JPH033362B2 - - Google Patents

Info

Publication number
JPH033362B2
JPH033362B2 JP59217057A JP21705784A JPH033362B2 JP H033362 B2 JPH033362 B2 JP H033362B2 JP 59217057 A JP59217057 A JP 59217057A JP 21705784 A JP21705784 A JP 21705784A JP H033362 B2 JPH033362 B2 JP H033362B2
Authority
JP
Japan
Prior art keywords
coil
superconducting
resistor
superconducting magnet
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59217057A
Other languages
Japanese (ja)
Other versions
JPS6195502A (en
Inventor
Yasuomi Yagi
Shohei Suzuki
Takao Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59217057A priority Critical patent/JPS6195502A/en
Publication of JPS6195502A publication Critical patent/JPS6195502A/en
Publication of JPH033362B2 publication Critical patent/JPH033362B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/001Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for superconducting apparatus, e.g. coils, lines, machines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/02Quenching; Protection arrangements during quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は磁場発生に用いられる超電導磁石に係
り、特に密巻のソレノイド磁石の焼損を防止する
構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a superconducting magnet used for generating a magnetic field, and particularly to a structure for preventing burnout of a tightly wound solenoid magnet.

〔発明の背景〕[Background of the invention]

ニオブーチタン合金やニオブー錫化合物等の超
電導物質は、常温においては銅やアルミニウム等
の電気の良導体に比べて電気抵抗がかなり高い
が、絶対零度(−273℃)に近い極低温にすると
電気抵抗のない、いわゆる超電導現象を示すこと
が知られている。これ等の超電導物質が超電動状
態になるための条件としては、温度の他に磁場お
よび通電電流(密度)があり、それぞれその上限
を臨界温度、臨界磁場、臨界電流(密度)と呼ん
でいる。超電導物質をコイル状に巻回して超電導
状態で電流を流すと損失のない電磁石が得られ
る。このような超電導磁石が何らかの原因で超電
導状態から常電導状態に移行(転移)すると、発
生した抵抗と電流によりジユール損失を生じ発熱
する。密巻コイルのように電流密度の高いコイル
では、ジユール損失による発熱が大きく、コイル
を焼損してしまう恐れもあるため、通常これに何
らかの保護手段を付加してある。
Superconducting materials such as niobium-titanium alloys and niobium-tin compounds have considerably higher electrical resistance at room temperature than good electrical conductors such as copper and aluminum, but at extremely low temperatures close to absolute zero (-273°C), they have no electrical resistance. , is known to exhibit a so-called superconducting phenomenon. In addition to temperature, the conditions for these superconducting materials to become superelectric are a magnetic field and a current (density), and their upper limits are called the critical temperature, critical magnetic field, and critical current (density), respectively. . A lossless electromagnet can be obtained by winding a superconducting material into a coil and passing a current through it in a superconducting state. When such a superconducting magnet shifts (transitions) from a superconducting state to a normal conducting state for some reason, the generated resistance and current cause Joule loss and heat generation. A coil with a high current density, such as a closely wound coil, generates a large amount of heat due to joule loss, and there is a risk that the coil may burn out, so some kind of protection means is usually added to the coil.

第7図に従来行われている超電導磁石の保護の
一例を示す。金属製あるいはFRP製のボビン3
に超電導線を用いたコイル1が巻回されている。
コイルの端子J、Kには励磁電源4が接続され
る。この例ではコイルと電源との間に保護抵抗R
とスイツチSWを設けてある。
FIG. 7 shows an example of conventional protection of superconducting magnets. Metal or FRP bobbin 3
A coil 1 using superconducting wire is wound around the coil.
An excitation power source 4 is connected to terminals J and K of the coil. In this example, there is a protective resistor R between the coil and the power supply.
A switch SW is provided.

回路の動作を第8図により説明する。通常は励
磁電源はコイルに接続され、電流を供給してい
る。電源に対しコイルと抵抗Rとは並列に接続さ
れているが、コイルが超電導状態にあるとコイル
抵抗は零であるため、抵抗Rにはほとんど電流が
流れない。この例ではJ―K端子間電圧の変化に
より常電導転移を検出すると、スイツチSWを開
いて励磁電源とコイルを切り離す。これによりそ
れまでほとんど電流の流れていなかった抵抗Rに
電流が流れ、コイルと抵抗Rの作る閉回路の時定
数でコイル電流が減衰する。コイルに蓄わえられ
ていたイダクタンスのエネルギー(≡1/2LI2
L:コイルの自己インダクタンス)は、保護抵抗
Rとコイルの常電導抵抗rとに分担して消費され
ジユール熱になる。しかしこの方式では、コイル
の常電導転移が局所的であつた場合、特定部分の
み発熱密度が大きくなり、焼損に至る危険があ
る。
The operation of the circuit will be explained with reference to FIG. Usually, an excitation power source is connected to the coil and supplies current. The coil and resistor R are connected in parallel to the power supply, but when the coil is in a superconducting state, the coil resistance is zero, so almost no current flows through the resistor R. In this example, when a normal conduction transition is detected by a change in the voltage between the J and K terminals, the switch SW is opened to disconnect the excitation power source and the coil. As a result, current flows through the resistor R, through which almost no current was flowing, and the coil current attenuates due to the time constant of the closed circuit formed by the coil and the resistor R. The inductance energy stored in the coil (≡1/2LI 2 ,
L: Self-inductance of the coil) is consumed by the protective resistance R and the normal conduction resistance r of the coil and becomes Joule heat. However, in this method, if the normal conduction transition of the coil is localized, the heat generation density will increase only in a specific portion, and there is a risk of burnout.

これに対して、各超電導線の接続部にその接続
部の加熱手段を設け、超電導磁石の一部が超電導
転移した際に、外部の制御回路で上記加熱手段を
動作させ、超電導磁石中の常電導部分をできるだ
け全体に拡げ、温度上昇が均一となるようにする
工夫が考えられている(例えば特開昭58−110014
号公報参照)。
On the other hand, a heating means for the connecting part of each superconducting wire is provided, and when a part of the superconducting magnet undergoes superconducting transition, the heating means is operated by an external control circuit, and the heating means is operated by an external control circuit. Efforts have been made to spread the conductive part over the entire area as much as possible so that the temperature rise is even
(see publication).

しかし、この方法では、加熱用ヒータと、それ
を動作させる制御回路を新たに設置せねばなら
ず、構造が複雑となり、かつ、超電導磁石への熱
侵入量が増大する等の欠点がある。
However, this method requires the installation of a new heater and a control circuit for operating it, resulting in a complicated structure and disadvantages such as an increase in the amount of heat entering the superconducting magnet.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、超電導磁石の加熱装置および
その制御回路を設けることなく、局所的な常電導
転移を速やかにコイル全体に拡げ、発熱密度を平
均化し、焼損の恐れのない安全な超電導磁石を提
供することである。
The purpose of the present invention is to quickly spread the local normal conductivity transition to the entire coil without providing a superconducting magnet heating device and its control circuit, to average the heat generation density, and to create a safe superconducting magnet without the risk of burnout. It is to provide.

〔発明の概要〕[Summary of the invention]

本発明は、コイルに並列に接続した抵抗をコイ
ル巻線と熱結合させ、コイルの常電導転移を速や
かに全体に伝播させることを特徴とする。
The present invention is characterized in that a resistor connected in parallel to the coil is thermally coupled to the coil winding, so that the normal conduction transition of the coil is rapidly propagated throughout the coil.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図により詳細に説明す
る。金属製あるいはFRP製のボビン3にはマン
ガニンあるいはニクロム等の抵抗性金属を用いた
抵抗2が巻回され、さらにその外側に超電導線を
用いたコイル1が巻回されている。抵抗2とコイ
ル1とは直に接触しているために、これ等は熱的
に密に結合している。コイル1と抵抗2とは励磁
電源4に並列に接続され、間にスイツチSWが設
けられている。
An embodiment of the present invention will be explained in detail with reference to FIG. A resistor 2 made of a resistive metal such as manganin or nichrome is wound around a bobbin 3 made of metal or FRP, and a coil 1 made of superconducting wire is further wound around the outside of the resistor 2. Since the resistor 2 and the coil 1 are in direct contact with each other, they are thermally closely coupled. The coil 1 and the resistor 2 are connected in parallel to an excitation power source 4, and a switch SW is provided between them.

第1図の回路を第2図に示す。常電導転移を検
出してスイツチSWを開くと、抵抗Rにコイル電
流iが流れる。抵抗2Rは第1図のコイル1の軸
方向に一様に発熱するから、コイル1は軸方向に
ほぼ一様に温度上昇し常電導転移する。従つて、
局所的な発熱は起らず、コイル焼損を防止でき
る。
The circuit of FIG. 1 is shown in FIG. When the normal conduction transition is detected and the switch SW is opened, a coil current i flows through the resistor R. Since the resistor 2R generates heat uniformly in the axial direction of the coil 1 in FIG. 1, the temperature of the coil 1 rises almost uniformly in the axial direction and undergoes a normal conduction transition. Therefore,
Local heat generation does not occur, and coil burnout can be prevented.

第3図に本発明の他の実施例を示す。本図の如
く、いくつかのボビンに分けて巻回された超電導
コイルは、どれか一つに常電導転移が起つた場
合、他には熱が伝わり難いために常電導転移の生
じた部分に発熱が集中し、焼損事故を起し易い。
このような場合には本発明が有効である。第1図
の実施例と同様、この実施例でもボビン3に抵抗
2が巻回され、さらにその外側に超電導コイル1
が巻回されている。本実施例では同じボビンに巻
回された抵抗とコイルがそれぞれ並列に接続さ
れ、それ等が直列になつて電源に接続されてい
る。
FIG. 3 shows another embodiment of the invention. As shown in this figure, in a superconducting coil that is wound in several bobbins, if a normal conduction transition occurs in one of them, it is difficult for heat to be transferred to the other parts, so the part where the normal conduction transition has occurred is Heat is concentrated and burnout accidents are likely to occur.
The present invention is effective in such cases. Similar to the embodiment shown in FIG. 1, in this embodiment, a resistor 2 is wound around the bobbin 3, and a superconducting coil 1
is wound. In this embodiment, a resistor and a coil wound around the same bobbin are connected in parallel, and connected in series to a power source.

回路を第4図に示す。常電導転移を検出してス
イツチSWを開くと、電流は第4図のコイルと抵
抗からなる3つの閉回路をそれぞれ循環する。従
つて抵抗R1,R2,R3は同時に発熱し、これ
と熱結合しているコイルを3つ同時に常電導転移
させる。この場合も局所的な発熱が起らず、コイ
ル焼損を防止できる。
The circuit is shown in FIG. When the normal conduction transition is detected and the switch SW is opened, the current circulates through each of the three closed circuits consisting of the coil and resistor shown in Figure 4. Therefore, the resistors R1, R2, and R3 generate heat at the same time, causing the three coils thermally coupled thereto to transition to normal conductivity at the same time. In this case as well, local heat generation does not occur and coil burnout can be prevented.

第5図は本発明の更に他の実施例を示す。本実
施例では永久電流スイツチ5を用いて超電導導体
のみによる閉回路を形成し、外部からエネルギー
供給の必要がなく永久電流運転が可能となつてい
る。
FIG. 5 shows yet another embodiment of the invention. In this embodiment, a persistent current switch 5 is used to form a closed circuit using only superconducting conductors, and persistent current operation is possible without the need for external energy supply.

回路図を第6図に示す。本実施例では永久電流
スイツチSWを開(常電導状態)にして励磁を始
める。電流が所定値に達したとき、永久電流スイ
ツチSを閉(超電導状態)にして電源側のスイツ
チSWを開く。電流はJ−J1−K1−J2−K2−J3
−K3−J4−K4−K−S2−S1−Jの閉回路を流
れ、永久電流状態となる。ここで例えばJ2−K2
間に常電導転移が発生するとJ2−K2間には電圧
降下による電位差が生じる。するとH5−H6間に
電流i3が流れ抵抗R3が発熱する。J3−K3間
のコイルは抵抗R3と熱結合の状態にあり、温度
上昇し常電導転移する。これを順に繰り返してR
3→R4→R1の抵抗が次次に発熱し、それらと
熱結合状態にあるコイルが常電導転移する。一方
永久電流スイツチSも抵抗R2,R3と熱結合さ
れているため、常電導転移して抵抗を生じ、回路
の時定数を下げ、コイルの常電導転移部分への発
熱集中を防ぐ。
A circuit diagram is shown in FIG. In this embodiment, excitation is started by opening the persistent current switch SW (normal conduction state). When the current reaches a predetermined value, the persistent current switch S is closed (superconducting state) and the switch SW on the power source side is opened. The current is J−J1−K1−J2−K2−J3
-K3-J4-K4-K-S2-S1-J flows through the closed circuit, creating a persistent current state. For example, J2−K2
When a normal conduction transition occurs between them, a potential difference occurs between J2 and K2 due to a voltage drop. Then, a current i3 flows between H5 and H6 and the resistor R3 generates heat. The coil between J3 and K3 is in a thermally coupled state with the resistor R3, and as the temperature rises, it undergoes a normal conduction transition. Repeat this in order and R
The resistors 3→R4→R1 generate heat one after another, and the coil thermally connected to them undergoes a normal conduction transition. On the other hand, since the persistent current switch S is also thermally coupled to the resistors R2 and R3, it undergoes a normal conduction transition and generates resistance, lowering the time constant of the circuit and preventing heat generation from concentrating on the normal conduction transition portion of the coil.

なお、本発明の実施例の説明では、具体的な材
質の例を挙げたが、抵抗の材質はマンガンやニク
ロム以外の材料でも差しつかえなく、ボビンはな
くても構わない。さらに実施例では抵抗を超電導
コイルの内径側に巻き回したが、これを外径側で
も層間でも、或いは超電導コイル内に分散して配
置しても効果は変らない。また、コイル形状も円
形に限らず、レーストラック形、鞍難、D型等何
でも良い。コイル、抵抗、永久電流スイツチの数
および組み合せ、常電導転移の検出方式も実施例
で示した範囲に限らないことは明らかである。
In the description of the embodiments of the present invention, specific examples of materials have been given, but the material of the resistor may be other than manganese or nichrome, and the bobbin may not be used. Further, in the embodiment, the resistor is wound around the inner diameter of the superconducting coil, but the effect remains the same even if it is arranged on the outer diameter, between layers, or distributed within the superconducting coil. Further, the coil shape is not limited to a circular shape, and may be any shape such as a racetrack shape, a saddle shape, a D shape, etc. It is clear that the number and combination of coils, resistors, persistent current switches, and the detection method of normal conduction transition are not limited to the ranges shown in the examples.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、超電導コイルの常電導転移を
速やかに拡げ、局所的な発熱集中による超電導コ
イルの焼損を防止でき、また、保護抵抗と永久電
流スイツチとを熱結合しても、回路の時定数を下
げて(コイル電流の減衰を速めて)超電導コイル
の焼損を防止可能である。
According to the present invention, the normal conduction transition of the superconducting coil can be rapidly expanded to prevent burnout of the superconducting coil due to local heat concentration, and even if the protective resistor and the persistent current switch are thermally coupled, the Burnout of the superconducting coil can be prevented by lowering the constant (accelerating the attenuation of the coil current).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による超電導磁石の一実施例を
示す構造図、第2図は第1図例の回路図、第3図
は本発明の他の実施例を示す構造図、第4図は第
3図例の回路図、第5図は本発明の別の実施例を
示す構造図、第6図は第5図例の回路図、第7図
は従来の超電導磁石の構造図、第8図は第7図例
の回路図である。 1……超電導コイル、2……抵抗、3……ボビ
ン、4……励磁電源、5……永久電流スイツチ。
FIG. 1 is a structural diagram showing one embodiment of a superconducting magnet according to the present invention, FIG. 2 is a circuit diagram of the example shown in FIG. 1, FIG. 3 is a structural diagram showing another embodiment of the present invention, and FIG. FIG. 3 is a circuit diagram of an example; FIG. 5 is a structural diagram showing another embodiment of the present invention; FIG. 6 is a circuit diagram of the example shown in FIG. 5; FIG. 7 is a structural diagram of a conventional superconducting magnet; The figure is a circuit diagram of the example shown in FIG. 1...Superconducting coil, 2...Resistor, 3...Bobbin, 4...Excitation power source, 5...Persistent current switch.

Claims (1)

【特許請求の範囲】 1 超電導線を巻回した超電導磁石と、この超電
導磁石の巻線部の少なくとも一部に並列に接続さ
れ巻線が常電導転移したときにそのエネルギーを
消費する抵抗とを備えた超電導磁石において、抵
抗を超電導磁石の巻線部と熱的に結合させて配置
したことを特徴とする超電導磁石。 2 特許請求の範囲第1項において、超電導磁石
が少なくとも一部に循環永久電流を通じさせる永
久電流スイツチを有し、前記抵抗を前記巻線部及
び永久電流スイツチと熱的に結合させて配置した
ことを特徴とする超電導磁石。
[Claims] 1. A superconducting magnet wound with a superconducting wire, and a resistor connected in parallel to at least a portion of the winding portion of the superconducting magnet and consuming energy when the winding transitions to normal conductivity. 1. A superconducting magnet comprising a resistor thermally coupled to a winding portion of the superconducting magnet. 2. In claim 1, the superconducting magnet has a persistent current switch that allows a circulating persistent current to pass through at least a portion of the superconducting magnet, and the resistor is arranged to be thermally coupled to the winding portion and the persistent current switch. A superconducting magnet featuring
JP59217057A 1984-10-16 1984-10-16 Superconducting magnet Granted JPS6195502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59217057A JPS6195502A (en) 1984-10-16 1984-10-16 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59217057A JPS6195502A (en) 1984-10-16 1984-10-16 Superconducting magnet

Publications (2)

Publication Number Publication Date
JPS6195502A JPS6195502A (en) 1986-05-14
JPH033362B2 true JPH033362B2 (en) 1991-01-18

Family

ID=16698149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59217057A Granted JPS6195502A (en) 1984-10-16 1984-10-16 Superconducting magnet

Country Status (1)

Country Link
JP (1) JPS6195502A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978922A (en) * 1989-08-31 1990-12-18 Westinghouse Electric Corp. Superconducting sensor for quench detection in a superconductor
JP4699293B2 (en) * 2006-06-15 2011-06-08 三菱電機株式会社 Superconducting magnet
JP5525810B2 (en) * 2009-12-28 2014-06-18 株式会社東芝 Superconducting magnet device and quench protection method thereof

Also Published As

Publication number Publication date
JPS6195502A (en) 1986-05-14

Similar Documents

Publication Publication Date Title
EP3033754B1 (en) Device for a current limiter and a current limiter comprising said device
US5093645A (en) Superconductive switch for conduction cooled superconductive magnet
EP0828331B1 (en) Quench-protecting electrical circuit for a superconducting magnet
US20040027737A1 (en) Balanced quench protection circuit
US4764837A (en) Superconductive circuit for controlling quench events
JP2659363B2 (en) Superconducting magnet device with emergency demagnetization device
JP4933034B2 (en) Superconducting coil protection device, NMR device and MRI device
US6809910B1 (en) Method and apparatus to trigger superconductors in current limiting devices
JP2000032654A (en) Current limiting element using oxide superconductor, and current limiter thereof
EP0018854B1 (en) Superconducting induction apparatus
JPH033362B2 (en)
US3359394A (en) Persistent current switch
US3176195A (en) Superconducting solenoid
JP2024503776A (en) High temperature superconductor field coil
JP2020068293A (en) Superconducting magnet device
JPS5916208A (en) Connected superconductive wire
US3183413A (en) Protective means for superconducting solenoids
JPH04176174A (en) Permanet current switch
JPH07115016A (en) Superconducting device
JPH0466087B2 (en)
JPH07142773A (en) Superconducting electromagnet
JPS6292416A (en) Superconductive magnet device
JPS61168274A (en) Permanent current switch
JPH01278003A (en) Method of preventing breakdown of superconducting magnet
JPH02106004A (en) Superconducting magnet