JPH0993800A - Superconducting coil electric power unit - Google Patents

Superconducting coil electric power unit

Info

Publication number
JPH0993800A
JPH0993800A JP7242963A JP24296395A JPH0993800A JP H0993800 A JPH0993800 A JP H0993800A JP 7242963 A JP7242963 A JP 7242963A JP 24296395 A JP24296395 A JP 24296395A JP H0993800 A JPH0993800 A JP H0993800A
Authority
JP
Japan
Prior art keywords
superconducting coil
superconducting
power supply
supply device
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7242963A
Other languages
Japanese (ja)
Inventor
Hiromasa Ninomiya
博正 二宮
Yoshikazu Takahashi
良和 高橋
Toshiya Kai
俊也 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Japan Atomic Energy Agency
Original Assignee
Toshiba Corp
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Japan Atomic Energy Research Institute filed Critical Toshiba Corp
Priority to JP7242963A priority Critical patent/JPH0993800A/en
Publication of JPH0993800A publication Critical patent/JPH0993800A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Particle Accelerators (AREA)
  • Protection Of Static Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress insulation withstanding voltage low for a superconducting coil by decreasing cut-off voltage at the time of quench protecting action. SOLUTION: In a superconducting coil electric power unit connecting a plurality of superconducting coils 1a to 1f in series to an excitation power supply 2, DC circuit breakers 3a to 3f breaking a circuit at quench time are alternately connected in series to the superconducting coils 1a to 1f, also protection resistors 4a to 4f consuming accumulated energy of the coil are connected in parallel to the DC circuit breakers 3a to 3f, and all the DC circuit breakers are simultaneously actuated at a quench time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば核融合実験装置
のトロイダル磁場コイル電源のように負荷となる複数個
の超電導コイルが励磁電源に直列に接続された電源装置
において、超電導コイルをクエンチによる損傷から保護
するクエンチ保護システムを採用した超電導コイル電源
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a toroidal magnetic field coil power source for a nuclear fusion experimental apparatus, in which a plurality of superconducting coils serving as loads are connected in series to an exciting power source, by quenching the superconducting coil. The present invention relates to a superconducting coil power supply device that employs a quench protection system that protects from damage.

【0002】[0002]

【従来の技術】近年、核融合実験装置、加速器、超電導
電力貯蔵設備などの様々な分野で超電導コイルが適用さ
れている。超電導コイルは、通常その電気抵抗は零であ
るが、磁場や温度の急変などによりその超電導性が失わ
れるという異常現象(以下これを「クエンチ」と称す
る)が発生することがある。
2. Description of the Related Art In recent years, superconducting coils have been applied in various fields such as nuclear fusion experimental equipment, accelerators, and superconducting power storage equipment. The superconducting coil normally has an electric resistance of zero, but an abnormal phenomenon in which the superconducting property is lost due to a sudden change in magnetic field or temperature (hereinafter referred to as "quenching") may occur.

【0003】超電導コイルにクエンチが発生すると、液
体ヘリウムの異常発生による圧力上昇に起因するコイル
破損やコイルに蓄えられたエネルギがクエンチを起こし
たコイルで消費されることでコイルの焼損といった不具
合を発生することから、クエンチ発生時には速やかにコ
イルを消磁するための保護装置が必要である。
When a quench occurs in the superconducting coil, the coil is damaged due to the pressure rise due to the abnormal occurrence of liquid helium, and the energy stored in the coil is consumed by the quenched coil, resulting in a failure of the coil. Therefore, a protective device is required to quickly demagnetize the coil when a quench occurs.

【0004】図6はこの種の保護装置を備えた一般的な
超電導コイル電源装置の構成例を示したものである。図
6において、1は負荷となる超電導コイル、2は超電導
コイル1を励磁する励磁電源(図ではサイリスタ変換器
を例として示してある)、3はこの励磁電源2の出力側
に励磁電源2と直列に接続された直流しゃ断器、4は超
電導コイル1と並列に接続され、クエンチが発生すると
超電導コイル1に蓄えられているエネルギを吸収するた
めの保護抵抗である。
FIG. 6 shows an example of the structure of a general superconducting coil power supply device equipped with this type of protection device. In FIG. 6, 1 is a superconducting coil that serves as a load, 2 is an exciting power source for exciting the superconducting coil 1 (the thyristor converter is shown as an example in the figure), and 3 is an exciting power source 2 on the output side of the exciting power source 2. The DC breakers 4 connected in series are connected in parallel with the superconducting coil 1, and are protective resistors for absorbing the energy stored in the superconducting coil 1 when a quench occurs.

【0005】このような保護装置を備えた超電導コイル
電源装置において、超電導コイル1にクエンチが発生し
た場合、直流しゃ断器3をしゃ断することにより超電導
コイル1と保護抵抗4との間に閉ループ回路が形成さ
れ、超電導コイル1に蓄えられたエネルギが保護抵抗4
により吸収されるので、急速に超電導コイル1を消磁す
ることができる。
In a superconducting coil power supply device equipped with such a protection device, when a quench occurs in the superconducting coil 1, a DC circuit breaker 3 is cut off to form a closed loop circuit between the superconducting coil 1 and the protective resistor 4. The energy formed and stored in the superconducting coil 1 is the protective resistance 4
The superconducting coil 1 can be rapidly demagnetized.

【0006】更に、例えば核融合実験装置のトロイダル
磁場コイル電源の場合、一つの励磁電源に対して複数個
の超電導コイルが直列に接続されることが考えられる。
このような場合の従来の電源装置の構成例を図7に示
す。
Further, for example, in the case of a toroidal magnetic field coil power source for a nuclear fusion experimental apparatus, it is conceivable that a plurality of superconducting coils are connected in series to one exciting power source.
FIG. 7 shows a configuration example of a conventional power supply device in such a case.

【0007】図7において、1a〜1fはトロイダル状
に設置される複数個の超電導コイルを示しており、図の
例では6個のコイルで構成されているが、実際にはより
多数のコイルで構成されることが多い。このような構成
の電源装置の場合、超電導コイル1a〜1fのうち何ず
れかのコイルがクエンチした場合、直流しゃ断器3をし
ゃ断し、全てのエネルギを一括して保護抵抗4で吸収さ
せる運転が行われていた。
In FIG. 7, reference numerals 1a to 1f show a plurality of superconducting coils installed in a toroidal shape. In the example shown in the figure, six superconducting coils are used. Often composed. In the case of the power supply device having such a configuration, when any one of the superconducting coils 1a to 1f is quenched, the DC breaker 3 is cut off and all the energy is collectively absorbed by the protective resistance 4. It was done.

【0008】[0008]

【発明が解決しようとする課題】上述したように励磁電
源に複数個の超電導コイルを直列接続した従来の超電導
コイル電源装置においては、1台の保護抵抗で全てのコ
イルのエネルギを吸収させているため、コイルに印加さ
れるしゃ断電圧がかなり大きくなってしまう。
As described above, in the conventional superconducting coil power supply device in which a plurality of superconducting coils are connected in series to the exciting power supply, the energy of all the coils is absorbed by one protection resistor. Therefore, the cutoff voltage applied to the coil becomes considerably large.

【0009】特に近年の核融合実験装置のように大型化
が進むにつれて超電導コイルも大型化し、コイルの通電
電流やインダクタンスなども大きくなり、しゃ断電圧が
大きくなるという問題が顕著に現れる。
In particular, as the size of the nuclear fusion experimental apparatus has increased in recent years, the size of the superconducting coil has also increased, the current flowing through the coil and the inductance have increased, and the problem that the cut-off voltage has increased becomes prominent.

【0010】つまり、全てのコイルのインダクタンスを
L、保護抵抗値をRとした場合、クエンチ時の電流減衰
をコイル保護のため、ある程度短い時間(例えば数秒〜
十数秒程度)に行う必要があるため、L/Rで与えられ
る減衰の時定数が小さくなるようRを大きな値にするこ
とになる。
That is, when the inductance of all the coils is L and the protection resistance value is R, a certain short time (for example, a few seconds to
Since it needs to be performed for about ten and several seconds), R is set to a large value so that the time constant of attenuation given by L / R becomes small.

【0011】従って、コイル通電電流I×Rで与えられ
るしゃ断電圧は大きくなり、現状の超電導コイルの許容
する絶縁耐電圧を大幅に越えてしまうといった問題が発
生する。
Therefore, the breaking voltage given by the coil energizing current I × R becomes large, which causes a problem that the insulation withstand voltage allowed by the current superconducting coil is greatly exceeded.

【0012】本発明は上記の問題を解決するためになさ
れたもので、クエンチ保護動作時のしゃ断電圧を小さく
し、超電導コイルの絶縁耐圧を低く抑えることが可能な
超電導コイル電源装置を提供することを目的とする。
The present invention has been made to solve the above problems, and provides a superconducting coil power supply device capable of reducing the cut-off voltage during the quench protection operation and suppressing the withstand voltage of the superconducting coil. With the goal.

【0013】[0013]

【課題を解決するための手段】本発明は上記の目的を達
成するため、次のような手段により超電導コイル電源装
置を構成するものである。請求項1に対応する発明は、
励磁電源に直列に複数個の超電導コイルを接続した超電
導コイル電源装置において、クエンチ時に回路をしゃ断
する直流しゃ断器を超電導コイルと交互に直列接続する
と共に、コイルの蓄積エネルギを消費する保護抵抗を前
記直流しゃ断器と並列に接続し、クエンチ時には全ての
直流しゃ断器を一斉に動作させる。
In order to achieve the above object, the present invention constitutes a superconducting coil power supply device by the following means. The invention corresponding to claim 1 is:
In a superconducting coil power supply device in which a plurality of superconducting coils are connected in series to an excitation power source, a DC circuit breaker that interrupts a circuit during quenching is connected in series with the superconducting coils alternately, and a protective resistance that consumes energy stored in the coil is described above. Connected in parallel with the DC breakers, all DC breakers are operated at the same time at the time of quench.

【0014】請求項2に対応する発明は、励磁電源に直
列に複数個の超電導コイルを接続した超電導コイル電源
装置において、2個もしくはそれ以上の超電導コイルに
対し、各々1台の直流しゃ断器を直列接続すると共に、
コイルの蓄積エネルギを消費する保護抵抗を前記直流し
ゃ断器と並列に接続し、クエンチ時には全ての直流しゃ
断器を一斉に動作させる。
According to a second aspect of the present invention, in a superconducting coil power supply device in which a plurality of superconducting coils are connected in series to an exciting power source, one DC breaker is provided for each of two or more superconducting coils. With serial connection,
A protective resistor that consumes energy stored in the coil is connected in parallel with the DC breaker, and all the DC breakers are simultaneously operated at the time of quenching.

【0015】請求項3に対応する発明は、上記請求項1
又は請求項2に対応する発明の各超電導コイルの中点ま
たは各保護抵抗の中点を直接接地する。請求項4に対応
する発明は、上記請求項1又は請求項2に対応する発明
の各超電導コイルの中点または各保護抵抗の中点を抵抗
接地する。
The invention corresponding to claim 3 is the above claim 1.
Alternatively, the midpoint of each superconducting coil or the midpoint of each protective resistor of the invention according to claim 2 is directly grounded. In the invention corresponding to claim 4, the midpoint of each superconducting coil or the midpoint of each protection resistor of the invention according to claim 1 or 2 is grounded by resistance.

【0016】[0016]

【作用】上記請求項1に対応する発明の超電導コイル電
源装置にあっては、一つの保護抵抗の抵抗値は一つの超
電導コイルに対応したものでよいので、コイルに印加さ
れるしゃ断電圧も小さく抑えることが可能となる。
In the superconducting coil power supply device of the invention according to claim 1, since the resistance value of one protection resistor may correspond to one superconducting coil, the cutoff voltage applied to the coil is small. It becomes possible to suppress.

【0017】上記請求項2に対応する発明の超電導コイ
ル電源装置にあっては、複数個の保護抵抗の抵抗値は一
つの超電導コイルに対応したものでよいので、コイルに
印加されるしゃ断電圧も小さく抑えることが可能とな
り、しかも電流リードや電源との接続バスラインの数を
減らし、冷媒液化機の容量も小さくできるので、経済的
に有利なシステムとなし得る。
In the superconducting coil power supply device of the invention according to claim 2, since the resistance values of the plurality of protective resistors may correspond to one superconducting coil, the cutoff voltage applied to the coil is also set. It is possible to keep the size small, and further, since the number of current leads and the number of bus lines connected to the power source can be reduced, and the capacity of the refrigerant liquefier can be reduced, an economically advantageous system can be formed.

【0018】請求項3に対応する発明の超電導コイル電
源装置にあっては、各超電導コイルの中点または各保護
抵抗の中点を直接接地することでクエンチ保護動作時の
回路の対地電圧を半分にすることができる。
In the superconducting coil power supply device of the invention according to claim 3, the ground voltage of the circuit during the quench protection operation is halved by directly grounding the midpoint of each superconducting coil or the midpoint of each protection resistor. Can be

【0019】請求項4に対応する発明の超電導コイル電
源装置にあっては、各超電導コイルの中点または各保護
抵抗の中点を抵抗接地することで、複数台のしゃ断器の
うち1台にしゃ断失敗を生じた場合に流れる大きな接地
電流を抑制することが可能となり、コイル間の電流アン
バランスを改善することができる。
In the superconducting coil power supply device of the invention according to claim 4, one of a plurality of circuit breakers is provided by grounding the middle point of each superconducting coil or the middle point of each protective resistor. It is possible to suppress a large ground current that flows when a disconnection failure occurs, and it is possible to improve the current imbalance between the coils.

【0020】[0020]

【実施例】以下本発明の実施例を図面を参照して説明す
る。図1は本発明による超電導コイル電源装置の第1の
実施例を示す回路構成図で、図7と同一部品には同一符
号を付して示す。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a circuit configuration diagram showing a first embodiment of a superconducting coil power supply device according to the present invention, and the same parts as those in FIG. 7 are designated by the same reference numerals.

【0021】第1の実施例では、図1に示すように励磁
電源2に直列接続された複数個の超電導コイル1a〜1
fと複数個の直流しゃ断器3a〜3fとを交互に直列接
続すると共に、各直流しゃ断器3a〜3fに保護抵抗4
a〜4fをそれぞれ並列接続する構成とするものであ
る。
In the first embodiment, as shown in FIG. 1, a plurality of superconducting coils 1a to 1 connected in series to the exciting power source 2 are connected.
f and a plurality of DC breakers 3a to 3f are alternately connected in series, and a protection resistor 4 is provided to each DC breaker 3a to 3f.
In this configuration, a to 4f are connected in parallel.

【0022】かかる回路構成の超電導コイル電源装置に
おいて、例えば超電導コイル1aにクエンチが発生する
と、各直流しゃ断器3a〜3fの全てを一斉に動作さ
せ、回路をしゃ断する。この場合、直流しゃ断器3aの
みをしゃ断すると超電導コイル1a〜1fの全てのエネ
ルギが保護抵抗4aに流入するが、各直流しゃ断器3a
〜3fの全てを一斉に動作させ、回路をしゃ断すること
になり、各超電導コイル1a〜1fのエネルギはそのコ
イルに直列の保護抵抗4a〜4fによりそれぞれ吸収さ
れる。
In the superconducting coil power supply device having such a circuit configuration, for example, when a quench occurs in the superconducting coil 1a, all the DC breakers 3a to 3f are simultaneously operated to cut off the circuit. In this case, if only the DC breaker 3a is cut off, all the energies of the superconducting coils 1a to 1f will flow into the protective resistance 4a, but each DC breaker 3a
3 to 3f are all operated simultaneously to cut off the circuit, and the energy of each superconducting coil 1a to 1f is absorbed by the protective resistances 4a to 4f in series with the coil.

【0023】このように第1の実施例によれば、保護抵
抗4a〜4fはそれぞれ対応する超電導コイル一つ当り
の蓄積エネルギのみを考えて製作することができる。従
って、図7の場合、例えば超電導コイル1aの対地絶縁
はしゃ断電圧であるV=IRの電圧で考える必要がある
が、図1に示す実施例の場合にはクエンチ保護動作時の
回路各部の電位は図2に示すものとなり、一つの保護抵
抗の抵抗値R´は例えば図7の場合の1/6程度でよい
ため、V´=IR´で与えられる回路の最高電圧と最低
電圧の電位差は例えば図7の1/6程度に抑えることが
できる。
As described above, according to the first embodiment, the protection resistors 4a to 4f can be manufactured by considering only the stored energy per corresponding superconducting coil. Therefore, in the case of FIG. 7, it is necessary to consider, for example, the insulation of the superconducting coil 1a from the ground with the voltage of V = IR which is the cutoff voltage. However, in the case of the embodiment shown in FIG. Is shown in FIG. 2, and the resistance value R ′ of one protection resistor may be, for example, about ⅙ of that in the case of FIG. 7. Therefore, the potential difference between the maximum voltage and the minimum voltage of the circuit given by V ′ = IR ′ is For example, it can be suppressed to about 1/6 of that in FIG.

【0024】このことにより、コイルの対地絶縁も小さ
くすることができ、経済的なコイルの製作が可能とな
る。また、一つの保護抵抗自身の抵抗値が小さくなるの
で、抵抗器の設計、製作が容易になるという利点もあ
る。
As a result, the insulation of the coil from the ground can be reduced, and an economical coil can be manufactured. Further, since the resistance value of one protection resistor itself becomes small, there is an advantage that the design and manufacture of the resistor can be facilitated.

【0025】図3は本発明による超電導コイル電源装置
の第2の実施例を示す回路構成図で、図7と同一部品に
は同一符号を付して示す。第2の実施例では、図3に示
すように例えば2個の超電導コイル1a,1bに対して
1台の直流しゃ断器3a´を直列に接続すると共に、こ
の直流しゃ断器3a´に保護抵抗4a´を並列に接続す
るという具合に2個の超電導コイルに対して1台の直流
しゃ断器とこれに並列接続された保護抵抗を直列に接続
するようにしたものである。
FIG. 3 is a circuit configuration diagram showing a second embodiment of the superconducting coil power supply device according to the present invention. The same parts as those in FIG. 7 are designated by the same reference numerals. In the second embodiment, as shown in FIG. 3, for example, one DC breaker 3a 'is connected in series to two superconducting coils 1a, 1b, and a protection resistor 4a is connected to this DC breaker 3a'. In this case, one DC breaker and the protective resistance connected in parallel to this are connected in series to the two superconducting coils in such a manner that ′ is connected in parallel.

【0026】このような第2の実施例による回路構成と
しても、コイルと保護抵抗の設計基準の許す範囲で直流
しゃ断器と保護抵抗の負担するコイルの個数を増やして
いっても、上記第1の実施例と同様の効果を得ることが
できる。
Even with the circuit configuration according to the second embodiment, even if the number of coils to be borne by the DC circuit breaker and the protective resistance is increased within the range permitted by the design standard of the coil and the protective resistance, It is possible to obtain the same effect as that of the embodiment.

【0027】実際に電源装置を製作する場合には、上述
したようにある程度の数のコイルをまとめて最適設計す
ることにより、電流リードや電源との接続バスラインの
数も減らすことができ、またヘリウム液化機の容量も小
さくすることができるので、より経済的なシステムとす
ることができる。
When actually manufacturing a power supply device, the number of current leads and the number of bus lines connected to the power supply can be reduced by optimally designing a certain number of coils together as described above. Since the capacity of the helium liquefier can be reduced, a more economical system can be realized.

【0028】図4は本発明による超電導コイル電源装置
の第3の実施例を示す回路構成図で、図7と同一部品に
は同一符号を付して示す。第3の実施例では、図4に示
すように励磁電源2に直列接続された複数個の超電導コ
イル1a〜1fと複数個の直流しゃ断器3a〜3fとを
交互に直列接続すると共に、各直流しゃ断器3a〜3f
に保護抵抗4a〜4fをそれぞれ並列接続する構成と
し、且つ各保護抵抗4a〜4fの中点を直接接地したも
のである。
FIG. 4 is a circuit configuration diagram showing a third embodiment of a superconducting coil power supply device according to the present invention. The same parts as those in FIG. 7 are designated by the same reference numerals. In the third embodiment, as shown in FIG. 4, a plurality of superconducting coils 1a to 1f and a plurality of DC breakers 3a to 3f connected in series to the excitation power source 2 are alternately connected in series, and each DC Breaker 3a-3f
The protection resistors 4a to 4f are connected in parallel with each other, and the middle point of each of the protection resistors 4a to 4f is directly grounded.

【0029】このような構成とすれば、片端接地した場
合に比べてクエンチ保護動作時の回路の対地電圧を半分
にすることができ、コイルの絶縁設計の面からなお一層
の効果を得ることができる。
With such a configuration, the voltage to ground of the circuit during the quench protection operation can be halved compared to the case where one end is grounded, and a further effect can be obtained in terms of the coil insulation design. it can.

【0030】なお、技術的に可能であれば、各超電導コ
イルの中点から接地ラインを引き出してきても同様の効
果を得ることができる。図5は本発明による超電導コイ
ル電源装置の第4の実施例を示す回路構成図で、図4に
示す回路において、各接地を直接接地ではなく接地抵抗
5a〜5fを介して抵抗接地するようにしたものであ
る。
If it is technically possible, the same effect can be obtained even if the ground line is drawn from the midpoint of each superconducting coil. FIG. 5 is a circuit configuration diagram showing a fourth embodiment of a superconducting coil power supply device according to the present invention. In the circuit shown in FIG. 4, each ground is not grounded directly but is grounded via grounding resistances 5a to 5f. It was done.

【0031】直接接地方式では、回路に地絡が発生した
場合や複数台のしゃ断器のうちの1台にしゃ断規模が生
じた場合に接地電流が大きくなり、、コイル間の電流ア
ンバランスを生じ易くなるといった問題があるが、第4
の実施例のように抵抗接地方式とすることにより、直接
接地方式による問題を改善することができる。
In the direct grounding method, the ground current becomes large when a ground fault occurs in the circuit or when one of the plurality of circuit breakers has a breaking scale, and a current imbalance between the coils occurs. There is a problem that it becomes easier, but the fourth
By adopting the resistance grounding method as in the above embodiment, the problem of the direct grounding method can be solved.

【0032】[0032]

【発明の効果】以上述べたように本発明によれば、クエ
ンチ保護動作時のしゃ断電圧を小さくし、超電導コイル
の絶縁耐圧を低く抑えることができる超電導コイル電源
装置を提供できる。
As described above, according to the present invention, it is possible to provide a superconducting coil power supply device capable of reducing the cutoff voltage during the quench protection operation and suppressing the withstand voltage of the superconducting coil.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超電導コイル電源装置の第1の実
施例を示す回路構成図。
FIG. 1 is a circuit configuration diagram showing a first embodiment of a superconducting coil power supply device according to the present invention.

【図2】図1の回路構成におけるクエンチ保護動作時の
回路各部の電位を示す図。
FIG. 2 is a diagram showing the potential of each part of the circuit during a quench protection operation in the circuit configuration of FIG.

【図3】本発明の第2の実施例を示す回路構成図。FIG. 3 is a circuit configuration diagram showing a second embodiment of the present invention.

【図4】本発明の第3の実施例を示す回路構成図。FIG. 4 is a circuit configuration diagram showing a third embodiment of the present invention.

【図5】本発明の第4の実施例を示す回路構成図。FIG. 5 is a circuit configuration diagram showing a fourth embodiment of the present invention.

【図6】従来の一般的な超電導コイル電源装置を示す回
路構成図。
FIG. 6 is a circuit configuration diagram showing a conventional general superconducting coil power supply device.

【図7】励磁電源に複数個の超伝導コイルが直列接続さ
れる従来の超電導コイル電源装置を示す回路構成図。
FIG. 7 is a circuit configuration diagram showing a conventional superconducting coil power supply device in which a plurality of superconducting coils are connected in series to an exciting power supply.

【符号の説明】[Explanation of symbols]

1a〜1f……超電導コイル、2……励磁電源、3a〜
3f,3a´,3c´,3e´……直流しゃ断器、4a
〜4f,4a´,4c´,4e´……保護抵抗、5a〜
5f……接地抵抗。
1a-1f ... Superconducting coil, 2 ... Excitation power supply, 3a-
3f, 3a ', 3c', 3e '... DC breaker, 4a
~ 4f, 4a ', 4c', 4e '... protective resistance, 5a ~
5f: Ground resistance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02J 15/00 ZAA H02M 9/00 A H02M 9/00 H05H 7/04 H05H 7/04 H01F 5/08 ZAAC (72)発明者 甲斐 俊也 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H02J 15/00 ZAA H02M 9/00 A H02M 9/00 H05H 7/04 H05H 7/04 H01F 5 / 08 ZAAC (72) Inventor Toshiya Kai 1-1-1 Shibaura, Minato-ku, Tokyo Toshiba Head Office Office

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 励磁電源に直列に複数個の超電導コイル
を接続した超電導コイル電源装置において、クエンチ時
に回路をしゃ断する直流しゃ断器を超電導コイルと交互
に直列接続すると共に、コイルの蓄積エネルギを消費す
る保護抵抗を前記直流しゃ断器と並列に接続し、クエン
チ時には全ての直流しゃ断器を一斉に動作させることを
特徴とする超電導コイル電源装置。
1. In a superconducting coil power supply device in which a plurality of superconducting coils are connected in series to an exciting power source, a DC circuit breaker for interrupting a circuit at the time of quenching is connected in series with the superconducting coils in series, and energy stored in the coils is consumed. A power supply device for a superconducting coil, characterized in that the protection resistors are connected in parallel with the DC breaker, and all the DC breakers are simultaneously operated at the time of quenching.
【請求項2】 励磁電源に直列に複数個の超電導コイル
を接続した超電導コイル電源装置において、2個もしく
はそれ以上の超電導コイルに対し、各々1台の直流しゃ
断器を直列接続すると共に、コイルの蓄積エネルギを消
費する保護抵抗を前記直流しゃ断器と並列に接続し、ク
エンチ時には全ての直流しゃ断器を一斉に動作させるこ
とを特徴とする超電導コイル電源装置。
2. In a superconducting coil power supply device in which a plurality of superconducting coils are connected in series to an exciting power source, one DC breaker is connected in series to each of two or more superconducting coils and A superconducting coil power supply device, characterized in that a protection resistor for consuming stored energy is connected in parallel with the DC breaker, and all the DC breakers are simultaneously operated at the time of quenching.
【請求項3】 各超電導コイルの中点または各保護抵抗
の中点を直接接地したことを特徴とする請求項1又は請
求項2記載の超電導コイル電源装置。
3. The superconducting coil power supply device according to claim 1, wherein the midpoint of each superconducting coil or the midpoint of each protective resistor is directly grounded.
【請求項4】 各超電導コイルの中点または各保護抵抗
の中点を抵抗接地したことを特徴とする請求項1又は請
求項2記載の超電導コイル電源装置。
4. The superconducting coil power supply device according to claim 1, wherein the middle point of each superconducting coil or the middle point of each protection resistor is resistance grounded.
JP7242963A 1995-09-21 1995-09-21 Superconducting coil electric power unit Pending JPH0993800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7242963A JPH0993800A (en) 1995-09-21 1995-09-21 Superconducting coil electric power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7242963A JPH0993800A (en) 1995-09-21 1995-09-21 Superconducting coil electric power unit

Publications (1)

Publication Number Publication Date
JPH0993800A true JPH0993800A (en) 1997-04-04

Family

ID=17096842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7242963A Pending JPH0993800A (en) 1995-09-21 1995-09-21 Superconducting coil electric power unit

Country Status (1)

Country Link
JP (1) JPH0993800A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504120A (en) * 2005-07-29 2009-01-29 アメリカン スーパーコンダクター コーポレイション Failure management of HTS power cable
CN102136336A (en) * 2010-12-29 2011-07-27 中国船舶重工集团公司第七一○研究所 Method for compensating heterogeneity of magnetic field coil by shunting
JP6727470B1 (en) * 2019-06-06 2020-07-22 三菱電機株式会社 Superconducting coil protector
JP2021126154A (en) * 2020-02-10 2021-09-02 株式会社日立製作所 Particle beam treatment device, medical superconducting device, and superconducting magnet device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504120A (en) * 2005-07-29 2009-01-29 アメリカン スーパーコンダクター コーポレイション Failure management of HTS power cable
JP4665034B2 (en) * 2005-07-29 2011-04-06 アメリカン スーパーコンダクター コーポレイション HTS power cable failure management method and system
CN102136336A (en) * 2010-12-29 2011-07-27 中国船舶重工集团公司第七一○研究所 Method for compensating heterogeneity of magnetic field coil by shunting
JP6727470B1 (en) * 2019-06-06 2020-07-22 三菱電機株式会社 Superconducting coil protector
WO2020245974A1 (en) * 2019-06-06 2020-12-10 三菱電機株式会社 Protective device for superconducting coil
JP2021126154A (en) * 2020-02-10 2021-09-02 株式会社日立製作所 Particle beam treatment device, medical superconducting device, and superconducting magnet device

Similar Documents

Publication Publication Date Title
JPS62138021A (en) Ac current limiter
JPS63257203A (en) Quenching propagator for superconducting magnet
JP4468243B2 (en) Superconducting coil protection device
US6958893B2 (en) Superconducting matrix fault current limiter with current-driven trigger mechanism
JPH0993800A (en) Superconducting coil electric power unit
JPH0586052B2 (en)
US10847971B2 (en) Fault current limiter with modular mutual reactor
RU2416852C1 (en) Power damper for limitation of emergency current
JPH099499A (en) Current limiter
Giese et al. Fault current limiters
JP2941833B2 (en) Superconducting current limiting device
KR102289336B1 (en) Transformer type superconducting fault current limiter using double iron core
JP3051916B2 (en) Flux-balanced superconducting current limiter
CN111404132A (en) Adjustable inductance solenoid type superconducting current limiter
JP2901068B2 (en) Current limiting device
JPH08316534A (en) Current limiter
KR102472477B1 (en) Protection device for saturated iron-core superconducting fault current limiter
Tezuka et al. Power supply and control system for 40 T class hybrid magnet system
KR102264598B1 (en) Flux-Coupling type superconducting fault current limiter with two triggered current limiting levels
JPH09233691A (en) Overcurrent protector
JP2001275249A (en) Three-phase current limiting apparatus
JPS5866313A (en) Protective device for superconductive magnet
JPS6359524B2 (en)
Yan et al. A Fast Resistive SFCL Based Suppression Strategy for Turn-to-Turn Faults in a Converter Transformer
JPH06294878A (en) Toroidal magnetic field coil unit