JPH01289223A - Protective device of superconducting magnet - Google Patents

Protective device of superconducting magnet

Info

Publication number
JPH01289223A
JPH01289223A JP63120317A JP12031788A JPH01289223A JP H01289223 A JPH01289223 A JP H01289223A JP 63120317 A JP63120317 A JP 63120317A JP 12031788 A JP12031788 A JP 12031788A JP H01289223 A JPH01289223 A JP H01289223A
Authority
JP
Japan
Prior art keywords
coil
circuit breaker
circuit
resistance
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63120317A
Other languages
Japanese (ja)
Other versions
JPH0335817B2 (en
Inventor
Junji Sakuraba
桜庭 順二
Toshiharu Yamada
俊治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP63120317A priority Critical patent/JPH01289223A/en
Publication of JPH01289223A publication Critical patent/JPH01289223A/en
Publication of JPH0335817B2 publication Critical patent/JPH0335817B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/001Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for superconducting apparatus, e.g. coils, lines, machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To demagnetize a coil without quenching it at the time of trouble other than a case where the coil is quenched by a method wherein a protective resistance is divided into two and a bypass circuit is provided to one of the resistance. CONSTITUTION:A protective resistance is divided into two 3A, 3B, these are connected in series and a bypass circuit 6 having a circuit breaker 7 for nonquenching use is connected to both ends of one protective resistance 3B. When a coil is quenched, a circuit breaker 4 for emergency use and the circuit breaker 7 for nonquenching use become open, a closed circuit composed of a coil 1 and the resistance 3A, 3B is formed, and accumulated energy in the coil is transformed into the Joule heat by means of the resistances 3A, 3B. At a trouble other than a quenching operation, the circuit breaker 4 for emergency use becomes open and the circuit breaker 7 for nonquenching use becomes closed, a closed circuit composed of the coil 1, the resistance 3A and the bypass circuit is formed, and protective resistance value is lowered. By this setup, an attenuation of a coil current becomes small, the coil is not quenched, and the coil is demagnetized.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、超電導磁石の保護装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a protection device for a superconducting magnet.

〔従来技術〕[Prior art]

超電導磁石において、超電導コイルに電流を流すと、線
材のずれによる摩擦熱などによって常電導の芽が発生し
、これが急速に広がってクエンチ(急速な常電導転移)
を起こすことがある。−旦クエンチが発生すると、コイ
ル蓄積エネルギーが熱に変わり、液体He等の冷媒の蒸
発を伴い、再度冷却するのに多くの時間と液体Heを費
やすことになる。例えば、高電流密度の大形コイルでは
、冷却に数日を要するものがある。
In a superconducting magnet, when a current is passed through the superconducting coil, buds of normal conductivity are generated due to frictional heat caused by misalignment of the wires, which rapidly spreads and quenches (rapid transition to normal conductivity).
may occur. - Once a quench occurs, the energy stored in the coil turns into heat, which evaporates a refrigerant such as liquid He, which requires a lot of time and liquid He to cool down again. For example, some large coils with high current densities require several days to cool down.

そのため、従来においては、第2図に示すように、超電
導コイル1に保護抵抗3をクライオスタット2外におい
て並列に接続し、励磁電源5との間にクエンチ用遮断器
4を設け、クエンチ時に遮断器4を閉として、コイル蓄
積エネルギーを保護抵抗3でジュール熱化し、クライオ
スタット2内での冷媒の蒸発を防止している。
Therefore, in the past, as shown in FIG. 2, a protective resistor 3 is connected to the superconducting coil 1 in parallel outside the cryostat 2, and a quench circuit breaker 4 is provided between the superconducting coil 1 and the excitation power source 5. 4 is closed, the energy stored in the coil is converted into Joule heat by the protective resistor 3, and evaporation of the refrigerant within the cryostat 2 is prevented.

ここで、コイル電流の減衰は、時間の関数で次式で表さ
れ、 I(t) =I(o)  ・exp  C(Rp +r
)t/L)・・・・・・・・・(1) 1(t):遮断器4が開いた時刻からむ時間後の回路電
流 L :コイルlのインダクタンス Rp :保護抵抗値 r :コイル抵抗値 クライオスタンド2から取り出されるコイル蓄積エネル
ギーは、(1)式を用いて次式で与えられる。
Here, the attenuation of the coil current is expressed as a function of time by the following equation, I(t) = I(o) ・exp C(Rp +r
)t/L)・・・・・・・・・(1) 1(t): Circuit current L after the time from the time when circuit breaker 4 opens: Inductance Rp of coil l: Protective resistance value r: Coil resistance The coil stored energy taken out from the cryostand 2 is given by the following equation using equation (1).

Ep=S’″’ Rp  −1” (t) dt=ML
 ・I 2(o)  ・Rp /(Rp + r)・・
・・・・・・・(2) 従って、コイルの抵抗rに対して保護抵抗Rpを大きく
とる程、クライオスタットから取り出せるエネルギーを
大きくできる。
Ep=S'″' Rp −1” (t) dt=ML
・I 2 (o) ・Rp / (Rp + r)・・
(2) Therefore, the larger the protective resistance Rp is compared to the coil resistance r, the greater the energy that can be extracted from the cryostat.

〔この発明が解決しようとする課題〕[Problems to be solved by this invention]

しかしながら、前述のような従来の保護回路は、コイル
にクエンチが発生した場合を前提とした対策であり、コ
イルにクエンチがなく、停電、電源トラブル等が発生し
た場合に、コイルにクエンチを発生させることなく、超
電導状態を保ったまま消磁する対策が施されていない。
However, the conventional protection circuit described above is a countermeasure based on the assumption that quench occurs in the coil, and if there is no quench in the coil and a power outage or power supply trouble occurs, quench will occur in the coil. Therefore, no measures have been taken to demagnetize while maintaining the superconducting state.

即ち、停電、電源トラブル等が発生すると、コイルクエ
ンチ時と同様に遮断器4が開となって保護抵抗3に電流
が流れるが、コイル電流の減衰が速いと、超電導状態の
コイル内に磁束が侵入し、コイル1がクエンチを起こし
てしまう。
That is, when a power outage, power supply trouble, etc. occurs, the circuit breaker 4 opens and current flows through the protective resistor 3, just as in the case of coil quench, but if the coil current attenuates quickly, magnetic flux is generated within the superconducting coil. It invades and causes coil 1 to quench.

ここで、クエンチ以外の要因で超電導状態のままコイル
電流が減衰する時、減速の速度はRp値に依存し、 dl(t)/dtocRp  ・=(3)であり、旧/
dtには、電流変化に伴うクエンチ発生を起こさない上
限がある(この値は超電導線材の種類・冷却方式などの
コイルの性能により決定される)。
Here, when the coil current is attenuated in the superconducting state due to factors other than quenching, the speed of deceleration depends on the Rp value, and is dl(t)/dtocRp ・= (3), which is the old/
dt has an upper limit that does not cause quenching due to current changes (this value is determined by the performance of the coil, such as the type of superconducting wire and the cooling method).

従って、コイルクエンチ時の保護のためRpを大きくと
っておくと、コイルクエンチ以外のトラブルでコイル電
流が減衰する際にコイルがクエンチする不都合が生じる
。コイル以外の要因で、コイルがクエンチすることは、
クエンチ回数が増えることにより冷媒蒸発などの損失が
増加することになり、好ましくない。さらに、クエンチ
回数が多くなることで、コイルの劣化にもつながる。
Therefore, if Rp is set large for protection during coil quenching, the coil may quench when the coil current attenuates due to trouble other than coil quenching. The coil may quench due to factors other than the coil.
As the number of quenching increases, losses such as refrigerant evaporation increase, which is not preferable. Furthermore, an increase in the number of quench operations leads to deterioration of the coil.

この発明は、このような事情に鑑みてなされたもので、
その目的は、コイルクエンチ時には、コイル蓄積エネル
ギーをクライオスタット外へ速やかに取り出すことがで
きるとともに、コイルクエンチ以外のトラブル時には、
コイルをクエンチさせることなく消磁させることのでき
る保護装置を提供することにある。
This invention was made in view of these circumstances,
The purpose is to quickly extract the coil stored energy to the outside of the cryostat when the coil is quenched.
It is an object of the present invention to provide a protection device capable of demagnetizing a coil without quenching it.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の保護装置は、第1図に示すように、励磁電源5
に、非常時用遮断器4を介して、超電導コイル1と、保
護抵抗3とを並列に接続してなる装置において、保護抵
抗を3Aと3Bの二つに分割して直列に接続し、一方の
保護抵抗3Bの両端に、非クエンチ用遮断器7を有する
バイパス回路6を接続して構成される。
As shown in FIG. 1, the protection device of the present invention includes an excitation power source 5
In a device in which a superconducting coil 1 and a protective resistor 3 are connected in parallel via an emergency circuit breaker 4, the protective resistor is divided into two parts 3A and 3B and connected in series, and one A bypass circuit 6 having a non-quench circuit breaker 7 is connected to both ends of the protective resistor 3B.

〔作 用〕[For production]

コイルクエンチ時には、非常時用遮断器4と非クエンチ
用遮断器7が開となり、コイル1と抵抗3A、3Bの閉
回路が形成され、従来と同様にコイル蓄積エンネルギー
の大半が抵抗3A3Bによりジュール熱化される。
When the coil is quenched, the emergency circuit breaker 4 and the non-quench circuit breaker 7 are opened, forming a closed circuit between the coil 1 and the resistors 3A and 3B, and as in the past, most of the energy stored in the coil is converted into Joule heat by the resistor 3A3B. be converted into

クエンチ以外のトラブル時には、非常時用遮断器4が開
、非クエンチ用遮断器7が閉となり、コイル1と抵抗3
A、バイパス回路の閉回路が形成され、保護抵抗値が低
くなることによりコイル電流減衰が小さくなり、コイル
クエンチを発生することなく、コイルが消磁される。
In the event of a problem other than quenching, the emergency circuit breaker 4 opens, the non-quenching circuit breaker 7 closes, and the coil 1 and resistor 3
A. A closed bypass circuit is formed, and the protective resistance value becomes low, so that the coil current attenuation becomes small, and the coil is demagnetized without generating coil quench.

〔実 施 例〕〔Example〕

以下、この発明を図示する一実施例に基づいて説明する
。なお、従来と同一あるいは相当する部分については同
一符号を付する。
The present invention will be described below based on an illustrated embodiment. Note that the same reference numerals are given to parts that are the same as or correspond to the conventional ones.

第1図に示すように、保護抵抗を、二つに分割した抵抗
3A、3Bとを直列に接続して構成し、抵抗3Bの両端
に非クエンチ用遮断器7を有するバイパス回路6を接続
する。バイパス回路6を接続しない抵抗3Aの抵抗値R
paは、非クエンチ時のコイル電流減衰速度が小さくな
るような小さい値とし、R=Rpa+Rpbが従来の保
護抵抗と等しくなるようにする。
As shown in FIG. 1, the protective resistor is constructed by connecting two divided resistors 3A and 3B in series, and a bypass circuit 6 having a non-quench circuit breaker 7 is connected to both ends of the resistor 3B. . Resistance value R of resistor 3A without connecting bypass circuit 6
pa is set to a small value so that the coil current decay rate during non-quenching is small, and R=Rpa+Rpb is made equal to the conventional protection resistance.

以上のような構成において、次表に示すように、遮断器
4.7を開閉操作させて回路を選択する。
In the above configuration, a circuit is selected by opening/closing the circuit breaker 4.7 as shown in the following table.

なお、遮断器4.7は停電時を考慮してバッテリーバン
クアップされている(図示省略)。
Note that the circuit breaker 4.7 is equipped with a battery bank (not shown) in consideration of power outages.

(1)コイルクエンチ時(遮断器4.7共に開く) コイル1と抵抗3 A、  3 B (Rpa+Rpb
 )の閉回路で、コイル蓄積エネルギーの大半をクライ
オスタット2の外部へ取り出してジヱール熱化する。
(1) When the coil quenches (both circuit breakers 4 and 7 open) Coil 1 and resistor 3 A, 3 B (Rpa+Rpb
) in the closed circuit, most of the energy stored in the coil is taken out to the outside of the cryostat 2 and converted into diesel heat.

(11)クエンチ以外のトラブル時(遮断器4のみを開
き、遮断器7は閉じたまま) コイルlと抵抗3A、バイパス回路6の閉回路で、電流
減衰に伴うコイルクエンチを発生させることなく、コイ
ルlを消磁する。
(11) In case of trouble other than quenching (only circuit breaker 4 is opened, circuit breaker 7 remains closed), the closed circuit of coil 1, resistor 3A, and bypass circuit 6 prevents coil quench from occurring due to current attenuation. Demagnetize coil l.

次に、直径1.5m程度の中形のドーナツ形超電導コイ
ルに適用した具体的数値例について説明する。
Next, a specific numerical example applied to a medium-sized donut-shaped superconducting coil of about 1.5 m in diameter will be explained.

コイル抵抗r =0.2Ω(at4.2 km) 、 
 L=30H,I (o) =1000Aの条件で、I
 (o)  X (Rpa+Rpb)≦1000 Vの
電気絶縁耐電圧条件からRpa十Rpb≦1.0 Ωで
あり、Rpa=0.2 Ω、Rpb−〇、8Ωとする。
Coil resistance r = 0.2Ω (at 4.2 km),
Under the conditions of L = 30H, I (o) = 1000A, I
(o) From the electric insulation withstand voltage condition of X (Rpa+Rpb)≦1000 V, Rpa + Rpb≦1.0 Ω, and Rpa=0.2 Ω, Rpb−〇, 8Ω.

・コイルクエンチ時 Rpa+Rpb =1.OΩの抵抗により、コイル蓄積
エネルギーの80%以上がクライオスタンドの外部へ取
り出される。
・Rpa+Rpb = 1 during coil quench. OΩ resistance allows more than 80% of the coil's stored energy to be extracted to the outside of the cryostand.

・コイルクエンチ以外の時 コイル電流の最大減衰は(1)式からdi/dt =1
(o) ・R/L  (A/sec )であり、コイル
の性能上、dl/dt <10 (A/sec )なら
ば、クエンチしない。
・The maximum attenuation of the coil current when the coil is not quenched is di/dt = 1 from equation (1).
(o) ·R/L (A/sec), and due to the performance of the coil, if dl/dt <10 (A/sec), no quenching occurs.

従来の保護抵抗では、R=1.OΩでdi/dt =3
3 (A/sec )となって、クエンチしてしまうが
、本発明では、R−Rpa=QJΩであり、dl/dt
−6,7(A/sec 〕となって、コイルがクエンチ
することなく消磁される。
In conventional protection resistors, R=1. di/dt = 3 in OΩ
3 (A/sec) and quenches, but in the present invention, R-Rpa=QJΩ, and dl/dt
-6.7 (A/sec), and the coil is demagnetized without quenching.

〔発明の効果〕〔Effect of the invention〕

前述のとおり、本発明の保護装置は、保護抵抗を二つに
分割し、一方の抵抗にバイパス回路を設けたため、コイ
ルクエンチ時には、コイル蓄積エネルギーを従来と同様
にクライオスタットへ速やかに取り出すことができると
共に、コイルクエンチ以外のトラブル時には、コイルを
クエンチさせることなく消磁させることができる。
As mentioned above, the protection device of the present invention divides the protection resistor into two and provides a bypass circuit for one of the resistors, so that when the coil is quenched, the energy stored in the coil can be quickly taken out to the cryostat in the same way as before. Additionally, in the event of a problem other than coil quenching, the coil can be demagnetized without being quenched.

これにより、超電導磁石の安全性、操作性を向上させる
ことができると共に、クエンチ回数が減少することによ
り、冷媒蒸発などの損失。
This not only improves the safety and operability of the superconducting magnet, but also reduces the number of quench cycles, reducing losses such as refrigerant evaporation.

コイル劣化を低減できる。Coil deterioration can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の保護装置を示す回路図、第2図は従
来の回路図である。 ■・・超電導コイル、2・・クライオスタット、3.3
A、3B・・保護抵抗、4・・非常時用遮断器、5・・
励磁電源、6・・バイパス回路、7・・非クエンチ用遮
断器。
FIG. 1 is a circuit diagram showing a protection device of the present invention, and FIG. 2 is a conventional circuit diagram. ■...Superconducting coil, 2...Cryostat, 3.3
A, 3B...Protective resistance, 4...Emergency circuit breaker, 5...
Excitation power supply, 6. Bypass circuit, 7. Non-quench circuit breaker.

Claims (1)

【特許請求の範囲】[Claims] (1)励磁電源に、非常時用遮断器を介して、超電導コ
イルと、保護抵抗とを並列に接続してなる保護装置にお
いて、 前記保護抵抗を二つに分割して直列に接続 し、この分割した保護抵抗の一方の抵抗の両端に、非ク
エンチ用遮断器を有するバイパス回路を接続したことを
特徴とする超電導磁石の保護装置。
(1) In a protection device in which a superconducting coil and a protective resistor are connected in parallel to an excitation power source via an emergency circuit breaker, the protective resistor is divided into two and connected in series; A protection device for a superconducting magnet, characterized in that a bypass circuit having a non-quenching circuit breaker is connected to both ends of one of the divided protection resistors.
JP63120317A 1988-05-17 1988-05-17 Protective device of superconducting magnet Granted JPH01289223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63120317A JPH01289223A (en) 1988-05-17 1988-05-17 Protective device of superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63120317A JPH01289223A (en) 1988-05-17 1988-05-17 Protective device of superconducting magnet

Publications (2)

Publication Number Publication Date
JPH01289223A true JPH01289223A (en) 1989-11-21
JPH0335817B2 JPH0335817B2 (en) 1991-05-29

Family

ID=14783251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63120317A Granted JPH01289223A (en) 1988-05-17 1988-05-17 Protective device of superconducting magnet

Country Status (1)

Country Link
JP (1) JPH01289223A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957791A (en) * 1972-10-03 1974-06-05
JPS6327004A (en) * 1986-07-21 1988-02-04 Mitsubishi Electric Corp Superconductive electromagnet device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957791A (en) * 1972-10-03 1974-06-05
JPS6327004A (en) * 1986-07-21 1988-02-04 Mitsubishi Electric Corp Superconductive electromagnet device

Also Published As

Publication number Publication date
JPH0335817B2 (en) 1991-05-29

Similar Documents

Publication Publication Date Title
Ichikawa et al. A magnetic shielding type superconducting fault current limiter using a Bi2212 thick film cylinder
KR20050031750A (en) Resistive type superconducting fault current limiter
JPH10501120A (en) Current limiting device
GB1262024A (en) A current-limiting arrangement
US5414586A (en) Superconducting current limiting device
JPS61114509A (en) Superconductive coil device
JPH0586052B2 (en)
US3176195A (en) Superconducting solenoid
US6411479B1 (en) Arrangement for current limiting using a superconductor transformer
JPH01289223A (en) Protective device of superconducting magnet
Hsieh et al. A survey of failure experience in existing superconducting magnet systems and its relevance to fusion power reactors
US20110116199A1 (en) Power Dampener for a Fault Current Limiter
Yamaguchi et al. Current limiting characteristics of transformer type superconducting fault current limiter with shunt impedance
US3859566A (en) Arrangement for removing energy from a superconducting magnet
JPH0581973A (en) Dc circuit breaker
JPS61115308A (en) Superconducting device
JPS5952809A (en) Protection device of magnet coil
Honcharov et al. Consideration of Appliance Superconductors in Inductive Short Circuit Current Limiter
Tixador et al. Hybrid AC superconducting current limiter: small-scale experimental model
JPS58219709A (en) Superconductive device
JPH0993800A (en) Superconducting coil electric power unit
JPH03245725A (en) Overcurrent limiter
Mukhopadhyay et al. Investigation on the topological configuration of magnetic current limiter for the protection of power semiconductor devices
JP2778040B2 (en) Superconducting transformer
JPH03145923A (en) Current limiter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees