JPS58137807A - Production of optical fiber laminate - Google Patents
Production of optical fiber laminateInfo
- Publication number
- JPS58137807A JPS58137807A JP57020453A JP2045382A JPS58137807A JP S58137807 A JPS58137807 A JP S58137807A JP 57020453 A JP57020453 A JP 57020453A JP 2045382 A JP2045382 A JP 2045382A JP S58137807 A JPS58137807 A JP S58137807A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- fixed
- optical fibers
- width
- sheets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000010030 laminating Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 20
- 229920005989 resin Polymers 0.000 abstract description 6
- 239000011347 resin Substances 0.000 abstract description 6
- 239000004840 adhesive resin Substances 0.000 abstract description 4
- 229920006223 adhesive resin Polymers 0.000 abstract description 4
- 239000011295 pitch Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000003475 lamination Methods 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000009415 formwork Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/04—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
- G02B6/06—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は複数本の光学繊維より構成される光学繊維シー
トを所定の間隔で積層した光学繊維積層体の製造方法に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical fiber laminate in which optical fiber sheets each comprising a plurality of optical fibers are laminated at predetermined intervals.
一般に光学繊維はその使用目的により単繊維のままのも
の、複数本束ねたもの、あるいはシート状に配列したも
の、さらには一定間隔で積層したものなど種々の形状の
ものがある。本発明は一定間隔で配列積層された光学繊
維積層体の製造方法を提供するものである。Generally, optical fibers come in various shapes depending on the purpose of use, such as single fibers, bundles of fibers, sheets arranged in sheets, and layers laminated at regular intervals. The present invention provides a method for manufacturing an optical fiber laminate that is arranged and laminated at regular intervals.
従来、光学繊維の接層方法としては、シート状に配列さ
れ、両端を樹脂で固定された光学線維のカットシートを
両端で凹形状の型枠に積み上げ、樹脂で固定して光学繊
維束を得る方法、ドラム円周上にシート状に配列して巻
き十げ、−Sを接着樹脂で固定したのちドラムから外し
て、光学繊維のエンドレスシートとし、このシートを凹
形状した型枠に積み上げて接着樹脂で固定したのち、該
固定部の真中で切断して光学繊維束を得る方法、(特公
昭39−コクコア9号)、さらには凹形状の型枠を有す
るかせ枠内周上に光学繊維をシート状に配列して連続し
て捲き上げて積層し、接着樹脂で固定した後、該固定部
の中間部で切断して光学繊維束を得る方法(特公昭ダ3
−ダ43号)などがある。Conventionally, the method of laminating optical fibers is to stack cut sheets of optical fibers arranged in a sheet shape and fixed with resin at both ends in a concave formwork, and then fixed with resin to obtain an optical fiber bundle. Method: After arranging them in a sheet shape on the circumference of a drum and rolling them up, -S is fixed with adhesive resin, then removed from the drum to form an endless sheet of optical fiber, and this sheet is stacked on a concave formwork and glued. There is a method to obtain an optical fiber bundle by fixing it with resin and then cutting it in the middle of the fixed part (Special Publication No. 39-Kokukoa No. 9), and furthermore, there is a method of fixing optical fibers on the inner periphery of a skein frame having a concave form. A method of obtaining optical fiber bundles by arranging them into sheets, rolling them up continuously, stacking them, fixing them with adhesive resin, and then cutting them at the middle of the fixed part (Tokuko Shoda 3)
-da No. 43).
しかるに・前記いずれの方法でも・各段の積層間隔を高
精度に調整することは内観であり、積層状態はいわゆる
成り行きとなり、俵積みと正方配置が混在した状態とな
る。その結果、光学綜維端邪の積層゛状態は定ピツチ性
に欠け、センサーとして使用した場合、入力側と出力側
の正確な位置の対応が不可能となる。However, in any of the above methods, it is a matter of internal inspection to adjust the stacking interval of each tier with high precision, and the stacking state is what is called a random arrangement, resulting in a mixture of bale stacking and square arrangement. As a result, the laminated state of the optical fiber ends lacks constant pitch, and when used as a sensor, it is impossible to accurately match the positions of the input side and the output side.
また−通常光学繊維においては、その単繊維直径には3
〜IO%程度の変動幅があり、従って繊維相互間を接触
して配列した場合は一当然不規則な光学繊維束となる。Also, in normal optical fibers, the diameter of a single fiber is 3
There is a fluctuation range of about 10% to IO%, and therefore, if the fibers are arranged in contact with each other, it will naturally result in an irregular optical fiber bundle.
また、光学繊維シートを一段ずつ積層する方法では、不
良に積層した場合は不良部分までの積層が無駄になる欠
点がある。Furthermore, the method of laminating optical fiber sheets one by one has the disadvantage that if the optical fiber sheets are laminated in a defective manner, the lamination up to the defective portion will be wasted.
本発明は上記欠点に鑑みバッチ方法ではあるが、付加価
値の高い非常に正確な精度で配列、積層した光学繊維積
層体を簡単な方法で得ることを可能としたものである。In view of the above-mentioned drawbacks, the present invention makes it possible to obtain, by a simple method, an optical fiber laminate that has high added value and is arranged and laminated with extremely high precision, although it is a batch method.
すなわち、本発明は複数本の光学繊維が並行して定ピツ
チに配列された光学繊維シートを縦横定長の溝を有する
プレートに挾んで接着固定し、硬化させることによって
定長、定幅の矩形体を形成し、当該矩形体部を複数段積
層することを特徴とする光学繊維積層体の製造方法であ
るO
光学繊維の単繊維を定ピツチに配列した光学繊維シート
は、例えば本出願人による特願昭j&−/?A&、tJ
号に記載されているような規則的なピッチの溝を有する
プレートを使用して製造することができる。That is, in the present invention, an optical fiber sheet in which a plurality of optical fibers are arranged in parallel at a constant pitch is sandwiched between plates having grooves of constant length and width, adhesively fixed, and cured to form a rectangular shape of constant length and constant width. O is a method for manufacturing an optical fiber laminate, which is characterized by forming a rectangular body portion and stacking the rectangular body portions in a plurality of stages. Special request Aki &-/? A&, tJ
It can be manufactured using a plate with regular pitch grooves as described in No.
本発明においては定ピツチに配列した光学繊維シートを
用いるが、単位シートとしては光学繊維が単層に並行し
て配列されたものでもよいが、あらかじめ所定段数積層
したものを単位シートとして用いることもできる。In the present invention, optical fiber sheets arranged at a fixed pitch are used, but the unit sheet may be one in which optical fibers are arranged in parallel in a single layer, but it is also possible to use as a unit sheet a sheet in which a predetermined number of layers are laminated in advance. can.
本発明において定ピツチ配列とは各光学繊維の軸間距離
が一定に配列されていることを示す。In the present invention, a constant pitch arrangement means that the distance between the axes of each optical fiber is constant.
すなわち各光学繊維の直径に斑があるため、軸間距−を
一定に保つためには各光学繊維の間隙を調整することが
必要となる。That is, since the diameter of each optical fiber is uneven, it is necessary to adjust the gap between each optical fiber in order to keep the distance between the axes constant.
次に本発明を図面に従って詳細に説明する。Next, the present invention will be explained in detail with reference to the drawings.
第1図は本発明による定長矩形体の作製用治具の一例を
示す略解図である。溝付きプレート(1)の上面に長さ
n1輻θ、深さmの定長溝(L2−i形成され、該定長
溝(コ)にあらかじめ定ピツチに配列された光学繊維シ
ートを挿入し、接着樹脂を流し込んで、その上に押え板
(J) meのせ、ガイド(4I)に沿って押え板(J
) f:プレー) (1)上に圧着し、定長溝(コ)の
中に光学繊維シートを接着樹脂で固定、硬化することに
よって、後工程での寸法変化を抑え、樹脂の収縮を停止
させる。硬化完了後、定長、定幅の矩形体を治具より取
外す。第一図は本発明による治具により作成された光学
wA111シートけ)の外観図であり1端邪には長さ1
11幅・の矩形体(1)が形成されている・第ja図は
該方法により得られた光学繊維矩形体(1)の断面図−
第3b図はその平面図である。第jalilに見られる
ように該知形体(尉の断面はそれぞれ光学繊維(り)が
定ピツチで配列され、接着剤<2>により固定、硬化さ
れている。第参図は光学繊維矩形体(1)の積層用治具
の一例な示す略解図である。FIG. 1 is a schematic diagram showing an example of a jig for manufacturing a fixed length rectangular body according to the present invention. A fixed length groove (L2-i) with a length n1 radius θ and a depth m is formed on the upper surface of the grooved plate (1), and optical fiber sheets arranged at a fixed pitch in advance are inserted into the fixed length groove (k) and bonded. Pour the resin, place the holding plate (J) on top of it, and slide the holding plate (J) along the guide (4I).
) F: Play) (1) By pressing the optical fiber sheet on top and fixing the optical fiber sheet in the fixed length groove (C) with adhesive resin and curing it, dimensional changes in the subsequent process are suppressed and shrinkage of the resin is stopped. . After curing is complete, remove the rectangular body of constant length and width from the jig. Figure 1 is an external view of an optical wA111 sheet made using the jig according to the present invention.
A rectangular body (1) with a width of 11 mm is formed. Figure JA is a cross-sectional view of the optical fiber rectangular body (1) obtained by this method.
FIG. 3b is a plan view thereof. As seen in No. Jalil, the optical fibers (ri) are arranged at regular pitches in the cross section of the rectangular body (2), and are fixed and hardened with adhesive <2>. FIG. 1 is a schematic diagram showing an example of the lamination jig of 1).
あらかじめ形成された光学繊維矩形体は積層枠(9)に
積層され、上部をガイド(lのに沿って上下に動く固定
用上ぶた(l/)で固定され、接着される。積層時に用
いる接着剤は極力少量にし、接着剤の収縮の影響を軽度
にする配慮が必要である◇
第3図は本発明の方法により積層して得られた光学繊維
積層体の断面図である。縦、横の各光学繊維の軸間距離
はそれぞれm′となるよう定ピンチ性が高精度に規制さ
れる・
第6図は従来法による積層体の断面図であり、俵積みと
正方配置の混在した状態を示す。The pre-formed optical fiber rectangular bodies are laminated on the lamination frame (9), and the upper part is fixed with a fixing lid (l/) that moves up and down along the guide (l), and then glued. It is necessary to use as little amount of adhesive as possible to minimize the effect of shrinkage of the adhesive. ◇ Figure 3 is a cross-sectional view of an optical fiber laminate obtained by laminating by the method of the present invention. The constant pinch property is regulated with high precision so that the distance between the axes of each optical fiber is m'. Figure 6 is a cross-sectional view of a laminate made by the conventional method, with a mixture of bale stacking and square arrangement. shows.
次に実施例として、光学繊維直径I!2/コ!;m。Next, as an example, the optical fiber diameter I! 2/Ko! ;m.
配列間隔O4100m−配列本数20本、積層段数50
段の積層体を製造し、誤差を測定した。Array interval 04100m - Number of arrays: 20, number of stacked layers: 50
A stack of stages was manufactured and the error was measured.
積層は第qv!Jに示すような積層用治具により行なっ
た。光学繊維積層体の外形寸法は配列方向が理論値に対
して±aOaOurn以内、積層方向が理論値に対して
±00−〇m以内と、非常に高精度のものが得られた。Lamination is qv! This was done using a lamination jig as shown in J. The external dimensions of the optical fiber laminate were extremely accurate, with the arrangement direction being within ±aOaOrn of the theoretical value, and the lamination direction being within ±00-0m of the theoretical value.
第1図は本発明による定長矩形体の゛作製用治具の一例
を示す略解図1第一図は端部が固定された光学繊維シー
トの外観図、第3&図は該方法により得られた光学繊維
矩形体の断面図、第Jb図はその平面図、第参図は光学
繊維矩形体の積層用治具の一例を示す略解図、第3図は
本発明方法による光学繊維積層体の断IIi図、第1図
は従来法による積層体の断面図である6図中、け)は光
学繊維シート、(4)は成形された光学繊維矩形体、(
り)はそれぞれの光学繊維、(1)は接着剤である。
泉/ 図
/
駅2閏
基3b図
//
4I21
、/1
つ
泉5(121
東6 図
手続補正書(方式)
昭和39年4月(0日
特許庁長官 島田春樹 殿
1、事件の表示
##鵬昭3ツーー〇ダ33号
2、発明の名称
光学繊維積層体の製造方法
3、補正をする者
事件との関係 特許出願人
東京都中央区京橋二丁目3番19号
(603)ミ菱レイヨシ株式会社
取締役社長 金 澤 脩 三
4、代理人
東京都中央区京橋二丁目3番19号
三菱レイヨン株式会社内
唱和37年!月7日(発送日 昭和!7都S月コ3日)
明細書の浄書(内容に変更なし)Fig. 1 is a schematic diagram showing an example of a jig for manufacturing a fixed length rectangular body according to the present invention. Fig. 1 is an external view of an optical fiber sheet with fixed ends, and Fig. 3 and Fig. Fig. Jb is a plan view thereof, Fig. 3 is a schematic diagram showing an example of a jig for laminating rectangular optical fibers, and Fig. 3 is a cross-sectional view of an optical fiber laminate produced by the method of the present invention. Section IIi and FIG. 1 are cross-sectional views of the laminate produced by the conventional method.
(1) is the respective optical fiber, and (1) is the adhesive. Izumi / Diagram / Station 2 platform 3b diagram / / 4I21 , / 1 Izumi 5 (121 East 6 Figure procedure amendment (method) April 1960 (0th Japan Patent Office Commissioner Haruki Shimada 1, Incident display # #Pengsho 3-0-da 33 No. 2, Name of invention Method for manufacturing optical fiber laminate 3, Relationship with the amended case Patent applicant Mitibishi, 2-3-19 Kyobashi, Chuo-ku, Tokyo (603) Osamu Kanazawa, President and Director of Rayoshi Co., Ltd., 34, Agent Mitsubishi Rayon Co., Ltd., 2-3-19 Kyobashi, Chuo-ku, Tokyo Chowa 37th year! month 7th (Delivery date Showa! 7th capital S month 3rd)
Engraving of the statement (no changes to the contents)
Claims (1)
繊維シートを縦横定長の溝を有するプレートに挾んで接
着固定し、硬化させることによって定長、定幅の矩形体
を形成し、当該矩形体部を複数段積層することを特徴と
する光学繊維積層体の製造方法An optical fiber sheet in which a plurality of optical fibers are arranged in parallel at a fixed pitch is sandwiched between plates having grooves of fixed length and width, adhesively fixed, and cured to form a rectangular body of fixed length and fixed width, A method for manufacturing an optical fiber laminate, characterized by laminating the rectangular body portions in multiple stages.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57020453A JPS58137807A (en) | 1982-02-10 | 1982-02-10 | Production of optical fiber laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57020453A JPS58137807A (en) | 1982-02-10 | 1982-02-10 | Production of optical fiber laminate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58137807A true JPS58137807A (en) | 1983-08-16 |
Family
ID=12027485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57020453A Pending JPS58137807A (en) | 1982-02-10 | 1982-02-10 | Production of optical fiber laminate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58137807A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0151047A2 (en) * | 1984-02-01 | 1985-08-07 | Ultratech Knowledge Systems, Incorporated | Fiber optic light transfer device, modular assembly, and method of making |
US4665741A (en) * | 1983-09-02 | 1987-05-19 | Revlon, Inc. | Method of hair damage assessment |
JPH0224607A (en) * | 1988-07-13 | 1990-01-26 | Sumitomo Electric Ind Ltd | Manufacture of optical multiplexer/demultiplexer |
EP1360000A1 (en) * | 2001-02-15 | 2003-11-12 | MERCK PATENT GmbH | Device for connecting microcomponents |
US7445832B2 (en) | 2000-12-25 | 2008-11-04 | Ngk Insulators, Ltd. | Ribboned polarization-maintaining fiber and manufacturing method therefor, and polarization-maintaining optical fiber array using the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5445142A (en) * | 1977-09-17 | 1979-04-10 | Ricoh Co Ltd | Cleaning device of electrophotographic copying apparatus |
JPS5510044A (en) * | 1978-07-06 | 1980-01-24 | Agency Of Ind Science & Technol | Transportation of liquid by its own evaporation |
JPS55137504A (en) * | 1979-04-13 | 1980-10-27 | Fujikura Ltd | Production of optical fiber bundle |
-
1982
- 1982-02-10 JP JP57020453A patent/JPS58137807A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5445142A (en) * | 1977-09-17 | 1979-04-10 | Ricoh Co Ltd | Cleaning device of electrophotographic copying apparatus |
JPS5510044A (en) * | 1978-07-06 | 1980-01-24 | Agency Of Ind Science & Technol | Transportation of liquid by its own evaporation |
JPS55137504A (en) * | 1979-04-13 | 1980-10-27 | Fujikura Ltd | Production of optical fiber bundle |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4665741A (en) * | 1983-09-02 | 1987-05-19 | Revlon, Inc. | Method of hair damage assessment |
EP0151047A2 (en) * | 1984-02-01 | 1985-08-07 | Ultratech Knowledge Systems, Incorporated | Fiber optic light transfer device, modular assembly, and method of making |
JPH0224607A (en) * | 1988-07-13 | 1990-01-26 | Sumitomo Electric Ind Ltd | Manufacture of optical multiplexer/demultiplexer |
US7445832B2 (en) | 2000-12-25 | 2008-11-04 | Ngk Insulators, Ltd. | Ribboned polarization-maintaining fiber and manufacturing method therefor, and polarization-maintaining optical fiber array using the same |
EP1360000A1 (en) * | 2001-02-15 | 2003-11-12 | MERCK PATENT GmbH | Device for connecting microcomponents |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4514247A (en) | Method for fabricating composite transducers | |
US5342679A (en) | Grid structures | |
US20050016950A1 (en) | Method for producing a high resolution detector array | |
JPS635309A (en) | Manufacture of passive optical constitutional element with one or more of echelette grating | |
JPS58137807A (en) | Production of optical fiber laminate | |
JP3243187B2 (en) | Manufacturing method of rod array | |
US2336026A (en) | X-ray grid and the like | |
CN216595583U (en) | Two-dimensional array of self-focusing lens | |
WO2018105566A1 (en) | Transparent substrate laminate manufacturing method and aerial image display device manufacturing method | |
CN111644754A (en) | High-precision laminated grating unit and preparation method thereof | |
JP2004109778A (en) | Optical fiber array and its manufacturing method | |
JPS5878104A (en) | Laminating method of optical fiber | |
JPH0251289A (en) | Manufacture of composite piezoelectric element material by laser beams | |
JPS6133469A (en) | Lamination of optical fiber | |
JP3650564B2 (en) | Multi-core bundle manufacturing jig | |
JP3778064B2 (en) | Manufacturing method of optical fiber array | |
JPH10268145A (en) | Two-dimensional optical fiber array device | |
JP3198039B2 (en) | Optical fiber array component and method of manufacturing the same | |
JPS59111607A (en) | Drum for manufacturing fiber sheet | |
JPS63226619A (en) | Production of lens array | |
JPS63173004A (en) | Method and device for manufacturing optical transmission body array | |
JP3730479B2 (en) | 2D optical fiber array | |
JPS58181002A (en) | Manufacture of optical fiber sheet laminated body | |
JPS63175823A (en) | Optical transmission body array | |
JPH01257293A (en) | Manufacturing method of radiation detector and x-ray ct device |