inductance of a magnet and i is magnet current) will not be produced on the magnets and the magnets are protected by attenuating the current (i). As for the magnet protection at the time of quench accident, tie magnets can be protected by opening the switch 4.

Description

【発明の詳細な説明】 本発明は断線事故に対しても超電導マグネットを確実に
保護し得るようにした超電導マグネットの保護装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting magnet protection device that can reliably protect a superconducting magnet even against disconnection accidents.

一般に、超電導コイルにはクエンチと言われる事故があ
る。これは、通電時に、超電導コイルの一微少部分が何
らかの原因によシ超電導状態から常電導状態に転移した
とすると、この部分にジェール損失が発生して発熱する
現象である。そして、この発熱が超電導コイルの冷却材
、例えば液体ヘリウムの冷却能力よりも大きいようか場
合には、常電導部分の温度が上昇しこれによシこの常電
導部分につ人がる超電導引分の温度が上昇し、その結果
超電導特性が破壊されて常電導部分が拡大し、ついに祉
超電導コイル全体が常電導化してコイル全体が絶縁破壊
する。
Generally, superconducting coils have an accident called quench. This is a phenomenon in which when a small portion of the superconducting coil transitions from a superconducting state to a normal conducting state for some reason during energization, gel loss occurs in this portion and heat is generated. If this heat generation is larger than the cooling capacity of the superconducting coil's coolant, such as liquid helium, the temperature of the normal conducting part will rise, and this will cause the superconducting force attached to this normal conducting part to increase. As a result, the superconducting properties are destroyed and the normal conducting part expands, and finally the entire superconducting coil becomes normal conducting and the entire coil undergoes dielectric breakdown.

そこで、これを防止するために次のような対策を採って
いる。
Therefore, we have taken the following measures to prevent this.

館1図祉、従来の超電導マグネットの保護回路を示すも
のである。図において、11.12は直列接続された超
電導マグネットで、4.2にの液体ヘリウムに浸漬冷却
されている。この各超電導マグネットll、12は真空
断熱容器21゜xxyc夫々収納され、励磁用直流電源
3よυ保護スイッチ4な介して直流電流が供給される。
Figure 1 shows the protection circuit of a conventional superconducting magnet. In the figure, 11.12 are superconducting magnets connected in series, which are cooled by immersion in liquid helium at 4.2. These superconducting magnets ll and 12 are housed in vacuum insulation containers 21°xxyc, respectively, and DC current is supplied through an excitation DC power source 3 and a protection switch 4.

また、超電導マグネットll、12に対して、保護抵抗
5を並列に接続している。
Further, a protective resistor 5 is connected in parallel to the superconducting magnets 11 and 12.

かかる回路において、超電導マグネット11゜12が正
常に動作している場合には、マグネット内での接続部等
における微少の電圧降下はあるが、殆んど無損失で電、
流が流れている。一方、かかる状態においていま前述し
たようなりエンチ事故が発生した場合には、即座に保護
スイッチ4を開とし超電導マグネット11.12VC蓄
積されているエネルギーを、保護抵抗5に放出すること
により、超電導マグネット11.111をその電気絶縁
破壊から保護するようKしている。
In such a circuit, if the superconducting magnets 11 and 12 are operating normally, there will be a slight voltage drop at the connections within the magnets, but the current will flow with almost no loss.
A stream is flowing. On the other hand, if an engine failure accident occurs as described above in such a state, the protection switch 4 is immediately opened and the energy stored in the superconducting magnet 11.12VC is released to the protection resistor 5, thereby preventing the superconducting magnet 11.K to protect 111 from electrical breakdown.

ところで、上記構成における2個の超電導マグネット1
1.12の接続点、若しくは直列回路(励磁回路)の一
部に断線事故が発生すると、1個の超電導マグネットの
両端には次式にて与えられる過電圧マが発生する。
By the way, the two superconducting magnets 1 in the above configuration
If a disconnection accident occurs at the connection point 1.12 or a part of the series circuit (excitation circuit), an overvoltage given by the following equation will occur at both ends of one superconducting magnet.

v = L −−(1) t ここで、Li1個のマグネットのインダクタンス、1は
マグネットの電流を夫々示し、断線事i 故では電流量が急激に減少する。従って、Ldiで与え
られるマグネット両端の訪起電圧は数千〜数万lルトに
も及ぶことになる。しかるに、超電導マグネットは導体
表面が液体ヘリウムで冷却される必要性、定常運転での
印加電圧が微少、およびマグネット励磁時でもその印加
電圧が高々数百がルトであることから、マグネットの導
体間は数十?ルト、対地についても高くても3000メ
ルト程度にしか耐え得ない絶縁構造となっている。
v = L -- (1) t Here, the inductance of one Li magnet, 1, indicates the current of the magnet, and the amount of current decreases rapidly in the event of a disconnection i. Therefore, the stray voltage across the magnet given by Ldi will range from several thousand to several tens of thousands of liters. However, in superconducting magnets, the conductor surface needs to be cooled with liquid helium, the applied voltage during steady operation is very small, and even when the magnet is energized, the applied voltage is only several hundred volts at most, so the distance between the conductors of the magnet is dozens? It has an insulating structure that can withstand only about 3,000 melts at most with respect to the base and ground.

よって、このように低電圧絶縁を余儀危くされる超電導
マグネットにおいて上述のような断線事故が発生すると
、マグネットの両端に数千ないし数百ゲルトに及ぶ過電
圧が発生し、超電導マグネットの導体層間または対地の
電気絶縁破壊に至ってしまうというような問題がある・
本発明は上記のような問題を解決するために成され九も
ので、その目的は断線事故に対して過電圧の発生を抑制
し超電導マグネットを電気絶縁破壊から確実に保護する
ことができる超電導マグネットの保護装置を提供するこ
とにある。
Therefore, if a disconnection accident like the one described above occurs in a superconducting magnet that requires low-voltage insulation, an overvoltage of several thousand to hundreds of gels will occur at both ends of the magnet, causing damage between the conductor layers of the superconducting magnet or between the ground. There are problems such as electrical insulation breakdown.
The present invention was made to solve the above problems, and its purpose is to provide a superconducting magnet that can suppress the generation of overvoltage in the event of a disconnection accident and reliably protect the superconducting magnet from electrical breakdown. The purpose is to provide a protective device.

上記目的を達成するために本発明では、励磁用電源よシ
保験スイッチを介して複数個直列接続された超電導マグ
ネットに直流電流を供給するようにしたものにおいて、
上記夫々の超電導マグネットに対して各別に保護抵抗を
接続することを特徴とする。
In order to achieve the above object, the present invention supplies DC current to a plurality of superconducting magnets connected in series via an excitation power source and a safety switch.
The present invention is characterized in that a protective resistor is connected to each of the superconducting magnets.

以下、本発明を図面に示す実施例について説明する。第
2図は、本発明による超電導マグネットの保護装置の構
成例を示すものである。なお、図において第1図と同一
部分には同一符号を付してその説明を省略し、ここでは
異なる部分についてのみ述べる。つまシ第2図は、第1
図における保護抵抗を図示の如く、夫々の超電導マグネ
ット1x、xxK対して51.52として各別に接続し
たものである。
Embodiments of the present invention shown in the drawings will be described below. FIG. 2 shows an example of the structure of a superconducting magnet protection device according to the present invention. In the figure, the same parts as those in FIG. 1 are given the same reference numerals, and the explanation thereof will be omitted, and only the different parts will be described here. The 2nd page of the tab is the 1st page.
The protective resistors in the figure are individually connected as 51.52 to each superconducting magnet 1x and xxK as shown.

かかる回路においては、保護抵抗51.52を夫々直列
接続されている超電導マグネット11゜12に対し独立
して並列接続している。よりて、直列回路に何らかの原
因で断線事故が発生しても、各超電導マグネット11.
12はその端子である電流リードの近傍で保護抵抗s1
.521 が並列接続されているため、前述したLiによろ過電圧
がマグネットに発生するとと表<、次式で与えられるよ
うに電流1が減衰して保護さとこで、Iはマグネットの
定常通電電流、Lはマグネット1個の自己インダクタン
ス、Rはそれと並列接続される抵抗である。
In this circuit, protective resistors 51 and 52 are independently connected in parallel to the superconducting magnets 11 and 12, which are connected in series. Therefore, even if a disconnection accident occurs in the series circuit for some reason, each superconducting magnet 11.
12 is a protective resistor s1 near the current lead that is the terminal.
.. 521 are connected in parallel, so when the aforementioned Li filter voltage is generated in the magnet, the current 1 is attenuated and protected as given by the following equation, where I is the steady current of the magnet, and L is the self-inductance of one magnet, and R is the resistance connected in parallel with it.

なお、クエンチ事故時のマグネット保護に対しては、保
護スイッチ4を開とすることによシ前述した従来と同様
に行なうことができる。
Incidentally, magnet protection in the event of a quench accident can be carried out in the same manner as in the prior art described above by opening the protection switch 4.

このように1励磁用直流電源3よシ保護スイッチ4を介
して2個直列接続されかつ真空断熱容器21e22に収
納された超電導マグネット11.12に直流電流を供給
するようにしたものにおいて、上記夫々の超電導マグネ
ット11゜12に対して各別に保護抵抗51.52を接
続して保護装置を構成し九ので、クエンチ事故はもちろ
んのこと、直流回路(励磁回路)に断線事故が発生して
もそれKよる過電圧の発生を確実に抑制して、超電導マ
グネy ) 11 e 12を電気絶縁破壊から保護す
ることが可能となる。
In this way, DC current is supplied to the two superconducting magnets 11 and 12 connected in series through the DC power source 3 for excitation and the protection switch 4 and housed in the vacuum insulation container 21e22. Protective resistors 51 and 52 are connected to each of the superconducting magnets 11 and 12 to form a protective device, so that not only quench accidents but also disconnection accidents in the DC circuit (excitation circuit) can be prevented. It becomes possible to reliably suppress the generation of overvoltage due to K and protect the superconducting magnet from electrical breakdown.

尚、本発明は上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

マグネットの直列接続個数は2個以外の複数個でもよく
、また直列接続されている任意の数個のマグネットの両
端に外部抵抗(保護抵抗)を並列接続してもよいもので
ある。
The number of magnets connected in series may be more than two, and an external resistor (protective resistor) may be connected in parallel to both ends of any number of magnets connected in series.

以上説明したように本発明によれば、断線事故に対して
過電圧の発生を抑制し超電導マグネットを電気絶縁破壊
から確実に保腫することができる極めて信頼性の高い超
電導マグネットの保護装置が提供できる。
As explained above, according to the present invention, it is possible to provide an extremely reliable superconducting magnet protection device that can suppress the generation of overvoltage in the event of a disconnection accident and reliably protect the superconducting magnet from electrical breakdown. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図杖従来の超電導マグネットの保験装置を示す図、
第2図は本発明の一実施例を示す構成図である。 11.12・・・超電導マグネット、21.22・・・
真空断熱容器、3・・・励磁用電源、4・・・保験スイ
ッチ、5,51,5:l・・・保睦抵抗・j[11r
Figure 1 shows a conventional superconducting magnet maintenance device.
FIG. 2 is a configuration diagram showing an embodiment of the present invention. 11.12...Superconducting magnet, 21.22...
Vacuum insulation container, 3... Power source for excitation, 4... Maintenance switch, 5, 51, 5: l... Maintenance resistance, j[11r

Claims (1)

【特許請求の範囲】[Claims] 励磁用、電源iシ保曖スイッチを介して複数個直列接続
された超電導マグネットに直流電流を供給するようにし
たものにおいて、前記夫々の超電導マグネットに対して
各別に保護抵抗を接続したことを%黴とする超電導マグ
ネットの保護装置。
In a device that supplies DC current to a plurality of superconducting magnets connected in series via a power supply switch for excitation, a protection resistor is connected to each of the superconducting magnets separately. A protection device for superconducting magnets against mold.
JP56165028A 1981-10-16 1981-10-16 Protective device for superconductive magnet Pending JPS5866313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56165028A JPS5866313A (en) 1981-10-16 1981-10-16 Protective device for superconductive magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56165028A JPS5866313A (en) 1981-10-16 1981-10-16 Protective device for superconductive magnet

Publications (1)

Publication Number Publication Date
JPS5866313A true JPS5866313A (en) 1983-04-20

Family

ID=15804464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56165028A Pending JPS5866313A (en) 1981-10-16 1981-10-16 Protective device for superconductive magnet

Country Status (1)

Country Link
JP (1) JPS5866313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101507306B1 (en) * 2013-06-14 2015-04-06 두산중공업 주식회사 Field coil protecting apparatus and method of superconducting rotating electric machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101507306B1 (en) * 2013-06-14 2015-04-06 두산중공업 주식회사 Field coil protecting apparatus and method of superconducting rotating electric machine

Similar Documents

Publication Publication Date Title
US4559576A (en) Protection device for a superconducting magnetic coil assembly
KR20050031750A (en) Resistive type superconducting fault current limiter
JPH04359626A (en) Current limiter
US4812796A (en) Quench propagation device for a superconducting magnet
JP2001509357A (en) Apparatus and method with overcurrent reduction and current limiting to protect objects from overcurrent
US5218505A (en) Superconductor coil system and method of operating the same
US6433660B1 (en) Resistive superconducting current limiter
JPS61114509A (en) Superconductive coil device
JPS6115565B2 (en)
JPS5866313A (en) Protective device for superconductive magnet
US3176195A (en) Superconducting solenoid
JPH0581973A (en) Dc circuit breaker
US6088210A (en) Protective device for electromagnets
JPH02202320A (en) Superconducting current limiter
JP2901068B2 (en) Current limiting device
JP2599986B2 (en) Superconducting magnet protection method and protection device
JPH0993800A (en) Superconducting coil electric power unit
JPS6353682B2 (en)
JP3045165B1 (en) Current limiting device
JPS6359524B2 (en)
JPH01117233A (en) Protective method of superconductive transmission circuit
JP2778040B2 (en) Superconducting transformer
JPH02294222A (en) Current-limiting apparatus
JPH03145923A (en) Current limiter
JPH03145922A (en) Current limiter