JPH0335817B2 - - Google Patents

Info

Publication number
JPH0335817B2
JPH0335817B2 JP63120317A JP12031788A JPH0335817B2 JP H0335817 B2 JPH0335817 B2 JP H0335817B2 JP 63120317 A JP63120317 A JP 63120317A JP 12031788 A JP12031788 A JP 12031788A JP H0335817 B2 JPH0335817 B2 JP H0335817B2
Authority
JP
Japan
Prior art keywords
coil
quenching
circuit breaker
quench
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63120317A
Other languages
Japanese (ja)
Other versions
JPH01289223A (en
Inventor
Junji Sakuraba
Toshiharu Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP63120317A priority Critical patent/JPH01289223A/en
Publication of JPH01289223A publication Critical patent/JPH01289223A/en
Publication of JPH0335817B2 publication Critical patent/JPH0335817B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/001Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for superconducting apparatus, e.g. coils, lines, machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、超電導磁石の保護装置に関するも
のである。 〔従来技術〕 超電導磁石において、超電導コイルに電流を流
すと、線材のずれによる摩擦熱などによつて常電
導の芽が発生し、これが急速に広がつてクエンチ
(急速な常電導転移)を起こすことがある。一旦
クエンチが発生すると、コイル蓄積エネルギーが
熱に変わり、液体He等の冷媒の蒸発を伴い、再
度冷却するのに多くの時間と液体Heを費やすこ
とになる。例えば、高電流密度の大形コイルで
は、冷却に数日を要するものがある。 そのため、従来においては、第2図に示すよう
に、超電導コイル1に保護抵抗3をクライオスタ
ツト2外において並列に接続し、励磁電源5との
間にクエンチ用遮断器4を設け、クエンチ時に遮
断器4を閉として、コイル蓄積エネルギーを保護
抵抗3でジユール熱化し、クライオスタツト2内
での冷媒の蒸発を防止している。 ここで、コイル電流の減衰は、時間の関数で次
式で表され、 I(t)=I(o)・exp〔−(Rp+r)t/L〕……(1) I(t):遮断器4が開いた時刻からt時間後の回
路電流 L:コイル1のインダクタンス Rp:保護抵抗値 r:コイル抵抗値 クライオスタツト2から取り出されるコイル蓄積
エネルギーは、(1)式を用いて次式で与えられる。 Ep=∫ 0Rp・I2(t)dt =1/2L・I2(o)・Rp/(Rp+r) ……(2) 従つて、コイルの抵抗rに対して保護抵抗Rp
を大きくとる程、クライオスタツトから取り出せ
るエネルギーを大きくできる。 〔この発明が解決しようとする課題〕 しかしながら、前述のような従来の保護回路
は、コイルにクエンチが発生した場合を前提とし
た対策であり、コイルにクエンチがなく、停電、
電源トラブル等が発生した場合に、コイルにクエ
ンチを発生させることなく、超電導状態を保つた
まま消磁する対策が施されていない。 即ち、停電、電源トラブル等が発生すると、コ
イルクエンチ時と同様に遮断器4が開となつて保
護抵抗3に電流が流れるが、コイル電流の減衰が
速いと、超電導状態のコイル内に磁束が侵入し、
コイル1がクエンチを起こしてしまう。 ここで、クエンチ以外の要因で超電導状態のま
まコイル電流が減衰する時、減速の速度はRp値
に依存し、 dI(t)/dtc.c.Rp ……(3) であり、dI/dtには、電流変化に伴うクエンチ発
生を起こさない上限がある(この値は超電導線材
の種類・冷却方式などのコイルの性能により決定
される)。 従つて、コイルクエンチ時の保護のためにRp
を大きくとつておくと、コイルクエンチ以外のト
ラブルでコイル電流が減衰する際にコイルがクエ
ンチする不都合が生じる。コイル以外の要因で、
コイルがクエンチすることは、クエンチ回数が増
えることにより冷媒蒸発などの損失が増加するこ
とになり、好ましくない。さらに、クエンチ回数
が多くなることで、コイルの劣化にもつながる。 この発明は、このような事情に鑑みてなされた
もので、その目的は、コイルクエンチ時には、コ
イル蓄積エネルギーをクライオスタツト外へ速や
かに取り出すことができるとともに、コイルクエ
ンチ以外のトラブル時には、コイルをクエンチさ
せることなく消磁させることのできる保護装置を
提供することにある。 〔課題を解決するための手段〕 本発明の保護装置は、第1図に示すように、励
磁電源5に、非常時用遮断器4を介して、超電導
コイル1と、保護抵抗3とを並列に接続してなる
装置において、保護抵抗を3Aと3Bの二つに分
割して直列に接続し、一方の保護抵抗3Bが両端
に、非クエンチ用遮断器7を有するバイパス回路
6を接続して構成される。 〔作用〕 コイルクエンチ時には、非常時用遮断器4と非
クエンチ用遮断器7が開となり、コイル1と抵抗
3A,3Bの閉回路が形成され、従来と同様にコ
イル蓄積エンネルギーの大半が抵抗3A,3Bに
よりジユール熱化される。 クエンチ以外のトラブル時には、非常時用遮断
器4が開、非クエンチ用遮断器7が閉となり、コ
イル1と抵抗3A、バイパス回路の閉回路が形成
され、保護抵抗値が低くなることによりコイル電
流減衰が小さくなり、コイルクエンチを発生する
ことなく、コイルが消磁される。 〔実施例〕 以下、この発明を図示する一実施例に基づいて
説明する。なお、従来と同一あるいは相当する部
分については同一符号を付する。 第1図に示すように、保護抵抗を、二つに分割
した抵抗3A,3Bとを直列に接続して構成し、
抵抗3Bの両端に非クエンチ用遮断器7を有する
バイパス回路6を接続する。バイパス回路6を接
続しない抵抗3Aの抵抗値はRpaは、非クエンチ
時のコイル電流減衰速度が小さくなるような小さ
い値とし、R=Rpa+Rpbが従来の保護抵抗と等
しくなるようにする。 以上のような構成において、次表に示すよう
に、遮断器4,7を開閉操作させて回路を選択す
る。 なお、遮断器4,7は停電時を考慮してバツテ
リーバツクアツプされている(図示省略)。
[Industrial Field of Application] The present invention relates to a protection device for a superconducting magnet. [Prior art] In a superconducting magnet, when a current is passed through the superconducting coil, buds of normal conductivity are generated due to frictional heat caused by misalignment of the wires, which rapidly spreads and causes quenching (rapid transition to normal conductivity). Sometimes. Once quenching occurs, the energy stored in the coil is converted to heat, which evaporates the refrigerant such as liquid He, which requires a lot of time and liquid He to cool down again. For example, some large coils with high current densities require several days to cool down. Therefore, in the past, as shown in Fig. 2, a protective resistor 3 is connected in parallel to the superconducting coil 1 outside the cryostat 2, and a quench circuit breaker 4 is provided between the superconducting coil 1 and the excitation power source 5, and the circuit breaker is cut off during quenching. When the cryostat 4 is closed, the energy stored in the coil is converted into joule heat by the protective resistor 3, thereby preventing the refrigerant from evaporating within the cryostat 2. Here, the attenuation of the coil current is expressed as a function of time by the following formula: I(t)=I(o)・exp[−(Rp+r)t/L]…(1) I(t) :Circuit current L after t hours from the time when circuit breaker 4 opens:Inductance Rp of coil 1:Protection resistance value r:Coil resistance value The coil stored energy extracted from cryostat 2 is calculated as follows using equation (1): It is given by Eq. Ep=∫ 0 Rp・I 2 (t) dt = 1/2L・I 2 (o)・Rp/(Rp+r) ...(2) Therefore, the protective resistance Rp is
The larger the value, the greater the energy that can be extracted from the cryostat. [Problems to be Solved by the Invention] However, the conventional protection circuit as described above is a countermeasure based on the assumption that quenching occurs in the coil, and if there is no quenching in the coil, power outage,
No measures have been taken to demagnetize the coil while maintaining its superconducting state without quenching the coil in the event of a power supply problem. That is, when a power outage, power supply trouble, etc. occurs, the circuit breaker 4 opens and current flows through the protective resistor 3 in the same way as when the coil is quenched. However, if the coil current attenuates quickly, magnetic flux is generated within the superconducting coil. invade,
Coil 1 causes quench. Here, when the coil current is attenuated in the superconducting state due to factors other than quenching, the speed of deceleration depends on the Rp value, dI (t) / dtc.c.Rp ... (3), and dI / dt There is an upper limit for quenching that does not occur due to current changes (this value is determined by the performance of the coil, such as the type of superconducting wire and cooling method). Therefore, for protection during coil quenching, Rp
If the value is set large, there will be an inconvenience that the coil will quench when the coil current attenuates due to trouble other than coil quench. Due to factors other than the coil,
Quenching of the coil is undesirable because the number of quenching increases and losses such as refrigerant evaporation increase. Furthermore, an increase in the number of quench operations leads to deterioration of the coil. This invention was made in view of the above circumstances, and its purpose is to be able to quickly extract the energy stored in the coil to the outside of the cryostat when the coil is quenched, and to quench the coil in the event of a problem other than the coil quench. The object of the present invention is to provide a protection device that can demagnetize without causing demagnetization. [Means for Solving the Problems] As shown in FIG. 1, the protection device of the present invention connects a superconducting coil 1 and a protective resistor 3 in parallel to an excitation power source 5 via an emergency circuit breaker 4. In the device, the protective resistor is divided into two, 3A and 3B, and connected in series, and one protective resistor 3B is connected to both ends thereof with a bypass circuit 6 having a non-quench circuit breaker 7. configured. [Function] When the coil is quenched, the emergency circuit breaker 4 and the non-quench circuit breaker 7 are opened, forming a closed circuit between the coil 1 and the resistors 3A and 3B, and as in the past, most of the energy stored in the coil is transferred to the resistor 3A. , 3B. In the event of a problem other than quenching, the emergency circuit breaker 4 opens and the non-quenching circuit breaker 7 closes, forming a closed circuit between the coil 1, the resistor 3A, and the bypass circuit.The protective resistance value decreases, causing the coil current to Attenuation is reduced and the coil is demagnetized without causing coil quench. [Example] The present invention will be described below based on an illustrative example. Note that the same reference numerals are given to parts that are the same as or correspond to the conventional ones. As shown in FIG. 1, the protective resistor is constructed by connecting two divided resistors 3A and 3B in series,
A bypass circuit 6 having a non-quench circuit breaker 7 is connected to both ends of the resistor 3B. The resistance value Rpa of the resistor 3A to which the bypass circuit 6 is not connected is set to a small value so that the coil current decay rate during non-quenching is small, and R=Rpa+Rpb is made equal to the conventional protection resistance. In the above configuration, the circuits are selected by opening and closing the circuit breakers 4 and 7 as shown in the following table. Note that the circuit breakers 4 and 7 are backed up with batteries (not shown) in consideration of power outages.

【表】 () コイルクエンチ時(遮断器4,7共に開
く) コイル1と抵抗3A,3B(Rpa+Rpb)の
閉回路で、コイル蓄積エネルギーの大半をクラ
イオスタツト2の外部へ取り出してジユール熱
化する。 () クエンチ以外のトラブル時(遮断器4のみ
を開き、遮断器7は閉じたまま) コイル1と抵抗3A、バイパス回路6の閉回
路で、電流減衰に伴うコイルクエンチを発生さ
せることなく、コイル1を消磁する。 次に、直径1.5m程度の中形のドーナツ形超電
導コイルに適用した具体的数値例について説明す
る。 コイル抵抗r=0.2Ω(at4.2Km)、L=30H、I
(o)=1000Aの条件で、I(o)×(Rpa+Rpb)≦
1000Vの電気絶縁耐電圧条件からRpa+Rpb≦
1.0Ωであり、Rpa=0.2Ω、Rpb=0.8Ωとする。 ●コイルクエンチ時 Rpa+Rpb=1.0Ωの抵抗により、コイル蓄積
エネルギーの80%以上がクライオスタツトの外
部へ取り出される。 ●コイルクエンチ以外の時 コイル電流の最大減衰は(1)式からdI/dt=I
(o)・R/L〔A/sec〕であり、コイルの性能
上、dI/dt<10〔A/sec〕ならば、クエンチし
ない。従来の保護抵抗では、R=1.0ΩでdI/dt
=33〔A/sec〕となつて、クエンチしてしまう
が、本発明では、R=Rpa=0.2Ωであり、dI/
dt=6.7〔A/sec〕となつて、コイルがクエン
チすることなく消磁される。 〔発明の効果〕 前述のとおり、本発明の保護装置は、保護抵抗
を二つに分割し、一方の抵抗にバイパス回路を設
けたため、コイルクエンチ時には、コイル蓄積エ
ネルギーを従来と同様にクライオスタツトへ速や
かに取り出すことができると共に、コイルクエン
チ以外のトラブル時には、コイルをクエンチさせ
ることなく消磁させることができる。 これにより、超電導磁石の安全性、操作性を向
上させることができると共に、クエンチ回数が減
少することにより、冷媒蒸発などの損失、コイル
劣化を低減できる。
[Table] () When the coil is quenched (both circuit breakers 4 and 7 are opened) Most of the energy stored in the coil is extracted to the outside of cryostat 2 through the closed circuit of coil 1 and resistors 3A and 3B (Rpa + Rpb), and is converted into joule heat. . () When a problem other than quenching occurs (only circuit breaker 4 is opened, circuit breaker 7 is closed) With the closed circuit of coil 1, resistor 3A, and bypass circuit 6, the coil can be fixed without causing coil quench due to current attenuation. Demagnetize 1. Next, a specific numerical example applied to a medium-sized donut-shaped superconducting coil of about 1.5 m in diameter will be explained. Coil resistance r = 0.2Ω (at4.2Km), L = 30H, I
Under the condition of (o)=1000A, I(o)×(Rpa+Rpb)≦
From 1000V electrical insulation withstand voltage condition, Rpa+Rpb≦
1.0Ω, Rpa=0.2Ω, Rpb=0.8Ω. ●When the coil is quenched, more than 80% of the energy stored in the coil is extracted to the outside of the cryostat due to the resistance of Rpa + Rpb = 1.0Ω. ●When the coil is not quenched, the maximum attenuation of the coil current is dI/dt=I from equation (1).
(o)·R/L [A/sec], and due to the performance of the coil, if dI/dt<10 [A/sec], it will not quench. With conventional protection resistor, dI/dt at R=1.0Ω
= 33 [A/sec] and quenches, but in the present invention, R = Rpa = 0.2Ω, and dI/
dt=6.7 [A/sec], and the coil is demagnetized without being quenched. [Effects of the Invention] As mentioned above, the protection device of the present invention divides the protection resistor into two and provides a bypass circuit for one of the resistors, so that when the coil is quenched, the energy stored in the coil is transferred to the cryostat as before. It can be taken out quickly, and in the event of a problem other than coil quenching, it can be demagnetized without quenching the coil. As a result, the safety and operability of the superconducting magnet can be improved, and the number of times of quenching is reduced, so that losses such as refrigerant evaporation and coil deterioration can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の保護装置を示す回路図、第
2図は従来の回路図である。 1……超電導コイル、2……クライオスタツ
ト、3,3A,3B……保護抵抗、4……非常時
用遮断器、5……励磁電源、6……バイパス回
路、7……非クエンチ用遮断器。
FIG. 1 is a circuit diagram showing a protection device of the present invention, and FIG. 2 is a conventional circuit diagram. 1... Superconducting coil, 2... Cryostat, 3, 3A, 3B... Protective resistor, 4... Emergency circuit breaker, 5... Excitation power supply, 6... Bypass circuit, 7... Non-quench cutoff vessel.

Claims (1)

【特許請求の範囲】 1 励磁電源に、非常時用遮断器を介して、超電
導コイルと、保護抵抗とを並列に接続してなる保
護装置において、 前記保護抵抗を二つに分割して直列に接続し、
この分割した保護抵抗の一方の抵抗の両端に、非
クエンチ用遮断器を有するバイパス回路を接続し
たことを特徴とする超電導磁石の保護装置。
[Claims] 1. A protection device in which a superconducting coil and a protective resistor are connected in parallel to an excitation power source via an emergency circuit breaker, wherein the protective resistor is divided into two parts and connected in series. connection,
A protection device for a superconducting magnet, characterized in that a bypass circuit having a non-quench circuit breaker is connected to both ends of one of the divided protection resistors.
JP63120317A 1988-05-17 1988-05-17 Protective device of superconducting magnet Granted JPH01289223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63120317A JPH01289223A (en) 1988-05-17 1988-05-17 Protective device of superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63120317A JPH01289223A (en) 1988-05-17 1988-05-17 Protective device of superconducting magnet

Publications (2)

Publication Number Publication Date
JPH01289223A JPH01289223A (en) 1989-11-21
JPH0335817B2 true JPH0335817B2 (en) 1991-05-29

Family

ID=14783251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63120317A Granted JPH01289223A (en) 1988-05-17 1988-05-17 Protective device of superconducting magnet

Country Status (1)

Country Link
JP (1) JPH01289223A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957791A (en) * 1972-10-03 1974-06-05
JPS6327004A (en) * 1986-07-21 1988-02-04 Mitsubishi Electric Corp Superconductive electromagnet device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957791A (en) * 1972-10-03 1974-06-05
JPS6327004A (en) * 1986-07-21 1988-02-04 Mitsubishi Electric Corp Superconductive electromagnet device

Also Published As

Publication number Publication date
JPH01289223A (en) 1989-11-21

Similar Documents

Publication Publication Date Title
EP1610432B1 (en) Control circuit
JPS62138021A (en) Ac current limiter
US4812796A (en) Quench propagation device for a superconducting magnet
GB1262024A (en) A current-limiting arrangement
US5390064A (en) Current limiters in power utility applications
US5414586A (en) Superconducting current limiting device
JPH0586052B2 (en)
JPS61114509A (en) Superconductive coil device
US3176195A (en) Superconducting solenoid
RU2416852C1 (en) Power damper for limitation of emergency current
JPH0335817B2 (en)
JP2941833B2 (en) Superconducting current limiting device
Hsieh et al. A survey of failure experience in existing superconducting magnet systems and its relevance to fusion power reactors
JPH0581973A (en) Dc circuit breaker
US3859566A (en) Arrangement for removing energy from a superconducting magnet
Kataoka et al. Comparative study of transformer-type superconducting fault current limiters considering magnetic saturation of iron core
US7023673B2 (en) Superconducting shielded core reactor with reduced AC losses
JPS6350846B2 (en)
JPH0993800A (en) Superconducting coil electric power unit
JPS58219709A (en) Superconductive device
Tixador et al. Hybrid AC superconducting current limiter: small-scale experimental model
JPH03243118A (en) Overcurrent limiter
JPH03245725A (en) Overcurrent limiter
JP2607822B2 (en) Superconducting current limiter
JPH03272107A (en) Superconducting magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees