JPH099499A - Current limiter - Google Patents

Current limiter

Info

Publication number
JPH099499A
JPH099499A JP7151312A JP15131295A JPH099499A JP H099499 A JPH099499 A JP H099499A JP 7151312 A JP7151312 A JP 7151312A JP 15131295 A JP15131295 A JP 15131295A JP H099499 A JPH099499 A JP H099499A
Authority
JP
Japan
Prior art keywords
winding
coils
reactor
short
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7151312A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yamaguchi
潔 山口
Tsukasa Taniguchi
谷口  司
Hiroshi Tomeoku
寛 留奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7151312A priority Critical patent/JPH099499A/en
Publication of JPH099499A publication Critical patent/JPH099499A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

PURPOSE: To limit short-circuit current by forming a three-winding reactor and the secondary windings of transformers in respective phases connected in series with the threewinding reactor using a superconductor, and short- circuiting the secondary windings. CONSTITUTION: Coils 2, 3, 4, 5, 6, 7 are formed using an iron core 1 as a magnetic path, and coils 11, 12, 13, 14, 15, 16 are formed using iron cores 8, 9, 10 as magnetic paths. The coils 2, 7, 11 are connected in series with one another. The coil 12 is obtained by winding a superconductor and the start and end of winding are short-circuited with each other. Similarly, the coils 3, 6, 13 are connected in series with one another. The coil 14 is obtained by winding a superconductor and the start and end of winding are short-circuited with each other. Similarly, the coils 4, 5, 15 are connected in series with one another. The coil 16 is obtained by winding a superconductor and the start and end of winding are short-circuited with each other. In case of a system fault other than one-line ground fault, the coils 12, 14, 16 as the superconductive short- circuited coils are quenched to produce a current limiting effect. In case of one-line ground fault, an current limiting effect is also produced because of a large zero-phase-sequence reactance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は3相の送電線あるいは配
電線において短絡事故が生じたときに、短絡電流を制限
する限流器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fault current limiter for limiting a short circuit current when a short circuit accident occurs in a three-phase transmission line or distribution line.

【0002】[0002]

【従来の技術】限流器としては、3巻線リアクトル型超
電導限流器,無誘導巻型超電導限流器,超電導トランス
型限流器等の超電導限流器などが知られている。
2. Description of the Related Art As a fault current limiter, a superconducting fault current limiter such as a three-winding reactor type superconducting fault current limiter, a non-induction winding type superconducting fault current limiter, and a superconducting transformer type fault current limiter is known.

【0003】3巻線リアクトル型超電導限流器は大きな
零相リアクタンスを持つので1線地絡故障では超電導転
移することなく限流できる特徴を持つが、それ以外の故
障では臨界電流以上の電流が流れることによる常電導転
移に伴う抵抗の発生により限流を行う。
Since the three-winding reactor type superconducting fault current limiter has a large zero-phase reactance, it has the characteristic of being able to limit the current without a superconducting transition in a one-line ground fault, but in the other faults, a current higher than the critical current is generated. The current is limited by the generation of resistance due to the normal conduction transition due to the flow.

【0004】無誘導巻型超電導限流器は系統故障時に臨
界電流以上の電流が流れることによる常電導転移に伴う
抵抗の発生により限流を行う。
The non-induction winding type superconducting fault current limiter carries out current limiting due to the generation of resistance due to the transition of normal conduction due to the flow of a current higher than the critical current at the time of system failure.

【0005】超電導トランス型限流器は2次側に超電導
線の短絡コイルをおいて定常時は小さな漏れリアクタン
スによる小さなインピーダンスが現れるに過ぎないが、
系統故障時に2次巻線に臨界電流以上の電流が流れるこ
とによる常電導転移に伴い1次巻線に大きなインピーダ
ンスがあらわれることにより限流を行う。
In the superconducting transformer type fault current limiter, a short circuit coil of the superconducting wire is placed on the secondary side and a small impedance due to a small leakage reactance appears only in a steady state.
The current is limited by a large impedance appearing in the primary winding due to the transition of the normal conduction due to the current exceeding the critical current flowing in the secondary winding during a system failure.

【0006】超電導巻線において、その超電導状態と常
電導状態における電気抵抗の大きな違いを利用し、電力
系統における事故電流を抑えて短絡容量を大きくできる
限流器が望まれていた。
In the superconducting winding, there has been a demand for a fault current limiter capable of suppressing a fault current in a power system and increasing a short circuit capacity by utilizing a large difference in electric resistance between the superconducting state and the normal conducting state.

【0007】[0007]

【発明が解決しようとする課題】3巻線リアクトル型超
電導限流器および無誘導巻型超電導限流器では送電線に
直列なコイルが必要であるので、極低温部と常温部をつ
なぐ電流リードが必要である。電流リード部では熱侵入
による冷媒、例えば液体ヘリウムの蒸発がある。また、
常温近くのヘリウムガスは耐電圧が空気その他に比べて
小さい。
In the three-winding reactor type superconducting fault current limiter and the non-induction winding type superconducting fault current limiter, a coil in series with the transmission line is required. Therefore, the current lead connecting the cryogenic portion and the room temperature portion is required. is necessary. At the current lead portion, there is evaporation of the refrigerant, for example liquid helium, due to heat intrusion. Also,
Helium gas near room temperature has a smaller withstand voltage than air and others.

【0008】無誘導巻型超電導限流器と超電導トランス
型限流器は1線地絡故障時にも、常電導転移することに
よってしか限流できないという問題点があった。
The non-inductive winding type superconducting fault current limiter and the superconducting transformer type fault current limiter have a problem that even when a one-line ground fault occurs, the current can be limited only by the transition to the normal conduction state.

【0009】送電線における短絡故障の90%程度は1
線地絡であり、1線地絡故障時に常電導転移することの
ないことが要求される。
About 90% of short circuit failures in power transmission lines are 1
It is a line-to-ground fault, and it is required that normal conduction transition does not occur when a one-line ground fault occurs.

【0010】本発明の目的は、3相の送電線あるいは配
電線において短絡事故が生じたときに、短絡電流を制限
する限流器を提供することにある。
An object of the present invention is to provide a current limiting device which limits a short circuit current when a short circuit accident occurs in a three-phase transmission line or distribution line.

【0011】[0011]

【課題を解決するための手段】上記目的は、3相送電線
に取付けられた限流器において、3巻線リアクトルとこ
の3巻線リアクトルに直列に取付けられたそれぞれの相
のトランスの2次巻線を超電導線で形成し、その2次巻
線を短絡することによって達成される。
SUMMARY OF THE INVENTION The above-mentioned object is, in a fault current limiter attached to a three-phase power transmission line, a secondary of a three-winding reactor and a transformer of each phase attached in series to the three-winding reactor. This is accomplished by forming the winding with a superconducting wire and shorting its secondary winding.

【0012】さらに、詳細には3相送電線に取付けられ
た限流器において、3巻線リアクトルの磁路が断面内で
3等分割されて、磁気的なギャップを持つ主鉄心と、該
3等分割された主鉄心のそれぞれと磁気回路を成す脚お
よび継鉄から構成されており、3巻線リアクトルは該主
鉄心とこの脚に巻かれ、それぞれの継鉄に巻かれたコイ
ルが3巻線リアクトルに対して直列に、3相何れか一つ
のトランスの1次巻線を成すように接続され、該トラン
スの2次巻線を超電導線で成し、該2次巻線を短絡した
ものである。
More specifically, in a fault current limiter attached to a three-phase transmission line, a magnetic path of a three-winding reactor is divided into three equal parts in a cross section, and a main iron core having a magnetic gap, and Each of the equally divided main iron cores is composed of legs and yokes forming a magnetic circuit, and the 3-winding reactor is wound around the main iron cores and the legs, and the coils wound on the respective yokes are 3 turns. Connected in series to the line reactor so as to form a primary winding of any one of three-phase transformers, the secondary winding of the transformer is made of a superconducting wire, and the secondary winding is short-circuited Is.

【0013】[0013]

【作用】定常状態では、3巻線リアクトルは3相それぞ
れが漏れリアクタンス分を除き、打ち消し合うので非常
に小さなインピーダンスしか現れない。一方、1線地絡
時には大きな零相リアクタンスがあるため、大きな限流
効果が現れる。これは以下に示す理由による。
In the steady state, the three-winding reactor cancels each other except for the leakage reactance of each of the three phases, so that only a very small impedance appears. On the other hand, when there is a one-line ground fault, since there is a large zero-phase reactance, a large current limiting effect appears. This is for the following reason.

【0014】[0014]

【数1】 Va=jωLIa+jωM(Ib+Ic) …(数1) この式は、次のように書き換えられる。## EQU1 ## Va = jωLIa + jωM (Ib + Ic) (Equation 1) This equation can be rewritten as follows.

【0015】[0015]

【数2】 Va=jω(L−M)Ia+jωM(Ia+Ib+Ic) …(数2) ここで、Io=Ia+Ib+Icとおけば## EQU00002 ## Va = j.omega. (LM) Ia + j.omega.M (Ia + Ib + Ic) (Equation 2) where Io = Ia + Ib + Ic

【0016】[0016]

【数3】 Va=jω(L−M)Ia+jωMIo …(数3) ここで、 Va:3巻線リアクトルの端子に現れるa相電圧 Ia,Ib,Ic:a,b,c相の電流 j:虚数を示す ω:電流の角周波数 L:3巻線リアクトルa相巻線の自己インダクタンス M:3巻線リアクトルa相巻線とb,c相巻線の間の相
互インダクタンス (L−M)は漏れリアクタンスを示すから、これは小さ
い。定常時にIoは無い。したがって、定常時のリアク
タンスは小さい。最後の式から零相インピーダンスはω
(3M)であり、これは大きな値となる。したがって、
零相電流が主体である1線地絡時の短絡電流はこの大き
な零相インピーダンスにより大きく成れずに、限流効果
が現れる。
## EQU00003 ## Va = j.omega. (LM) Ia + j.omega.MIo (Equation 3) where Va: a-phase voltage Ia, Ib, Ic: a, b, c-phase current appearing at the terminals of the three-winding reactor j: Indicates an imaginary number ω: Angular frequency of current L: Self-inductance of 3-winding reactor a-phase winding M: 3-winding reactor Mutual inductance (LM) between a-phase winding and b-phase or c-phase winding is This is small because it exhibits leakage reactance. There is no Io in the steady state. Therefore, the reactance in the steady state is small. From the last equation, the zero-phase impedance is ω
(3M), which is a large value. Therefore,
The short-circuit current at the time of one-line ground fault, which is mainly the zero-phase current, cannot be made large due to this large zero-phase impedance, and the current limiting effect appears.

【0017】上記により、1線地絡事故時には大きな零
相リアクタンスにより限流されるので過電流が現れるこ
とがなく、その他の事故にはトランスの短絡された2次
巻線がクエンチすることで1次巻線に大きなインピーダ
ンスが現れて限流する。
As described above, in the case of a one-wire ground fault, the current is limited by a large zero-phase reactance, so that an overcurrent does not appear. In other faults, the short-circuited secondary winding of the transformer is quenched and the primary winding is quenched. A large impedance appears in the winding and the current is limited.

【0018】[0018]

【実施例】次に、実施例によって、本発明をさらに詳細
に説明する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0019】本発明の実施例を図1に示す。図1におい
て鉄心1を磁路として、コイル2,3,4,5,6,7
が巻かれている。鉄心8,9,10を磁路としてコイル
11,12,13,14,15,16が巻かれている。
An embodiment of the present invention is shown in FIG. In FIG. 1, coils 2, 3, 4, 5, 6, 7 with the iron core 1 as a magnetic path.
Is wound. The coils 11, 12, 13, 14, 15, 16 are wound with the iron cores 8, 9, 10 as magnetic paths.

【0020】コイル2,7と11は直列に接続されてい
る。コイル12は超電導導体で巻かれ、巻始めと巻終り
が短絡されている。同様にコイル3,6と13は直列に
接続されており、コイル14は超電導導体で巻かれ、巻
始めと巻終りが短絡されている。同様にコイル4,5と
15は直列に接続されており、コイル16は超電導導体
で巻かれ、巻始めと巻終りが短絡されている。
The coils 2, 7 and 11 are connected in series. The coil 12 is wound by a superconducting conductor, and the winding start and winding end are short-circuited. Similarly, the coils 3, 6 and 13 are connected in series, the coil 14 is wound with a superconducting conductor, and the winding start and winding end are short-circuited. Similarly, the coils 4, 5 and 15 are connected in series, the coil 16 is wound with a superconducting conductor, and the winding start and winding end are short-circuited.

【0021】例えば、コイル2,7,11にはa相電流
が、コイル3,6,13にはb相電流が、コイル4,
5,14にはc相電流が流れるように送電線に接続され
ている。もちろん、他の組合せでもよい。
For example, the coils 2, 7, 11 are supplied with the a-phase current, the coils 3, 6, 13 are supplied with the b-phase current, and the coils 4, 4,
5 and 14 are connected to a power transmission line so that a c-phase current flows. Of course, other combinations may be used.

【0022】さて、1線地絡以外の系統故障時には大き
な正相および逆相電流が流れるので大きな零相インピー
ダンスだけでは限流できないが、超電導短絡コイルであ
るコイル12,14,16に誘導される大きな電流によ
り、コイル12,14,16がクエンチしてコイル1
1,13,15に大きな漏れリアクタンス生じて限流効
果が生じる。
When a system fault other than the one-line ground fault occurs, a large positive-phase and negative-phase current flows, and thus it is not possible to limit the current with only a large zero-phase impedance, but it is induced in the coils 12, 14, 16 which are superconducting short-circuit coils. The large current quenches the coils 12, 14, 16 and causes the coil 1 to
A large leakage reactance is generated in 1, 13, 15 and a current limiting effect is generated.

【0023】コイル2,3,4,5,6,7,11,1
3,15は超電導コイルでも通常の銅コイルでも良い。
ただし、超電導コイルで構成する場合はコイル2,3,
4,5,6,7,11,13,15のクエンチ耐量はコ
イル12,14,16のクエンチ耐量より大きくする。
Coil 2,3,4,5,6,7,11,1
3, 15 may be superconducting coils or ordinary copper coils.
However, when the superconducting coil is used, the coils 2, 3,
The quench resistance of 4,5,6,7,11,13,15 is made larger than that of the coils 12,14,16.

【0024】しかし、コイル2,3,4,5,6,7,
11,13,15はその機能上からは超電導コイルにす
る必要はなく、通常の銅コイルで良い。通常の銅コイル
であれば、超電導コイルとした場合に必要なクライオス
タット構造,ヘリウム等の冷媒を使うことによる耐電圧
が小さくなる問題、侵入熱などによる冷媒の消費に伴う
熱損失は無くなる利点をもつ。
However, the coils 2, 3, 4, 5, 6, 7,
In view of their functions, 11, 13, 15 do not need to be superconducting coils, but may be ordinary copper coils. A normal copper coil has the advantages of a cryostat structure, which is necessary when it is used as a superconducting coil, the problem that the withstand voltage becomes small by using a refrigerant such as helium, and the heat loss due to the consumption of the refrigerant due to intrusion heat is eliminated. .

【0025】図2は本発明の正面図、図3は本発明の立
面図であり、図2及び図3には鉄心の構成を示す。主鉄
心17はその断面が3等分割され、互いに磁気的にギャ
ップを持っている。3等分割された主鉄心17、それぞ
れ脚18,19,20および継鉄21,22,23でそ
れぞれに磁気回路を構成している。3巻線リアクトルは
主鉄心17に巻かれる。この3巻線リアクトルの各相は
脚18,19,20の部分にあるトランスに直列に接続
される。
FIG. 2 is a front view of the present invention, FIG. 3 is an elevational view of the present invention, and FIGS. 2 and 3 show the structure of the iron core. The main iron core 17 is divided into three equal sections and magnetically has a gap. A main iron core 17 divided into three equal parts, legs 18, 19, 20 and yokes 21, 22, 23 constitute a magnetic circuit. The 3-winding reactor is wound around the main iron core 17. Each phase of this 3-winding reactor is connected in series to the transformer in the leg 18, 19, 20 part.

【0026】トランス部分については図4(図には1相
分を示す)に示すように脚18と主鉄心17の3分の1
が磁路を形成し、定常時は短絡コイル12がコイル11
の作る磁場を打ち消すように磁場を発するので小さなイ
ンピーダンスしか現れない。1線地絡時には3巻線リア
クトルの大きな零相インピーダンスが限流効果を発揮す
ることと、それ以外の系統故障時にはコイル12,1
4,16がクエンチすることでコイル11,13,15
に大きな漏れリアクタンスが現れて限流効果を発揮する
のは、先の図1で示した実施例の場合と同じである。し
かし、図4に示す実施例では3巻線リアクトルの磁路を
形成する部材をトランス部の磁路としても利用するので
コンパクトな限流器が実現できる。
As for the transformer portion, as shown in FIG. 4 (one phase is shown in the figure), one third of the leg 18 and the main iron core 17 is provided.
Form a magnetic path, and in a steady state, the short-circuit coil 12 is the coil 11
Since a magnetic field is emitted so as to cancel the magnetic field created by, only a small impedance appears. The large zero-phase impedance of the three-winding reactor exerts a current limiting effect when there is a one-wire ground fault, and the coils 12, 1
When coils 4 and 16 are quenched, coils 11, 13 and 15
The fact that a large leak reactance appears in and shows the current limiting effect is the same as in the case of the embodiment shown in FIG. However, in the embodiment shown in FIG. 4, since the member forming the magnetic path of the three-winding reactor is also used as the magnetic path of the transformer, a compact current limiting device can be realized.

【0027】図2及び図3において主鉄心17と脚1
8,19,20部に3巻線リアクトルを形成し、継鉄部
21,22,23に3相それぞれのトランス部を形成す
ると図5(図には1相分を示す)に示す構成となり、上
述同様の理由によりコンパクトな限流器が実現できる。
2 and 3, the main iron core 17 and the leg 1 are shown.
When a 3-winding reactor is formed on the 8, 19, and 20 parts and three-phase transformer parts are formed on the yoke parts 21, 22, and 23, the configuration shown in FIG. 5 (one phase is shown in the figure) is obtained. A compact current limiting device can be realized for the same reason as above.

【0028】すなわち、3巻線リアクトルでは1線地絡
時には大きな零相リアクタンスがあるため、大きな限流
効果が現れる。
That is, since the 3-winding reactor has a large zero-phase reactance at the time of 1-line ground fault, a large current limiting effect appears.

【0029】1線地絡以外の系統故障時には超電導短絡
コイルであるコイル12,14,16がクエンチしてコイ
ル11,13,15に大きな漏れリアクタンス生じて限
流効果が生じる。
When a system fault other than the one-wire ground fault occurs, the coils 12, 14, 16 which are superconducting short-circuit coils are quenched, and large leakage reactances are generated in the coils 11, 13, 15 and a current limiting effect is produced.

【0030】[0030]

【発明の効果】本発明によれば1線地絡時に超電導コイ
ルがクエンチすることがなく、コンパクトで熱損失の小
さな超電導限流器が得られる。
According to the present invention, a superconducting fault current limiter which is compact and has a small heat loss can be obtained without quenching of the superconducting coil during a one-wire ground fault.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を表わす模式図。FIG. 1 is a schematic diagram showing an embodiment of the present invention.

【図2】本発明の実施例の平面図。FIG. 2 is a plan view of an embodiment of the present invention.

【図3】本発明の実施例の立面図。FIG. 3 is an elevational view of an embodiment of the present invention.

【図4】本発明の他の実施例を表わす模式図。FIG. 4 is a schematic diagram showing another embodiment of the present invention.

【図5】本発明の他の実施例で表わす模式図。FIG. 5 is a schematic view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…鉄心、2,3,4,5,6,7,11,13、15
…コイル、8,9,10…鉄心、12,14,16…超
電導短絡コイル、17…主鉄心、18,19,20…
脚、21,22,23…継鉄部。
1 ... Iron core, 2, 3, 4, 5, 6, 7, 11, 13, 15
... coil, 8, 9, 10 ... iron core, 12, 14, 16 ... superconducting short-circuit coil, 17 ... main iron core, 18, 19, 20 ...
Legs 21, 22, 23 ... Yoke part.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】3相送電線に接続された限流器であって、
3巻線リアクトルと該リアクトルに直列に接続されたト
ランスを備え、該トランスの2次巻線の少なくとも一部
を超電導線で形成し、該2次巻線を短絡したことを特徴
とする限流器。
1. A current limiter connected to a three-phase transmission line, comprising:
A current limiting circuit characterized by comprising a three-winding reactor and a transformer connected in series to the reactor, at least a part of a secondary winding of the transformer being formed of a superconducting wire, and the secondary winding being short-circuited. vessel.
【請求項2】3相送電線に接続された限流器であって、
3巻線リアクトルの磁路が断面内で3等分割されて、磁
気的なギャップを持つ主鉄心と、該3等分割された主鉄
心のそれぞれと磁気回路を成す脚および継鉄を備え、該
3巻線リアクトルを該主鉄心に巻回し、それぞれの脚に
巻かれたコイルが3巻線リアクトルに対して直列に、3
相いずれか一つのトランスの1次巻線を成すように接続
され、該トランスの2次巻線の少なくとも一部を超電導
線で形成し、該2次巻線を短絡したことを特徴とする限
流器。
2. A current limiting device connected to a three-phase transmission line,
The magnetic path of the three-winding reactor is divided into three equal parts in a cross section, and a main iron core having a magnetic gap, and legs and yokes forming a magnetic circuit with each of the three equal divided main iron cores are provided. A 3-winding reactor is wound around the main iron core, and coils wound around the legs are connected in series with the 3-winding reactor in series.
A transformer characterized in that it is connected to form a primary winding of one of the transformers, at least a part of the secondary winding of the transformer is formed of a superconducting wire, and the secondary winding is short-circuited. Sink.
【請求項3】3相送電線に接続された限流器であって、
3巻線リアクトルの磁路が断面内で3等分割されて、磁
気的なギャップを持つ主鉄心と、該3等分割された主鉄
心のそれぞれと磁気回路を成す脚および継鉄を備え、該
3巻線リアクトルを該主鉄心とこの脚に巻回し、それぞ
れの継鉄に巻かれたコイルが3巻線リアクトルに対して
直列に、3相いずれか一つのトランスの1次巻線を成す
ように接続され、該トランスの2次巻線の少なくとも一
部を超電導線で形成し、該2次巻線を短絡したことを特
徴とする限流器。
3. A current limiting device connected to a three-phase transmission line, comprising:
The magnetic path of the three-winding reactor is divided into three equal parts in a cross section, and a main iron core having a magnetic gap, and legs and yokes forming a magnetic circuit with each of the three equal divided main iron cores are provided. A three-winding reactor is wound around the main iron core and this leg, and coils wound around respective yokes are connected in series to the three-winding reactor to form the primary winding of any one of the three phases. A current limiting device, characterized in that at least a part of the secondary winding of the transformer is formed of a superconducting wire, and the secondary winding is short-circuited.
【請求項4】請求項1,2あるいは3のいずれかに記載
の該3巻線リアクトルは常電導コイルからなることを特
徴とする限流器。
4. A fault current limiter characterized in that the three-winding reactor according to any one of claims 1, 2 and 3 comprises a normal conducting coil.
【請求項5】請求項1,2あるいは3のいずれかに記載
の該トランスの1次側巻線は常電導コイルからなること
を特徴とする限流器。
5. A current limiting device, characterized in that the primary winding of the transformer according to claim 1, 2 or 3 is composed of a normal conducting coil.
JP7151312A 1995-06-19 1995-06-19 Current limiter Pending JPH099499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7151312A JPH099499A (en) 1995-06-19 1995-06-19 Current limiter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7151312A JPH099499A (en) 1995-06-19 1995-06-19 Current limiter

Publications (1)

Publication Number Publication Date
JPH099499A true JPH099499A (en) 1997-01-10

Family

ID=15515902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7151312A Pending JPH099499A (en) 1995-06-19 1995-06-19 Current limiter

Country Status (1)

Country Link
JP (1) JPH099499A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359365B1 (en) * 2000-08-04 2002-03-19 American Superconductor Corporation Superconducting synchronous machine field winding protection
WO2005004299A1 (en) * 2003-07-07 2005-01-13 Metal Manufactures Limited Superconductor current limiting system and method
ES2235612A1 (en) * 2003-07-28 2005-07-01 Universidad De Santiago De Compostela Inductive current limiter, has thick magnetic core provided with small cross sectional segments, and transformer whose secondary coil is provided with multiple rings or superconducting films
CN100424957C (en) * 2006-06-01 2008-10-08 上海交通大学 Bias bridge type short circuit current limiter
JP2009111028A (en) * 2007-10-26 2009-05-21 Toshiba Henden Kiki Technology Kk Reactor
CN103077814A (en) * 2013-01-31 2013-05-01 华中科技大学 Hybrid adjustment superconducting controllable reactor
JPWO2011158290A1 (en) * 2010-06-16 2013-08-15 株式会社日立製作所 Static electromagnetic equipment
GB2509742A (en) * 2013-01-11 2014-07-16 Gridon Ltd Fault current limiter
CN107665766A (en) * 2016-11-18 2018-02-06 云南电网有限责任公司电力科学研究院 A kind of iron core of superconducting current-limiting reactor
JP2018525850A (en) * 2015-08-19 2018-09-06 ウルフス、シュキ Hybrid superconducting magnetic device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359365B1 (en) * 2000-08-04 2002-03-19 American Superconductor Corporation Superconducting synchronous machine field winding protection
WO2005004299A1 (en) * 2003-07-07 2005-01-13 Metal Manufactures Limited Superconductor current limiting system and method
ES2235612A1 (en) * 2003-07-28 2005-07-01 Universidad De Santiago De Compostela Inductive current limiter, has thick magnetic core provided with small cross sectional segments, and transformer whose secondary coil is provided with multiple rings or superconducting films
ES2235612B2 (en) * 2003-07-28 2007-02-16 Universidad De Santiago De Compostela CURRENT INDUCTIVE LIMITER BASED ON MULTIPLE RINGS OR SMALL DIAMETER SUPERCONDUCTING FILMS.
CN100424957C (en) * 2006-06-01 2008-10-08 上海交通大学 Bias bridge type short circuit current limiter
JP2009111028A (en) * 2007-10-26 2009-05-21 Toshiba Henden Kiki Technology Kk Reactor
JPWO2011158290A1 (en) * 2010-06-16 2013-08-15 株式会社日立製作所 Static electromagnetic equipment
GB2509742A (en) * 2013-01-11 2014-07-16 Gridon Ltd Fault current limiter
CN103077814A (en) * 2013-01-31 2013-05-01 华中科技大学 Hybrid adjustment superconducting controllable reactor
JP2018525850A (en) * 2015-08-19 2018-09-06 ウルフス、シュキ Hybrid superconducting magnetic device
US11562841B2 (en) 2015-08-19 2023-01-24 Mio Smes Ltd. Hybrid superconducting magnetic device
CN107665766A (en) * 2016-11-18 2018-02-06 云南电网有限责任公司电力科学研究院 A kind of iron core of superconducting current-limiting reactor
CN107665766B (en) * 2016-11-18 2023-10-27 云南电网有限责任公司电力科学研究院 Iron core of superconducting current limiting reactor

Similar Documents

Publication Publication Date Title
Moriconi et al. Development and deployment of saturated-core fault current limiters in distribution and transmission substations
US7193825B2 (en) Superconducting fault current limiter
US20020018327A1 (en) Multi-winding fault-current limiter coil with flux shaper and cooling for use in an electrical power transmission/distribution application
JPH0368618B2 (en)
JPH0458725A (en) Superconducting current limiter
JPH099499A (en) Current limiter
Tixador et al. Hybrid superconducting AC fault current limiter principle and previous studies
US7551410B2 (en) Superconductor current limiting system and method
US3509507A (en) Grounded y - y three-phase transformer
JP2000102161A (en) Transformer
JP2000132247A (en) Superconduction current controller
JPH08316534A (en) Current limiter
Yonemura et al. Current limiting performance of transformer-type superconducting fault current limiter made of BSCCO and REBCO wires
KR20120035647A (en) Superconducting fault current limiter using magnetic coupling with peak current limiting function
Hoshino et al. Load test on superconducting transformer and fault current limiting devices for electric power system
CN112072624B (en) Fault current limiter based on iron core type split reactor
JP2001069665A (en) Current-limiting unit
JP2001275249A (en) Three-phase current limiting apparatus
Egawa et al. Study of a shunt reactor with transformer function
Ertekin et al. Test of 6-kVA three-phase flux transfer-type current-limiting transformer
JPH02237428A (en) Current limiting device
Iwakuma et al. Feasibility study of oxide superconducting transformers for Shinkansen rolling stock
Nagasawa et al. Conceptual design of 100 MVA high temperature superconducting auto-transformers
AU2004254656B2 (en) Superconductor current limiting system and method
JP3280609B2 (en) Current limiting device to limit fault current