JPH07263760A - Superconductor permanent current switch and method of operating superconductor persistent current switch - Google Patents

Superconductor permanent current switch and method of operating superconductor persistent current switch

Info

Publication number
JPH07263760A
JPH07263760A JP6050902A JP5090294A JPH07263760A JP H07263760 A JPH07263760 A JP H07263760A JP 6050902 A JP6050902 A JP 6050902A JP 5090294 A JP5090294 A JP 5090294A JP H07263760 A JPH07263760 A JP H07263760A
Authority
JP
Japan
Prior art keywords
superconducting
current switch
wire
current
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6050902A
Other languages
Japanese (ja)
Inventor
Nobuyuki Sadakata
伸行 定方
Keisuke Uchiyama
圭祐 内山
Takashi Saito
隆 斉藤
Tsukasa Kono
宰 河野
Hitoshi Honma
仁 本間
Tadashi Tatsuki
▲匡▼ 田附
Hiroshichi Noto
宏七 能登
Tomoaki Matsukawa
倫明 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Tohoku Electric Power Co Inc
Original Assignee
Fujikura Ltd
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Tohoku Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP6050902A priority Critical patent/JPH07263760A/en
Publication of JPH07263760A publication Critical patent/JPH07263760A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide a persistent current switch that provides enough current, keeps the same current after on/off control and provides far faster switching speed than that by a temperature control method and a method of operating the persistent current switch. CONSTITUTION:The persistent current switch comprises a superconductor coil 21, a superconductive wire for a persistent current switch 19 connected in parallel with the superconductor coil 21, a power source that is connected with the superconductor coil 21 and the wire for the persistent current switch 19 and supplies current flowing through the superconductor coil 21, a superconductor magnet 26 that is provided near the wire for the persistent current switch 19, applies or decreases a magnetic field to the wire for the persistent current switch 19 and brings the wire for the persistent current switch 19 from a superconductive state to a conductive state or from the conductive state to the superconductive state, and an auxiliary power source 20 connected to the wire for the persistent current switch 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導関連装置で使用さ
れている超電導永久電流スイッチ装置および超電導永久
電流スイッチの運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting permanent current switch device used in a superconducting-related device and a method of operating the superconducting permanent current switch.

【0002】[0002]

【従来の技術】超電導永久電流スイッチは、超電導マグ
ネットと組み合わせて永久電流回路を実現させるために
不可欠な要素であり、超電導エネルギー貯蔵システム、
核融合システム、磁気浮上列車、理化学実験用超電導マ
グネット等への利用がなされている。ところで、超電導
エネルギー貯蔵システムなどにおいて、超電導マグネッ
トを永久電流状態で運転する装置においては、超電導コ
イルと永久電流スイッチを並列接続して構成し、この並
列回路を所望の電源にパワーリードを介して接続する構
成が一般的になっている。
2. Description of the Related Art A superconducting persistent current switch is an essential element for realizing a persistent current circuit in combination with a superconducting magnet.
It is used in nuclear fusion systems, magnetic levitation trains, superconducting magnets for physics and chemistry experiments, etc. By the way, in a device that operates a superconducting magnet in a persistent current state in a superconducting energy storage system, etc., a superconducting coil and a persistent current switch are connected in parallel, and this parallel circuit is connected to a desired power source via a power lead. The configuration has become common.

【0003】図3〜図5に、このような構成の超電導エ
ネルギー貯蔵装置の一例を示す。これらの図において符
号1は超電導コイルを示し、この超電導コイル1と永久
電流スイッチ2を並列接続し、この回路にパワーリード
3と開閉スイッチ4とを介して交直変換装置5を接続
し、交直変換装置5に図示略の交流電源系統を接続して
構成されている。前記超電導コイル1と永久電流スイッ
チ2は、いずれも極低温において超電導状態に転位する
超電導体から形成され、液体ヘリウムなどの冷媒で冷却
されるようになっている。なお、図3〜5において、超
電導コイル1と永久電流スイッチ2を液体ヘリウムで冷
却する装置とその回路については省略してある。
3 to 5 show an example of a superconducting energy storage device having such a structure. In these drawings, reference numeral 1 denotes a superconducting coil, the superconducting coil 1 and a permanent current switch 2 are connected in parallel, and an AC / DC converter 5 is connected to this circuit via a power lead 3 and an opening / closing switch 4 to perform AC / DC conversion. An AC power supply system (not shown) is connected to the device 5. The superconducting coil 1 and the persistent current switch 2 are both formed of a superconductor which is transformed into a superconducting state at an extremely low temperature and are cooled by a refrigerant such as liquid helium. 3 to 5, the device for cooling the superconducting coil 1 and the persistent current switch 2 with liquid helium and its circuit are omitted.

【0004】図3〜図5に示す超電導エネルギー貯蔵装
置を用いて電力の貯蔵を行うには、図3に示すように永
久電流スイッチ2を開放して直流電流を超電導コイル1
に流し、磁気エネルギーとして電力を貯蔵する。次に、
図4に示すように永久電流スイッチ2を閉じて超電導コ
イル1の両端を短絡するとともに開閉スイッチ4を開放
すると、超電導コイル1は極低温状態に冷却されていて
電気抵抗がゼロであるがために、電流は減衰することな
く超電導コイル1を流れ続け、そのときの超電導コイル
1に蓄えられたエネルギーが無損失で保存されることに
なる。次にこの貯蔵された電力を取り出すには、図5に
示すように永久電流スイッチ2を開放するとともに開閉
スイッチ2を閉じることで、超電導コイル1に蓄えられ
ていた磁気エネルギーを電力として取り出すことができ
る。
In order to store electric power by using the superconducting energy storage device shown in FIGS. 3 to 5, the permanent current switch 2 is opened as shown in FIG.
And store electric power as magnetic energy. next,
As shown in FIG. 4, when the permanent current switch 2 is closed to short-circuit both ends of the superconducting coil 1 and the open / close switch 4 is opened, the superconducting coil 1 is cooled to a cryogenic temperature and its electric resistance is zero. The current continues to flow in the superconducting coil 1 without being attenuated, and the energy stored in the superconducting coil 1 at that time is stored without loss. Next, in order to take out the stored electric power, the magnetic energy stored in the superconducting coil 1 can be taken out as electric power by opening the permanent current switch 2 and closing the open / close switch 2 as shown in FIG. it can.

【0005】[0005]

【発明が解決しようとする課題】従来、このような永久
電流スイッチ2のオン・オフ制御を行なう装置の原理と
しては、機械方式、温度制御方式、磁界制御方式などが
提案されている。このうち、現在実用化が進められて主
流となっているのは、温度制御方式であり、この温度制
御方式の装置は、永久電流スイッチ2を構成する超電導
線材を加熱ヒータ線と一緒に無誘導状態で巻き込み、こ
の加熱ヒータ線により必要に応じて永久電流スイッチ2
の超電導線材を臨界温度以上になるように加熱して常電
導転位させることでオフ状態とするか、加熱ヒータを切
って永久電流スイッチ2の超電導線材を冷却してオン状
態とすることでスイッチ動作を実現する構成になってい
る。
Conventionally, a mechanical system, a temperature control system, a magnetic field control system and the like have been proposed as the principle of the device for performing the on / off control of the permanent current switch 2 as described above. Of these, the temperature control system is the one that is currently in practical use and is becoming the mainstream. In this temperature control system, the superconducting wire that constitutes the permanent current switch 2 is not induced along with the heater wire. In this state, the heater wire is used to make a permanent current switch 2 if necessary.
Switch the superconducting wire of No. 2 by heating it to a critical temperature or higher and causing normal conduction dislocation to turn it off, or turning off the heater to cool the superconducting wire of the persistent current switch 2 and turning it on. It is configured to realize.

【0006】ところが、この温度制御方式の装置では、
熱伝導に時間がかかる問題や、温度制御系の潜熱などが
影響するなどの問題があり、永久電流スイッチ2のスイ
ッチングに数秒から数10秒の時間を要する問題があ
る。また、この構造では超電導線材の温度を上げるため
に熱捌けの悪い断熱構造を取らざるを得ないことから、
オフ状態とした祭に、永久電流スイッチ用超電導線材に
急激な局部的な発熱を生じるおそれがあり、永久電流ス
イッチ用超電導線材を溶断してしまうおそれがある。ま
た、加熱ヒータ線の断線を生じると、オン状態の超電導
永久電流スイッチをオフ状態にできなくなる問題があ
る。
However, in this temperature control type device,
There is a problem that it takes a long time for heat conduction, a problem that latent heat of a temperature control system affects, and the like, and there is a problem that it takes several seconds to several tens of seconds to switch the permanent current switch 2. Also, with this structure, in order to raise the temperature of the superconducting wire, there is no choice but to use an adiabatic structure with poor heat treatment.
When the switch is turned off, the superconducting wire for a persistent current switch may suddenly generate local heat, and the superconducting wire for a persistent current switch may be melted. Further, if the heater wire is broken, there is a problem that the superconducting persistent current switch in the on state cannot be turned off.

【0007】そこで注目されているのが、磁界制御方式
の永久電流スイッチである。この磁界制御方式とは、永
久電流スイッチ2を構成する超電導線材が、臨界磁界を
越える磁場中におかれると常伝導状態に転位する現象を
利用し、永久電流スイッチ2を構成する超電導線材に、
別途設けた制御磁界用超電導マグネットにより外部磁場
をかけることができる構成としたものである。そして、
この磁界制御方式によれば、超電導線材に所望の外部磁
場をかけること、および、外部磁場を取り去ることが、
制御磁界用超電導マグネットに対する通電制御により瞬
時に切り替えできるので、この磁界制御方式によれば外
部磁界の高速スイープにより永久電流スイッチ2のオン
・オフ制御の高速応答が可能になる。また、制御用の超
電導マグネットは、永久電流スイッチ用超電導線材の外
部に配置できるので、超電導線材においては熱捌けの良
い構造を採用することができる特徴も有している。
Attention has been paid to magnetic field control type persistent current switches. This magnetic field control system utilizes the phenomenon that the superconducting wire that constitutes the permanent current switch 2 shifts to the normal conduction state when it is placed in a magnetic field exceeding the critical magnetic field.
An external magnetic field can be applied by a separately provided superconducting magnet for control magnetic field. And
According to this magnetic field control method, applying a desired external magnetic field to the superconducting wire and removing the external magnetic field,
Since it is possible to instantaneously switch the current by controlling the energization of the superconducting magnet for the control magnetic field, this magnetic field control method enables high-speed response of the on / off control of the permanent current switch 2 by the high-speed sweep of the external magnetic field. In addition, since the control superconducting magnet can be arranged outside the superconducting wire for a permanent current switch, the superconducting wire has a feature that it can adopt a structure with good heat removal.

【0008】そこで、実際の磁界制御方式の永久電流ス
イッチ2のオン・オフ制御について検討してみると、以
下に説明する問題を有していることが判明した。まず、
通電状態にあるオン状態の永久電流スイッチ2に対し、
臨界磁界より高い外部磁場をかけることにより容易にオ
フ状態にすることは可能であるが、この外部磁場をスイ
ッチ磁界より下げてオフ状態の永久電流スイッチ2をオ
ン状態に戻そうとしても、先のオン状態で永久電流スイ
ッチ2に流れていた電流値に対し、その数%程度しか電
流値が復帰しない問題がある。
Then, when the on / off control of the actual magnetic field control type permanent current switch 2 was examined, it was found that there was a problem described below. First,
For the on-state permanent current switch 2 in the energized state,
Although it is possible to easily turn off the external magnetic field by applying an external magnetic field higher than the critical magnetic field, even if the permanent current switch 2 in the off state is returned to the on state by lowering the external magnetic field below the switch magnetic field, There is a problem that the current value recovers only about a few percent of the current value flowing in the permanent current switch 2 in the ON state.

【0009】この現象について図6と図7を基に詳細に
説明すると、図6に示すようにオン状態において永久電
流スイッチ用超電導線材に300Aの電流を流していた
場合に、永久電流スイッチ用線材に対して超電導マグネ
ットにより外部磁場をかけてゆくと、通電電流により決
定される特定の外部磁場値において常電導転位が起こ
り、通電電流が急激に減少し、オフ状態となる。なお、
この時のスイッチング(オフ)が開始する磁界をスイッ
チ磁界(オフ磁界)と称する。ところがこの場合の電流
値は、瞬時にゼロにはならずに数A程度の値を示し、外
部磁場の増加に従い徐々に減少してほぼゼロになる。ま
た、この後、オフ状態で外部磁場を図7に示すように下
げて永久電流スイッチ用超電導線材のオフ磁場以下に戻
しても電流値が回復せず、最初のオン状態の数%程度、
即ち、数A程度しか電流が復帰しない状態になる問題が
あった。
This phenomenon will be described in detail with reference to FIGS. 6 and 7. When a current of 300 A is passed through the superconducting wire for a persistent current switch in the on state as shown in FIG. 6, the wire for a persistent current switch is shown. On the other hand, when an external magnetic field is applied by a superconducting magnet, a normal conducting dislocation occurs at a specific external magnetic field value determined by the energizing current, the energizing current sharply decreases, and the state is turned off. In addition,
The magnetic field at which switching (off) starts at this time is called a switch magnetic field (off magnetic field). However, the current value in this case does not instantly become zero but shows a value of about several A, and gradually decreases as the external magnetic field increases to almost zero. Further, after that, even when the external magnetic field is lowered in the off state as shown in FIG. 7 to return it to the off magnetic field of the superconducting wire for a persistent current switch or less, the current value is not recovered, and about several% of the initial on state,
That is, there is a problem that the current returns to only a few amps.

【0010】これは、オフ状態において永久電流スイッ
チ用超電導線材が常電導状態になった場合、超電導線材
自体は有限な所定の抵抗値(通常、数分の1Ωから数1
0Ω程度)を有するがために、微小電流によるジュール
発熱が生じており、このジュール発熱が超電導線材の冷
却を妨害し、完全な超電導状態に復帰することを阻害す
るためであると思われる。従ってこの現象が生じる永久
電流スイッチ2を用いるならば、永久電流スイッチ用超
電導線材の臨界電流の数%程度を通電電流としなくては
ならず、実用的ではない問題があった。
This is because when the superconducting wire for a persistent current switch is in the normal conducting state in the off state, the superconducting wire itself has a finite predetermined resistance value (usually a fraction of 1 Ω to a few 1).
It is considered that this is because Joule heat generation due to a minute current occurs because it has a value of about 0Ω), and this Joule heat hinders the cooling of the superconducting wire and prevents the superconducting state from returning to a complete superconducting state. Therefore, if the persistent current switch 2 in which this phenomenon occurs is used, the conducting current must be about several percent of the critical current of the superconducting wire for a persistent current switch, which is not practical.

【0011】本発明は前記事情に鑑みてなされたもので
あり、オン・オフ制御を磁界で行う方式の永久電流スイ
ッチとして、通電電流を十分高くできてオン・オフ制御
後も同じ電流値にできるとともに、温度制御方式よりも
遥かに高速なオン・オフ制御が可能な永久電流スイッチ
装置および永久電流スイッチの運転方法を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and as a permanent current switch of the type in which on / off control is performed by a magnetic field, the energizing current can be made sufficiently high and the same current value can be obtained after the on / off control. At the same time, it is an object of the present invention to provide a permanent current switch device capable of performing on / off control far faster than a temperature control system and a method of operating a permanent current switch.

【0012】[0012]

【課題を解決するための手段】請求項1記載の発明は前
記課題を解決するために、超電導コイルと、この超電導
コイルに並列接続された超電導線からなる永久電流スイ
ッチ用線材と、前記超電導コイルおよび永久電流スイッ
チ用線材に接続されて超電導コイルに通電電流を流す電
源と、前記永久電流スイッチ用線材の近傍に設置されて
永久電流スイッチ用線材に磁場をかけ永久電流スイッチ
用線材を超電導状態から常電導状態に転位させる超電導
マグネットと、前記永久電流スイッチ用線材に接続され
た予備電源とを具備してなるものである。
In order to solve the above-mentioned problems, the present invention provides a superconducting coil, a wire for a permanent current switch comprising a superconducting wire connected in parallel to the superconducting coil, and the superconducting coil. And a power supply connected to the wire for the persistent current switch to supply a current to the superconducting coil, and installed in the vicinity of the wire for the persistent current switch to apply a magnetic field to the wire for the persistent current switch to make the wire for the persistent current switch from the superconducting state. It is provided with a superconducting magnet for shifting to a normal conducting state and a standby power source connected to the wire for permanent current switch.

【0013】請求項2記載の発明は前記課題を解決する
ために、請求項1記載の予備電源を、前記永久電流スイ
ッチ用線材の常電導状態から超電導状態への転位時に永
久電流スイッチ用線材に復流する電流を打ち消す方向に
電流を流すものとしたものである。
In order to solve the above-mentioned problems, the second aspect of the present invention uses the standby power source according to the first aspect as a wire for a persistent current switch when the wire for a persistent current switch is changed from a normal conducting state to a superconducting state. The current is made to flow in the direction to cancel the returning current.

【0014】請求項3記載の発明は前記課題を解決する
ために、超電導コイルに接続し、冷媒で冷却した超電導
永久電流スイッチ用線材に外部磁場を作用させるか否か
により、超電導永久電流スイッチのオン状態とオフ状態
を切り替える超電導永久電流スイッチの運転方法におい
て、超電導コイルに通電状態で超電導永久電流スイッチ
に外部磁場をかけて超電導永久電流スイッチ用線材を常
電導状態に転位させて超電導永久電流スイッチをオフ状
態とするとともに、この後、超電導永久電流スイッチ用
線材に付加した外部磁場をそのスイッチ磁界より少なく
し、この状態で超電導永久電流スイッチに流れる復流電
流と反対方向に所定時間打消電流を流し、その後に打消
電流を止めることにより超電導永久電流スイッチをオン
状態にするものである。
In order to solve the above-mentioned problems, the invention of claim 3 relates to a superconducting persistent current switch according to whether or not an external magnetic field is applied to a superconducting persistent current switch wire which is connected to a superconducting coil and cooled with a refrigerant. In a method for operating a superconducting persistent current switch that switches between an on state and an off state, a superconducting persistent current switch is moved to a normal conducting state by applying an external magnetic field to the superconducting persistent current switch while the superconducting coil is energized. Then, the external magnetic field added to the wire for superconducting persistent current switch is made smaller than the switch magnetic field, and in this state, the canceling current is applied for a predetermined time in the direction opposite to the backward current flowing through the superconducting persistent current switch. The superconducting persistent current switch is turned on by turning off the current and then canceling the canceling current. That.

【0015】請求項4記載の発明は前記課題を解決する
ために、請求項3記載の打消電流を復流電流と同じ電流
値に設定して永久電流スイッチ用線材に流れる電流をゼ
ロとして超電導永久電流スイッチをオン状態としたもの
である。
According to a fourth aspect of the present invention, in order to solve the above-mentioned problems, the canceling current according to the third aspect is set to the same current value as the recurrent current, and the current flowing through the wire for a permanent current switch is set to zero. The current switch is turned on.

【0016】請求項5記載の発明は前記課題を解決する
ために、打消電流により永久電流スイッチ用線材に流れ
る電流をゼロとして超電導永久電流スイッチ用線材のジ
ュール発熱を無くし、超電導永久電流スイッチ用線材の
温度を冷媒で下げてから打消電流を除去し、超電導永久
電流スイッチをオン状態とするものである。
In order to solve the above-mentioned problems, the invention described in claim 5 eliminates Joule heat generation of the wire for superconducting permanent current switch by setting the current flowing in the wire for permanent current switch to zero due to the canceling current, thereby eliminating wire heating for superconducting permanent current switch. After the temperature of is reduced by the refrigerant, the canceling current is removed and the superconducting persistent current switch is turned on.

【0017】[0017]

【作用】超電導マグネットにより永久電流スイッチ用超
電導線材のスイッチ磁界を超える外部磁場を超電導線材
に作用させることで、超電導線材が常電導状態に転位
し、永久電流スイッチを切ってオフ状態とすることがで
きる。このオフ状態からオン状態に切り替えるには、外
部磁場を超電導線材のスイッチ磁界よりも少なくした後
に、オフ状態で常電導状態にある超電導線に流れている
復流電流を打ち消すように予備電源から打消電流を流
す。これにより常電導状態の超電導線材のジュール発熱
が無くなるか極めて少なくなり、超電導線材は冷媒によ
り十分に冷却されて完全な超電導状態に転位できるので
先のオン状態に流していた高い通電電流を流すことがで
きるようになる。前記外部磁場の減少操作と打消電流の
通電と超電導線の完全冷却はいずれも短時間で完了させ
ることができ、合計でも0.1〜1秒程度でオフ状態か
らオン状態に切り替えることができ、温度制御方式に比
べて高速な切り替えができる。
[Operation] By applying an external magnetic field to the superconducting wire that exceeds the switch magnetic field of the superconducting wire for a permanent current switch by the superconducting magnet, the superconducting wire is transformed into the normal conducting state and the permanent current switch is turned off. it can. To switch from this OFF state to the ON state, the external magnetic field is made smaller than the switching magnetic field of the superconducting wire, and then the reverse current flowing in the superconducting wire in the normally conducting state in the OFF state is canceled by the standby power supply. Apply current. As a result, the Joule heat generation of the superconducting wire in the normal conducting state disappears or becomes extremely small, and the superconducting wire can be sufficiently cooled by the refrigerant to be transformed into the complete superconducting state. Will be able to. The reduction operation of the external magnetic field, the application of the canceling current and the complete cooling of the superconducting wire can be completed in a short time, and the total state can be switched from the off state to the on state in about 0.1 to 1 second. High-speed switching is possible compared to the temperature control method.

【0018】[0018]

【実施例】以下、図面を参照して本発明の実施例につい
て説明する。図1は永久電流スイッチが設けられる超電
導エネルギー貯蔵装置の一例を示すものであり、この例
の装置において、21は超電導コイル、22は超電導コ
イル21に並列接続された永久電流スイッチ、23は超
電導コイル21と永久電流スイッチ22に接続されたパ
ワーリード、24はパワーリード23に組み込まれた開
閉スイッチ、25はパワーリード23に接続された交直
変換器をそれぞれ示している。更にこの例の永久電流ス
イッチ22は、超電導線材19を無誘導巻コイル状に加
工して形成され、超電導線材19には予備電源20が接
続されている。また、図1において26は制御磁界用超
電導マグネット、27はこの制御磁界用超電導マグネッ
ト26に接続された定電流源である。更に、図1におい
て28は冷却容器による極低温領域を示し、この領域を
液体ヘリウムにより極低温に冷却することで超電導コイ
ル21と永久電流スイッチ22と制御磁界用超電導マグ
ネット26をそれぞれ超電導状態にすることができるよ
うになっている。なお、前記制御磁界用超電導マグネッ
ト26は1テスラ(T)程度の磁場を発生させることが
できるものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of a superconducting energy storage device provided with a persistent current switch. In the device of this example, 21 is a superconducting coil, 22 is a persistent current switch connected in parallel to the superconducting coil 21, and 23 is a superconducting coil. 21 is a power lead connected to the permanent current switch 22, 24 is an open / close switch incorporated in the power lead 23, and 25 is an AC / DC converter connected to the power lead 23. Further, the permanent current switch 22 of this example is formed by processing the superconducting wire 19 into a non-inductive winding coil shape, and the superconducting wire 19 is connected to a standby power source 20. Further, in FIG. 1, reference numeral 26 is a control magnetic field superconducting magnet, and 27 is a constant current source connected to the control magnetic field superconducting magnet 26. Further, in FIG. 1, reference numeral 28 denotes an extremely low temperature region by a cooling container. By cooling this region to an extremely low temperature with liquid helium, the superconducting coil 21, the permanent current switch 22 and the control magnetic field superconducting magnet 26 are brought into a superconducting state. Is able to. The superconducting magnet 26 for control magnetic field is capable of generating a magnetic field of about 1 Tesla (T).

【0019】前記構成の装置にあっては、図3〜図5を
基に説明した従来の超電導エネルギー貯蔵装置と同様
に、電力の充電と貯蔵と放出ができるものである。まず
充電を行なうには、開閉スイッチ24を閉じて回路を接
続するとともに、定電流源27を作動させて制御磁界用
超電導マグネット26に通電し、制御磁界用超電導マグ
ネット26により永久電流スイッチ22の超電導線材1
9に外部磁場をかける。この場合、超電導線材19の臨
界磁界よりも高い外部磁場をかける。これにより、超電
導線材19は極低温においても常電導状態になるので永
久電流スイッチ22は切られた状態になり、超電導コイ
ル21に直流電流が流れ、磁気エネルギーとして電力を
貯蔵することができるようになる。
The device having the above-mentioned structure is capable of charging, storing and discharging electric power, like the conventional superconducting energy storage device described with reference to FIGS. First, in order to perform charging, the open / close switch 24 is closed to connect the circuit, the constant current source 27 is operated to energize the control magnetic field superconducting magnet 26, and the control magnetic field superconducting magnet 26 superconducts the permanent current switch 22. Wire 1
Apply an external magnetic field to 9. In this case, an external magnetic field higher than the critical magnetic field of the superconducting wire 19 is applied. As a result, the superconducting wire 19 is in the normal conducting state even at an extremely low temperature, so that the permanent current switch 22 is turned off and a direct current flows through the superconducting coil 21 so that electric power can be stored as magnetic energy. Become.

【0020】次に永久電流スイッチ22に対する外部磁
場を解除すると、永久電流スイッチ22の超電導線材1
9は超電導状態になるので、超電導コイル21の両端を
短絡することになる。これにより、超電導コイル21は
極低温状態に冷却されていて電気抵抗がゼロであるがた
めに、電流は減衰することなく超電導コイル21を流れ
続け、そのときの超電導コイル21に蓄えられたエネル
ギーが無損失で保存されることになる。更に、開閉スイ
ッチ24を開いて、制御磁界用超電導マグネット26に
対する通電を停止する。
Next, when the external magnetic field to the permanent current switch 22 is released, the superconducting wire 1 of the permanent current switch 22 is released.
Since 9 is in a superconducting state, both ends of the superconducting coil 21 are short-circuited. As a result, since the superconducting coil 21 is cooled to a cryogenic temperature and its electric resistance is zero, the current continues to flow through the superconducting coil 21 without being attenuated, and the energy stored in the superconducting coil 21 at that time is It will be saved without loss. Further, the open / close switch 24 is opened to stop energization of the control magnetic field superconducting magnet 26.

【0021】次にこの貯蔵された電力を取り出すには、
開閉スイッチ24を閉じて回路を接続するとともに、制
御磁界用超電導マグネット26に通電して永久電流スイ
ッチ22の超電導線材19を常電導状態に転位させる。
これにより、超電導コイル21に蓄えられていた磁気エ
ネルギーを交流電力として取り出すことができる。この
ようにして永久電流スイッチ22のオン・オフ制御を行
うことができる。なお、このような外部磁場の負荷と解
除により永久電流スイッチ22のオン・オフ制御を行な
うならば、応答が速いので、高速応答に容易に対応する
ことができる。
Next, in order to take out this stored electric power,
The open / close switch 24 is closed to connect the circuit, and the superconducting magnet 26 for control magnetic field is energized to shift the superconducting wire 19 of the permanent current switch 22 to the normal conducting state.
Thereby, the magnetic energy stored in the superconducting coil 21 can be taken out as AC power. In this way, the on / off control of the permanent current switch 22 can be performed. If the on / off control of the permanent current switch 22 is performed by applying and releasing such an external magnetic field, the response is fast, so that a high-speed response can be easily accommodated.

【0022】ところで、前記永久電流スイッチ22のオ
ン・オフ制御を行う場合、単に超電導マグネット26で
臨界磁場以上の外部磁場を作用させるか否かの操作を行
ったのでは、図6と図7を基に先に説明したように、オ
フ状態からオン状態に切り替える祭に超電導線材19に
流し得る通電電流値が低下してしまう。そこでこの例に
おいては、以下に説明する特別の方法を実施することに
より超電導スイッチ22を運転してオン・オフ制御を行
う。
By the way, when the ON / OFF control of the permanent current switch 22 is performed, it is simply performed by operating the superconducting magnet 26 with an external magnetic field higher than the critical magnetic field. As described above, the value of the energizing current that can flow through the superconducting wire 19 decreases during the period when the off state is switched to the on state. Therefore, in this example, the on / off control is performed by operating the superconducting switch 22 by implementing a special method described below.

【0023】超電導スイッチ22をオフ状態からオン状
態に切り替える場合、まず、超電導線材19に作用させ
る外部磁場を前述のオフ磁場より小さくする。この状態
では図7に示すように超電導線材19には臨界電流の数
%の復流電流が流れる。この状態で超電導線材19に予
備電源20から所定時間、例えば、数分の一秒程度復流
電流と逆向きの電流を流し、超電導線材19の両端電圧
をゼロまたはほぼゼロとし、所定時間の経過後にこの逆
向きの電流を停止する。以上の操作により超電導線材1
9のジュール発熱が無くなるか、極めて少なくなるの
で、冷媒の冷却により超電導線材19の温度が十分に下
がり、これにより超電導線材19の切り替えがなされて
オフ状態とする前のオン状態において流れていた通電電
流値と同等の電流値まで短時間で通電電流が回復する。
これにより超電導スイッチ22を十分な通電電流を有す
るように高速で切り替えることができるようになる。
When switching the superconducting switch 22 from the off state to the on state, first, the external magnetic field applied to the superconducting wire 19 is made smaller than the above-mentioned off magnetic field. In this state, as shown in FIG. 7, a backward current of several% of the critical current flows through the superconducting wire 19. In this state, the superconducting wire 19 is supplied with a current in a direction opposite to the return current for a predetermined time, for example, about a few seconds for a few seconds, so that the voltage across the superconducting wire 19 becomes zero or almost zero, and the predetermined time elapses. Later, this reverse current is stopped. By the above operation, the superconducting wire 1
Since the Joule heat of 9 disappears or becomes extremely small, the temperature of the superconducting wire 19 is sufficiently lowered by cooling the refrigerant, whereby the superconducting wire 19 is switched and the current flowing in the on state before the off state is applied. The energizing current is restored in a short time to a current value equivalent to the current value.
As a result, the superconducting switch 22 can be switched at high speed so as to have a sufficient energizing current.

【0024】なお、前記のように打消電流を流して超電
導線材19の復流電流を無くするか少なくする場合、復
流電流を完全に無くして超電導線材19の冷却が速やか
になされるようにすることが最も好ましいが、液体ヘリ
ウムなどの冷媒の冷却能力に十分な余裕があり、ジュー
ル発熱がそれに比べて十分に低ければ、復流電流を完全
にゼロにしなくとも良い。即ち、超電導線材19が十分
に高い通電電流に耐えるような超電導状態に復帰できる
程度に短時間で冷却されれば良いので、この復帰に影響
の出ない程度に復流電流を少なくすることでも目的を達
成することができる。従って超電導線材19に予備電源
20から付加する打消電流を復流電流よりも少なくして
も良い。
When the countercurrent of the superconducting wire 19 is eliminated or reduced by passing the canceling current as described above, the return current is completely eliminated so that the superconducting wire 19 is cooled quickly. However, if the cooling capacity of the refrigerant such as liquid helium is sufficiently large and the Joule heat generation is sufficiently lower than that, it is not necessary to completely set the return current to zero. That is, since it is sufficient that the superconducting wire 19 is cooled in a short time so that it can return to a superconducting state that can withstand a sufficiently high energizing current, it is also possible to reduce the return current to such an extent that the return is not affected. Can be achieved. Therefore, the canceling current applied to the superconducting wire 19 from the standby power source 20 may be smaller than the return current.

【0025】(製造例1)Cu-50wt%Nbの組成
を有し、Cu基地の内部にNbのフィラメントが分散配
列された構造のインサイチュ合金ロッドを用い、このイ
ンサイチュ合金ロッドにCu-30wt%Niの組成を
有するキュプロニッケル管体を被せ、線引き加工を施
し、この線引き加工線を55本集合してCu-30wt
%Niのキュプロニッケル管体内に挿入し、線引き加工
を施してCu-Ni合金マトリックス中にCu-Nbのコ
アが55本存在する直径0.3mmの超電導素線材を得
た。この超電導素線材を6本用意し、1本のCu-Ni
合金線の外周に配置して撚線化することで永久電流スイ
ッチ用の超電導線材を得た。
(Production Example 1) An in-situ alloy rod having a composition of Cu-50 wt% Nb and Nb filaments dispersedly arranged inside a Cu base was used, and Cu-30 wt% Ni was used for the in-situ alloy rod. The cupronickel tube having the composition of is covered and subjected to wire drawing, and 55 wires are drawn to form Cu-30wt.
% Ni was inserted into a cupronickel tube body and subjected to wire drawing to obtain a superconducting element wire rod having a diameter of 0.3 mm in which 55 Cu-Nb cores exist in a Cu-Ni alloy matrix. Prepare six superconducting wire rods and use one Cu-Ni
A superconducting wire for a permanent current switch was obtained by arranging the wire around the outer circumference of the alloy wire and forming a stranded wire.

【0026】この超電導線材を20m用意し、無誘導巻
きして制御磁界用超電導マグネット内に装着し、永久電
流スイッチを構成し、図1に示す装置に組み込み、通電
電流を300Aとした。次いで液体ヘリウム温度におい
て制御磁界用超電導マグネットを励磁したところ、0.
3Tでオフ状態となり、超電導線材に流れていた300
Aの電流が遮断された。この後、超電導永久電流スイッ
チをオン状態にするために、外部磁場を0.2Tまで下
げたところ、この状態で超電導線材には10Aの電流が
復流した。この状態で、永久電流スイッチ用超電導線材
の両端部に、予備電源から電圧を加え、復流した電流と
逆方向の電流を0.27秒間流して超電導線材に流れる
電流を完全にゼロとした。前記0.27秒の通電後に予
備電源からの電圧印可を停止し、先のオン状態の際と同
じ状態としたところ、その後0.2秒で超電導線材に流
れる電流が300Aまで復帰し、オン状態とすることが
できた。以上の経過状態を図2に示す。以上のことか
ら、超電導永久電流スイッチを十分に高い通電電流にお
いてオフ状態からオン状態に数分の1秒〜1秒程度でス
イッチングできることが明らかになった。
20 m of this superconducting wire was prepared, and it was non-inductively wound and mounted in a control field superconducting magnet to form a permanent current switch, which was incorporated into the apparatus shown in FIG. 1 and the energizing current was 300 A. Then, when the superconducting magnet for control magnetic field was excited at the liquid helium temperature,
It turned off at 3T and was flowing into the superconducting wire 300
The current of A was cut off. After that, when the external magnetic field was lowered to 0.2 T in order to turn on the superconducting persistent current switch, a current of 10 A returned to the superconducting wire in this state. In this state, a voltage was applied to both ends of the superconducting wire for a permanent current switch from a standby power source, and a current in the reverse direction of the recurrent current was flowed for 0.27 seconds to completely eliminate the current flowing through the superconducting wire. After applying the voltage for 0.27 seconds, the voltage application from the standby power supply was stopped and the same state as in the previous ON state was set. Then, in 0.2 seconds, the current flowing through the superconducting wire returned to 300A and the ON state was reached. I was able to The above-mentioned progress state is shown in FIG. From the above, it has been clarified that the superconducting persistent current switch can be switched from the OFF state to the ON state in a fraction of 1 second to 1 second at a sufficiently high applied current.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、超
電導線材の永久電流スイッチを用いたスイッチ装置にお
いて、超電導マグネットにより永久電流スイッチ用超電
導線材の臨界磁界を超える外部磁場を超電導線材に作用
させることで、超電導線材が常電導状態に転位し、永久
電流スイッチを切ってオフ状態とすることができる。な
お、このオフ状態への切り替えは瞬時に行うことができ
るので、温度制御方式に比べて高速切り替えができる。
As described above, according to the present invention, in a switch device using a persistent current switch for a superconducting wire, an external magnetic field exceeding the critical magnetic field of the superconducting wire for a persistent current switch is applied to the superconducting wire by a superconducting magnet. By doing so, the superconducting wire is transformed into the normal conducting state, and the persistent current switch can be turned off to bring it into the off state. Since the switching to the off state can be performed instantly, the switching can be performed at a high speed as compared with the temperature control method.

【0028】次に、前記のオフ状態からオン状態に切り
替えるには、外部磁場を超電導線材のスイッチ磁界より
も少なくした後に、オフ状態で常電導状態にある超電導
線に流れている復流電流を打ち消すように予備電源から
打消電流を流す。これにより常電導状態の超電導線材の
ジュール発熱が無くなるか極めて少なくなり、超電導線
材は冷媒により十分に冷却されて完全な超電導状態に容
易に転位できるので先のオン状態に流していた高い通電
電流を流すことができるようになる。よって、これによ
り、従来は、一部しか回復しなかったオフ状態からオン
状態への電流値を十分に実用的なレベルまで高くするこ
とができる。前記外部磁場の減少操作と打消電流の通電
と超電導線の完全冷却はいずれも短時間で完了させるこ
とができ、合計でも0.1〜1秒程度でオフ状態からオ
ン状態に切り替えることができ、温度制御方式に比べて
極めて高速な切り替えができる。
Next, in order to switch from the OFF state to the ON state, the external magnetic field is made smaller than the switching magnetic field of the superconducting wire, and then the backward current flowing in the superconducting wire in the normal state in the OFF state is applied. Apply a canceling current from the standby power supply to cancel it. As a result, the Joule heat generation of the superconducting wire in the normal conducting state is eliminated or extremely reduced, and the superconducting wire is sufficiently cooled by the refrigerant and can easily be transformed into the complete superconducting state. You will be able to flush. Therefore, as a result, the current value from the off state to the on state, which has been partially recovered in the past, can be increased to a sufficiently practical level. The reduction operation of the external magnetic field, the application of the canceling current and the complete cooling of the superconducting wire can be completed in a short time, and the total state can be switched from the off state to the on state in about 0.1 to 1 second. Compared to the temperature control method, switching can be performed at extremely high speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る永久電流スイッチを備えた超電導
エネルギー貯蔵装置の一例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of a superconducting energy storage device including a persistent current switch according to the present invention.

【図2】実施例の装置でオフ状態からオン状態とした場
合の電流値の変化を示す図である。
FIG. 2 is a diagram showing a change in current value when the apparatus of the embodiment changes from an off state to an on state.

【図3】従来の永久電流スイッチを備えた超電導エネル
ギー貯蔵装置の一例に充電している状態を示す構成図で
ある。
FIG. 3 is a configuration diagram showing a state in which an example of a superconducting energy storage device including a conventional persistent current switch is being charged.

【図4】従来の永久電流スイッチを備えた超電導エネル
ギー貯蔵装置の一例に電力を保存している状態を示す構
成図である。
FIG. 4 is a configuration diagram showing a state in which electric power is stored in an example of a superconducting energy storage device including a conventional persistent current switch.

【図5】従来の永久電流スイッチを備えた超電導エネル
ギー貯蔵装置の一例から電力を取り出している状態を示
す構成図である。
FIG. 5 is a configuration diagram showing a state in which electric power is taken out from an example of a superconducting energy storage device including a conventional persistent current switch.

【図6】永久電流スイッチ用超電導線材に臨界磁場を超
える磁場を作用させてオフ状態とした場合に超電導線材
に流れた電流値の磁場に対する変化を示す図である。
FIG. 6 is a diagram showing a change of a current value flowing in the superconducting wire with respect to the magnetic field when a magnetic field exceeding a critical magnetic field is applied to the superconducting wire for a persistent current switch to turn it off.

【図7】図6に示すオフ状態から外部磁場を減少させた
場合に永久電流スイッチ用超電導線材に流れた電流値の
磁場に対する変化を示す図である。
7 is a diagram showing a change in a magnetic field of a current value flowing in a superconducting wire for a persistent current switch when an external magnetic field is reduced from the off state shown in FIG.

【符号の説明】[Explanation of symbols]

19・・・永久電流スイッチ用線材、 20・・・予備電
源、21・・・超電導コイル、 22・・・永久
電流スイッチ、23・・・パワーリード、
24・・・開閉スイッチ、25・・・交直変換器、
26・・・制御磁界用超電導マグネット、28・・・極
低温領域、 27・・・定電流源、
19 ... Permanent current switch wire, 20 ... Standby power supply, 21 ... Superconducting coil, 22 ... Permanent current switch, 23 ... Power lead,
24 ... open / close switch, 25 ... AC / DC converter,
26 ... Superconducting magnet for control magnetic field, 28 ... Cryogenic region, 27 ... Constant current source,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 隆 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 河野 宰 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 本間 仁 宮城県仙台市青葉区中山七丁目2番1号 東北電力株式会社電力技術研究所内 (72)発明者 田附 ▲匡▼ 宮城県仙台市青葉区中山七丁目2番1号 東北電力株式会社電力技術研究所内 (72)発明者 能登 宏七 岩手県盛岡市月ヶ丘二丁目8番11号 (72)発明者 松川 倫明 岩手県盛岡市上田一丁目20番31号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Saito 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Ltd. (72) Inventor Satoru Kono 1-1-5 Kiba, Koto-ku, Tokyo Stockholders Company Fujikura (72) Inventor Hitoshi Honma 7-2-1 Nakayama, Aoba-ku, Sendai-shi, Miyagi Tohoku Electric Power Co., Inc. Electric Power Research Laboratory (72) Inventor Tatsuki ▲ 匡 ▼ 7-chome, Nakayama, Aoba-ku, Sendai-shi, Miyagi No. 1 Power Engineering Laboratory, Tohoku Electric Power Co., Inc. (72) Inventor, Kochichi, No. 8-12 Tsukigaoka, Morioka, Iwate Prefecture (72) Noriaki Matsukawa, No. 1, 31 Ueda, Morioka, Iwate Prefecture

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 超電導コイルと、この超電導コイルに並
列接続された超電導線からなる永久電流スイッチ用線材
と、前記超電導コイルおよび永久電流スイッチ用線材に
接続されて超電導コイルに通電電流を流す電源と、前記
永久電流スイッチ用線材の近傍に設置されて永久電流ス
イッチ用線材に磁場をかけるか磁場を減じて永久電流ス
イッチ用線材を超電導状態から常電導状態にあるいは常
電導状態から超電導状態に転位させる超電導マグネット
と、前記永久電流スイッチ用線材に接続された予備電源
とを具備してなることを特徴とする超電導永久電流スイ
ッチ装置。
1. A superconducting coil, a wire for a permanent current switch comprising a superconducting wire connected in parallel to the superconducting coil, and a power supply connected to the superconducting coil and the wire for a persistent current switch to supply an energizing current to the superconducting coil. Installed in the vicinity of the wire for permanent current switch and applying a magnetic field to the wire for permanent current switch or reducing the magnetic field to shift the wire for permanent current switch from the superconducting state to the normal conducting state or from the normal conducting state to the superconducting state. A superconducting permanent current switch device comprising a superconducting magnet and a standby power source connected to the permanent current switch wire.
【請求項2】 請求項1記載の予備電源が、前記永久電
流スイッチ用線材の常電導状態から超電導状態への転位
時に永久電流スイッチ用線材に復流する電流を打ち消す
方向に電流を流すものであることを特徴とする超電導永
久電流スイッチ装置。
2. The standby power supply according to claim 1, wherein a current flows in a direction to cancel a current returning to the wire for a persistent current switch when the wire for a persistent current switch is changed from a normal conducting state to a superconducting state. A superconducting persistent current switch device characterized by being present.
【請求項3】 超電導コイルに接続し冷媒で冷却した超
電導永久電流スイッチ用線材に臨界磁界を超える外部磁
場を作用させるか否かにより、超電導永久電流スイッチ
のオン状態とオフ状態を切り替える超電導永久電流スイ
ッチの運転方法において、 超電導コイルに通電状態で超電導永久電流スイッチに外
部磁場をかけて超電導永久電流スイッチ用線材を常電導
状態に転位させて超電導永久電流スイッチをオフ状態と
するとともに、この後、超電導永久電流スイッチ用線材
に付加した外部磁場をそのスイッチ磁界より少なくし、
この状態で超電導永久電流スイッチに流れる復流電流と
反対方向に所定時間打消電流を流し、その後に打消電流
を止めることにより超電導永久電流スイッチをオン状態
にすることを特徴とする超電導永久電流スイッチの運転
方法。
3. A superconducting persistent current for switching a superconducting persistent current switch between an on state and an off state depending on whether or not an external magnetic field exceeding a critical magnetic field is applied to a superconducting permanent current switch wire connected to a superconducting coil and cooled with a refrigerant. In the operating method of the switch, the superconducting permanent current switch wire is transferred to the normal conducting state by applying an external magnetic field to the superconducting permanent current switch while the superconducting coil is energized, and the superconducting persistent current switch is turned off. The external magnetic field added to the wire for superconducting persistent current switch is made less than the switch magnetic field,
In this state, a canceling current is passed for a predetermined time in the opposite direction to the return current flowing through the superconducting persistent current switch, and then the canceling current is stopped to turn on the superconducting persistent current switch. how to drive.
【請求項4】 打消電流を復流電流と同じ電流値に設定
して永久電流スイッチ用線材に流れる電流をゼロとして
超電導永久電流スイッチをオン状態とすることを特徴と
する請求項3に記載の超電導永久電流スイッチの運転方
法。
4. The superconducting permanent current switch is turned on by setting the canceling current to the same current value as the return current and setting the current flowing through the wire for permanent current switch to zero. How to operate a superconducting persistent current switch.
【請求項5】 打消電流により永久電流スイッチ用線材
に流れる電流をゼロとして超電導永久電流スイッチ用線
材のジュール発熱を無くし、超電導永久電流スイッチ用
線材の温度を冷媒で下げてから打消電流を除去し、超電
導永久電流スイッチをオン状態とすることを特徴とする
永久電流スイッチの運転方法。
5. The cancellation current is removed by eliminating the Joule heat generation of the wire for superconducting permanent current switch by making the current flowing through the wire for permanent current switch to zero by the canceling current, and lowering the temperature of the wire for superconducting persistent current switch with a refrigerant. , A method of operating a persistent current switch, characterized in that the superconducting persistent current switch is turned on.
JP6050902A 1994-03-22 1994-03-22 Superconductor permanent current switch and method of operating superconductor persistent current switch Pending JPH07263760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6050902A JPH07263760A (en) 1994-03-22 1994-03-22 Superconductor permanent current switch and method of operating superconductor persistent current switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6050902A JPH07263760A (en) 1994-03-22 1994-03-22 Superconductor permanent current switch and method of operating superconductor persistent current switch

Publications (1)

Publication Number Publication Date
JPH07263760A true JPH07263760A (en) 1995-10-13

Family

ID=12871690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6050902A Pending JPH07263760A (en) 1994-03-22 1994-03-22 Superconductor permanent current switch and method of operating superconductor persistent current switch

Country Status (1)

Country Link
JP (1) JPH07263760A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047186A1 (en) * 1997-04-11 1998-10-22 Houston Advanced Research Center High-speed superconducting persistent switch
CN102136789A (en) * 2011-04-11 2011-07-27 西南交通大学 High-temperature superconductive rotor for synchronous linear motor
DE102015216882A1 (en) * 2015-09-03 2017-03-09 Siemens Aktiengesellschaft Coil device with continuous current switch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047186A1 (en) * 1997-04-11 1998-10-22 Houston Advanced Research Center High-speed superconducting persistent switch
CN102136789A (en) * 2011-04-11 2011-07-27 西南交通大学 High-temperature superconductive rotor for synchronous linear motor
DE102015216882A1 (en) * 2015-09-03 2017-03-09 Siemens Aktiengesellschaft Coil device with continuous current switch

Similar Documents

Publication Publication Date Title
CN100413110C (en) Superconducting magnet
WO2007081914A2 (en) Superconducting quick switch
JPH0673334B2 (en) Superconducting switch for conduction cooled superconducting magnets
JP2659363B2 (en) Superconducting magnet device with emergency demagnetization device
Tosaka et al. Persistent current HTS magnet cooled by cryocooler (4)-persistent current switch characteristics
JPH07263760A (en) Superconductor permanent current switch and method of operating superconductor persistent current switch
US4906861A (en) Superconducting current reversing switch
JP2004179413A (en) Cooling type superconducting magnet device
JP2010147370A (en) Electromagnet device
JP4383762B2 (en) Permanent current switch
JP2983323B2 (en) Superconducting magnet device and operating method thereof
JPH10144545A (en) Current limiting device
JP3020140B2 (en) Permanent current switch device for refrigerator cooled superconducting magnet
JPH06350148A (en) Perpetual current superconducting device
JP6877165B2 (en) Permanent current switch, magnetic field generator and control method of magnetic field generator
JP2016119431A (en) Superconducting magnet device
WO2022168483A1 (en) Superconducting magnet apparatus, magnetic resonance imaging apparatus, and method for demagnetizing superconducting magnet
US20240155951A1 (en) Superconducting magnet device, nmr device, and mri device
JPH10107331A (en) Persistent-current switching device and its operating method
JP4081911B2 (en) Current limiter
Sadakata et al. Fast switching characteristics of magnetic persistent current switch for SMES
JPS62244110A (en) Superconducting coil device
JP3512841B2 (en) Current lead and current limiting device using the same
JP2724321B2 (en) Superconducting coil system and operating method thereof
JPH0864412A (en) Magnetization/demagnetization method of superconductive coil which rapidly attain specified magnetic field attenuation degree