JPS63173004A - Method and device for manufacturing optical transmission body array - Google Patents

Method and device for manufacturing optical transmission body array

Info

Publication number
JPS63173004A
JPS63173004A JP62004147A JP414787A JPS63173004A JP S63173004 A JPS63173004 A JP S63173004A JP 62004147 A JP62004147 A JP 62004147A JP 414787 A JP414787 A JP 414787A JP S63173004 A JPS63173004 A JP S63173004A
Authority
JP
Japan
Prior art keywords
plate member
optical transmission
winding
fiber
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62004147A
Other languages
Japanese (ja)
Inventor
Kenichi Sakunaga
作永 憲一
Yoshiro Nieda
贄田 義朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP62004147A priority Critical patent/JPS63173004A/en
Publication of JPS63173004A publication Critical patent/JPS63173004A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To always provide in parallel an optical transmission body with high array accuracy and with satisfactory workability, by forming a winding surface by fixing a grooved plate member to the peripheral wall of a polygonal base body, and winding a fiber-like optical transmission body to this winding surface. CONSTITUTION:A grooved plate member 9 is fixed freely attachably and detachably to the peripheral wall surface of a polygonal winding bobbin 11, so that the surface 9a provided with a groove 10 is faced to the outside, and also, the groove 10 becomes a vertical direction to a revolving shaft of the winding bobbin 11, and the winding surface of an optical transmission body fiber 13 is formed. Subsequently, an optical transmission body fiber train formed on the grooved plate member 9, and the plate member 9 are stuck. Also, between each plate member end part 9b, the optical transmission body train is divided into eight pieces of fractions by cutting it with a cutter, etc., and each plate member is removed from the winding bobbin 11, by which the plate member 9 with the optical transmission body train is obtained. To these plate members 9, 9-1 with the optical transmission body train, an intermediate member 7 is stuck to the end part in accordance with necessity, and thereafter, other plate member 9-2 of the same size as the plate member 9-1 is stuck, and between two pieces of plate members 9-1, 9-2, the optical transmission body train is inserted and attached, and fixed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多数の円柱状光伝送体を列状に並設した構造
からなり、画像の光学的伝送に用いられる光伝送体アレ
イの製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the production of an optical transmission body array which is composed of a structure in which a large number of cylindrical optical transmission bodies are arranged in a row and is used for optical transmission of images. Regarding the method.

より詳しくは、多角柱形状の基体の周壁面に溝付き板部
材を固定して巻取り面を形成し、鎖巻取り面にファイバ
状の光伝送体を該板部材に設けられた溝をガイドとして
巻付けて、該板部材上に光伝送体列を形成した後、該形
成された光伝送体列と板部材とを接着し、次に板部材端
部で該光伝送体列を切断して断片に分割し、光伝送体列
付き板部材を形成し、更に、この光伝送体列付き板部材
の光伝送体列の他方の側に他の板部材を接着するか、あ
るいは光伝送体列付き板部材どうしを2枚接着して、2
枚の板部材間に光伝送体列を挟着する工程を存する光伝
送体アレイの製造方法に関する。
More specifically, a grooved plate member is fixed to the peripheral wall surface of a polygonal prism-shaped base to form a winding surface, and a fiber-shaped optical transmission body is guided through the groove provided in the plate member on the chain winding surface. After winding the light transmitting body as a material to form an array of optical transmitters on the plate member, the formed optical transmitter array and the plate member are adhered, and then the optical transmitter array is cut at the end of the plate member. to form a plate member with an array of optical transmitters, and then adhere another plate member to the other side of the array of optical transmitters of this plate member with an array of optical transmitters, or Glue two plate members with rows together,
The present invention relates to a method of manufacturing an optical transmitter array, which includes a step of sandwiching an optical transmitter array between two plate members.

〔従来の技術〕[Conventional technology]

画像伝送の分野で近年注目を集めているのが、等倍正立
像が得られる光伝送体アレイであり、複写機、ファクシ
ミリ、電子黒板等の画像情報の光学的な伝送部分に用い
られている。
In the field of image transmission, optical transmission arrays that can produce erect images at the same size have been attracting attention in recent years, and are used in the optical transmission of image information in copying machines, facsimile machines, electronic blackboards, etc. .

この光伝送体アレイは、代表的には、中間部材によって
所定の間隔で接合された、2枚の板部材間に、一方の面
から他方の面に各々の両端面が達する多数の円柱状光伝
送体が正確に列状に組込まれた構造を有している。なお
、この光伝送体アレイに組込む光伝送体としては、円柱
状のレンズや光学繊維からなるものが使用されている。
This optical transmitter array typically consists of a large number of cylindrical light beams, each of which reaches from one side to the other, between two plate members joined at a predetermined interval by an intermediate member. It has a structure in which transmitters are assembled in precise rows. Note that the optical transmission bodies incorporated in this optical transmission body array are made of cylindrical lenses or optical fibers.

このような光伝送体アレイの従来の組立方法を゛ 図面
を参照しつ?以下に説明する。
What is the conventional method of assembling such an optical transmitter array? This will be explained below.

第8図〜第1O図は従来の光伝送体アレイの組立方法の
主要工程図である。
FIG. 8 to FIG. 1O are main process diagrams of a conventional method of assembling an optical transmitter array.

まず、第8図に示すとおり、研削盤のテーブル1上に定
盤2または真空チャック定盤3を置き、その上に板部材
4 (4−1,4−2)を固定する。なお、この板部材
4の固定にあたっては、定盤の場合は接着剤によって、
真空チャック定盤の場合は吸引力によって板部材4を固
定し、その反りをなくす。
First, as shown in FIG. 8, the surface plate 2 or vacuum chuck surface plate 3 is placed on the table 1 of the grinding machine, and the plate members 4 (4-1, 4-2) are fixed thereon. In addition, when fixing this plate member 4, in the case of a surface plate, use adhesive.
In the case of a vacuum chuck surface plate, the plate member 4 is fixed by suction force to eliminate warpage.

次に、板部材4の表面を例えば車軸型平面研削盤の砥石
5により平面研削し、板部材の一方の面を所定の平面度
に仕上げる。
Next, the surface of the plate member 4 is ground by a grindstone 5 of an axle-type surface grinder, for example, to finish one surface of the plate member to a predetermined flatness.

このようにして平面研削処理された板部材(4−1)を
第9図に示すように光伝送体並設作業台6上に置いた定
盤2若しくは真空チャック定盤3上に、平面研削処理さ
れた面4−1aが上になるようにして、上述の平面研削
処理時と同様の方法によって反りがないように固定する
As shown in FIG. 9, the plate member (4-1) surface-grounded in this way is placed on the surface plate 2 or vacuum chuck surface plate 3 placed on the workbench 6 where the optical transmitters are arranged side by side. It is fixed so that the processed surface 4-1a faces upward and is not warped by the same method as in the surface grinding process described above.

ここで、板部材4−1の両端部に中間部材7を接着剤で
固定するとともに、研削面4−1a上に所定数の円柱状
光伝送体8を列状に並設し、光伝送体列を形成する。
Here, the intermediate member 7 is fixed to both ends of the plate member 4-1 with adhesive, and a predetermined number of cylindrical light transmitting bodies 8 are arranged in a row on the ground surface 4-1a. form a line.

次いで、第9図に示すように上述と同様にして平面研削
処理した板部材4−2を、その研削面4−28が光伝送
体列上に重ね合されるように、これを中間部材7に接着
する。なお、この接着時には、光伝送体列と板部材4−
2の間及び光伝送体列を構成する各円柱状光伝送体8の
隙間にも接着樹脂を含浸充填して、これを乾燥させる。
Next, as shown in FIG. 9, the plate member 4-2 subjected to surface grinding in the same manner as described above is placed on the intermediate member 7 so that the ground surface 4-28 is superimposed on the optical transmitter array. Glue to. Note that during this bonding, the optical transmission body array and the plate member 4-
The adhesive resin is also impregnated and filled into the spaces between the cylindrical light transmitting bodies 8 and between the cylindrical light transmitting bodies 8 constituting the light transmitting body array, and then dried.

最後に、各円柱状光伝送体8の端面が位置する両面を鏡
面研磨することによって、各光伝送体8の両端面も一緒
に鏡面研磨して、光伝送体アレイを得る。
Finally, by mirror-polishing both surfaces on which the end surfaces of each cylindrical optical transmitter 8 are located, both end surfaces of each optical transmitter 8 are also mirror-polished to obtain an optical transmitter array.

(発明が解決しようとする問題点〕 上述したような従来法における板部材上への円柱状光伝
送体の並設作業は、円柱状光伝送体が平面上では安定し
難い上に、ガイド類を全く用いないので、光伝送体の配
列精度を高めることが非常に困難であった。しかも、上
述の従来法においては、像伝送能の低下の原因となる光
伝送体の配列孔れも生じ易いという問題もあった。
(Problems to be Solved by the Invention) The work of arranging the cylindrical optical transmitters side by side on a plate member in the conventional method as described above is difficult to stabilize on a flat surface, and the guides etc. It was extremely difficult to improve the alignment accuracy of the optical transmitters because no holes were used at all.Moreover, the conventional method described above also caused alignment holes in the optical transmitters, which caused a decrease in image transmission performance. There was also the problem that it was easy.

更に、円柱状光伝送体を1本1本手作業で板部材上に並
設するために、その作業性にも劣り、特に、光伝送体列
を複数段に重ねて並べる作業は、極めて面倒な作業であ
り、作業性、生産性を向上させるには限界があった。
Furthermore, since the cylindrical optical transmitters are arranged one by one on the plate member by hand, the workability is poor, and in particular, the work of arranging the optical transmitter arrays in multiple stages is extremely troublesome. This was a difficult task, and there were limits to how workability and productivity could be improved.

本発明は、このような問題点に鑑みなされたものであり
、良好な光伝送体の配列精度を常に得ることができ、か
つ作業性、生産性を大幅に向上させることのできる光伝
送体アレイの製造方法及びそれに用いる装置を提供する
ことにある。
The present invention has been made in view of these problems, and provides an optical transmitter array that can always obtain good alignment accuracy of optical transmitters and can significantly improve workability and productivity. An object of the present invention is to provide a manufacturing method and an apparatus used therefor.

(問題点を解決するための手段〕 上記目的は以下の本発明によって達成することができる
(Means for Solving the Problems) The above object can be achieved by the following present invention.

すなわち本発明は、円柱状光伝送体を列状に並設した光
伝送体列を2枚の板部材で決着して光伝送体アレイを製
造する方法において、多角柱形状基体の周壁面に、ファ
イバ状の光伝送体の直径に等しいピッチで平行な複数の
溝が設けられた板部材を、該溝を有する面が外向し、か
つ該溝が前記多角柱形状の中心軸が垂直となるような向
きで着脱自在に固定して巻取り面を形成し、鎖巻取り面
に、前記溝をガイドとしてファイバ状の光伝送体を一層
または数層巻付けて光伝送体列を前記基体周壁面に固定
された板部材上に形成する工程(a)と、該光伝送体列
を該板部材に接着固定する工程(b)と、該光伝送体を
該板部材端部で切断し、光伝送体列付板部材を形成する
工程(c)と、該工程(c)で得られた光伝送体列付板
部材に他の板部材を接着するか、または前記工程(c)
で得た光伝送体列付き板部材の2枚を接着して、2枚の
板部材間に光伝送体列を挟着する工程(d)とを有する
ことを特徴とする光伝送体アレイの製造方法;及び、そ
の多角柱形状の周壁面に、ファイバ状の光伝送体の直径
に等しいピッチで平行な複数の溝が設けられた板部材を
、該溝を有する面を外向させ、かつ該溝と前記多角柱形
状部の中心軸が垂直となる向きで着脱自在に固定し得る
ようになした基体と、溝付き板部材を固定した該基体の
周壁に該板部材に設けられた溝をガイドとしてファイバ
状の光伝送体を一層若しくは数層巻付けるための巻付手
段とを有してなるものである光伝送体アレイの製造に用
いる装置である。
That is, the present invention provides a method for manufacturing a light transmitting body array by fixing a light transmitting body array in which cylindrical light transmitting bodies are arranged side by side with two plate members, on the peripheral wall surface of a polygonal columnar base. A plate member provided with a plurality of parallel grooves at a pitch equal to the diameter of a fiber-shaped optical transmission body is made so that the surface with the grooves faces outward and the center axis of the polygonal prism is perpendicular to the plate member. One or more layers of fiber-shaped optical transmitters are wound around the chain winding surface using the grooves as guides, and the optical transmitter array is attached to the peripheral wall surface of the base. step (a) of forming the light transmitting body on a plate member fixed to the plate member; step (b) of adhesively fixing the light transmitting body array to the plate member; and cutting the light transmitting body at the end of the plate member; Step (c) of forming a plate member with array of optical transmitters, and bonding another plate member to the plate member with array of optical transmitters obtained in step (c), or step (c)
(d) of adhering two of the plate members with the optical transmitter array obtained in step (d) and sandwiching the optical transmitter array between the two plate members. Manufacturing method: A plate member is provided with a plurality of parallel grooves at a pitch equal to the diameter of a fiber-shaped optical transmission body on its polygonal prism-shaped peripheral wall surface, with the surface with the grooves facing outward, and A base body that can be detachably fixed in a direction in which the groove and the center axis of the polygonal column shaped portion are perpendicular to each other, and a groove provided in the plate member is attached to a peripheral wall of the base body to which the grooved plate member is fixed. This is an apparatus used for manufacturing an optical transmission body array, which includes winding means for winding one layer or several layers of fiber-shaped optical transmission bodies as a guide.

本発明においては、従来の方法のように板部材平面に円
柱状の光伝送体を手作業で並設するのではなく、光伝送
体の所定の配列に対応するように配置された複数の溝を
有する板部材を用い、この溝をガイドとして光伝送体列
を形成するので、該溝の配列に従った光伝送体の所定の
配列が容易かつ正確に得られる。しかも、この操作は、
多角柱形状基体の周壁に溝付き板部材を設置して巻取り
面を形成し、この巻取り面に、ファイバ状の光伝送体を
巻付けるという簡易な操作で、連続的に、かつ正確に行
なえる。しかも基体周壁を構成する面に複数の板部材を
設置した場合には、一度の操作で複数の光伝送体列付き
板部材を同時に得ることができ、本発明によれば作業性
、生産性及び組立て精度の大幅な向上が計れる。
In the present invention, instead of manually arranging cylindrical light transmitting bodies in parallel on the plane of a plate member as in the conventional method, a plurality of grooves are arranged to correspond to a predetermined arrangement of the light transmitting bodies. Since the array of light transmitters is formed using a plate member having a groove as a guide, a predetermined arrangement of the light transmitters according to the arrangement of the grooves can be easily and accurately obtained. Moreover, this operation
A grooved plate member is installed on the peripheral wall of a polygonal prism-shaped base to form a winding surface, and a fiber-shaped optical transmission material is wound on this winding surface, which is a simple operation that allows continuous and accurate winding. I can do it. Moreover, when a plurality of plate members are installed on the surface constituting the base peripheral wall, a plurality of plate members with optical transmission body rows can be obtained simultaneously in one operation, and according to the present invention, workability, productivity and Significant improvement in assembly accuracy can be achieved.

更に、本発明の方法においては、光伝送体の配列精度が
板部材の溝の配列によって自動的に決定され、常に良好
な光伝送体列の配列精度が得られる。
Furthermore, in the method of the present invention, the arrangement accuracy of the optical transmission bodies is automatically determined by the arrangement of the grooves in the plate member, and good arrangement accuracy of the optical transmission body rows can always be obtained.

また、ファイバ状の光伝送体は基体の巻取り面に適度な
張力で巻付けられて、容易にその配列を乱すことがなく
、その状態で板部材に接着固定される。そのため、板部
材の溝によって決定された光伝送体の精度良い配列が板
部材との接着工程を通して維持される。
Further, the fiber-shaped optical transmission body is wound around the winding surface of the base body with appropriate tension, and is adhesively fixed to the plate member in this state without easily disturbing its arrangement. Therefore, the highly accurate arrangement of the light transmitting bodies determined by the grooves of the plate member is maintained throughout the bonding process with the plate member.

しかも、光伝送体列を複数層に重ねる場合でも上述と同
様に、良好な作業性、生産性及び組立て精度が得られる
Furthermore, even when multiple layers of optical transmission bodies are stacked, good workability, productivity, and assembly accuracy can be obtained as described above.

以下、本発明の一例を図面を用いて更に詳細に説明する
Hereinafter, an example of the present invention will be explained in more detail using the drawings.

第1図は、本発明の方法に用いることのできる溝付き板
部材の模式的斜視図である。
FIG. 1 is a schematic perspective view of a grooved plate member that can be used in the method of the present invention.

この板部材9は、代表的には長方形の板状で、一方の面
9aに、その横手方向に対して直角な方向に伸びた溝l
Oが、正確に(すなわち光伝送体の所定の配列精度に応
じて十分に高い加工精度で)光伝送体の直径に等しいピ
ッチで平行に配設されたものである。なお、溝lOとし
ては、以後に述べるファイバ状の光伝送体(以後、光伝
送体ファイバと称する)の巻付は時に、光伝送体ファイ
バの巻付は方向を良好にガイドするのに適した構造のも
のであれば、どのような構造のものでも良く、例えば、
その加工性等を考慮して適宜選択すれば良い。そのよう
な構造としては、断面がV字状のもの等を挙げることが
できる。
This plate member 9 has a typically rectangular plate shape, and has a groove l extending in a direction perpendicular to its lateral direction on one surface 9a.
O are precisely arranged in parallel (that is, with sufficiently high processing accuracy according to the predetermined arrangement accuracy of the optical transmission bodies) at a pitch equal to the diameter of the optical transmission bodies. Note that the groove lO is sometimes used for winding a fiber-shaped optical transmission body (hereinafter referred to as optical transmission fiber), which will be described later. Any structure may be used as long as it has a structure, for example,
It may be selected appropriately in consideration of its workability and the like. Examples of such a structure include one having a V-shaped cross section.

板部材9としては、溝lOの積度良い形成が可能で、か
つ光伝送体アレイの構成部材として好適な強度や特性を
満足するものであればどのような材質のものでも使用可
能であり、例えばFRP  (繊維強化樹脂)、エンジ
ニアリングプラスチック、アクリル樹脂などの樹脂材や
アルミニウム等の金属材などから、NC加工や射出成形
等の用いる材料に適した方法で加工あるいは成形したも
のを用いることができる。
As the plate member 9, any material can be used as long as the grooves 1O can be formed with good accumulation and the material satisfies suitable strength and characteristics as a constituent member of the optical transmitter array. For example, it is possible to use resin materials such as FRP (fiber-reinforced resin), engineering plastics, and acrylic resins, and metal materials such as aluminum, which are processed or molded using a method suitable for the material used, such as NC processing or injection molding. .

一方、第2図は、第1図に示した構成の板部材9を用い
て光伝送体列付き板部材を形成するための装置の一例の
概略図、また、第3図は、第2図の装置において基体周
壁面に形成した巻取り面にファイバ状光伝送体を巻付け
る際の基体とトラバース機構の位置関係を示す拡大斜視
図である。
On the other hand, FIG. 2 is a schematic diagram of an example of an apparatus for forming a plate member with an optical transmission body array using the plate member 9 having the configuration shown in FIG. 1, and FIG. FIG. 6 is an enlarged perspective view showing the positional relationship between the base and the traverse mechanism when winding the fiber-like optical transmission body around the winding surface formed on the peripheral wall surface of the base in the apparatus of FIG.

上記の構成の板部材9は、多角柱形状の基体としての巻
取りボビン11の周壁面にボルト等で着脱自在に固定さ
れる。なお、板部材9を固定する際には、板部材9の溝
の設けられた面9aが外向し、かつ板部材9の有する溝
10が巻取りボビン11の多角柱形状の中心軸に対して
垂直な向きとなるようにする。このようにして、巻取り
ボビン11の壁面に光伝送体ファイバの巻取り面を形成
する。
The plate member 9 having the above configuration is detachably fixed to the peripheral wall surface of the winding bobbin 11 as a polygonal prism-shaped base with bolts or the like. Note that when fixing the plate member 9, the grooved surface 9a of the plate member 9 faces outward, and the groove 10 of the plate member 9 is aligned with the central axis of the polygonal prism of the winding bobbin 11. Make sure it is oriented vertically. In this way, a winding surface of the optical fiber is formed on the wall surface of the winding bobbin 11.

なお、ここでいう多角柱形状の基体の周壁面とは、板部
材9が設置可能であり、かつ上記のような巻取り面を形
成できるならば、連続した平面であっても、必要部分の
みを、例えば、枠組で形成したもの等であっても良い。
Note that the peripheral wall surface of the polygonal prism-shaped base mentioned here refers to only the necessary portion even if it is a continuous plane, provided that the plate member 9 can be installed and the winding surface as described above can be formed. For example, it may be formed by a framework.

巻取りボビン11には、プーリーとベルトとによって接
続された駆動モーター16が接続されており、これらが
巻取りボビン11をその多角柱形状の中心軸で回転させ
るための回転手段を構成している。
A drive motor 16 connected by a pulley and a belt is connected to the winding bobbin 11, and these constitute a rotation means for rotating the winding bobbin 11 around its polygonal columnar central axis. .

更に、巻取りボビン11の周壁面に形成された巻取り面
に光伝送体ファイバ13を巻付ける際に、その巻取り部
での巻付は位置を決定するトラバースガイド15と、ト
ラバースガイド15の位置を制御する巻取りボビン11
の回転手段と連動したトラバース部17とを有してなる
トラバース機構が、巻取りボビン11近傍に設けられて
いる。
Furthermore, when winding the optical transmission fiber 13 around the winding surface formed on the peripheral wall surface of the winding bobbin 11, the winding at the winding section is performed by the traverse guide 15 that determines the position and the traverse guide 15. Winding bobbin 11 whose position is controlled
A traverse mechanism having a traverse section 17 interlocked with rotation means is provided near the winding bobbin 11.

また、巻取りボビン11に巻取られる1本の連続した光
伝送体ファイバ13は、その保持部としての巻戻しボビ
ン12から引き出され、ガイドローラ、トラバースガイ
ド15の溝18を通して巻取りボビン11に供給される
。従って、この例における光伝送体ファイバの供給手段
は、巻戻しボビン12及びガイドローラとから構成され
ている。
Further, one continuous optical fiber 13 to be wound onto the winding bobbin 11 is pulled out from the unwinding bobbin 12 serving as a holding portion, and passed through the guide roller and the groove 18 of the traverse guide 15 to the winding bobbin 11. Supplied. Therefore, the optical transmission fiber supply means in this example is composed of the unwinding bobbin 12 and the guide roller.

一方、巻戻しボビン12と巻取りボビンとの間には、巻
戻しボビン12から引き出された光伝送体ファイバ13
の張力を調整するテンションローラー14が設けられて
いる。
On the other hand, between the unwinding bobbin 12 and the winding bobbin, an optical transmission fiber 13 drawn out from the unwinding bobbin 12 is provided.
A tension roller 14 is provided to adjust the tension.

本発明に用いる光伝送体ファイバ13としては、所望の
光学的特性を有した一本の連続したファイバ状であって
、良好な巻付は操作を実現するのに適度な可撓性を有し
ている光伝送体が好適である。そのような光伝送体とし
ては、例えばフッ化ビニリデンとテトラフルオロエチレ
ンとの共重合体及びポリメチルメタクリレート等からな
るプラスチック系光伝送体ファイバが適している。また
、用いる光伝送体ファイバ13の直径は、製造する光伝
送体アレイの所望とする構成に応じて適宜選択すれば良
い。
The optical transmission fiber 13 used in the present invention is a single continuous fiber having desired optical properties, and a good winding has appropriate flexibility to realize operation. An optical transmission body that has the following properties is suitable. As such an optical transmission material, a plastic optical transmission fiber made of, for example, a copolymer of vinylidene fluoride and tetrafluoroethylene, polymethyl methacrylate, or the like is suitable. Further, the diameter of the optical transmission fiber 13 to be used may be appropriately selected depending on the desired configuration of the optical transmission array to be manufactured.

なお、以上述べた装置の各構成要素は、同様の機能を有
する種々の構成のものに適宜変更しても良い。例えば、
巻取りボビン11は、この例では板部材設置部を8個有
する八角柱形状であるが、これに限定されるものではな
く、所望の板部材設置面の数に応じて種々の多角形状の
ものを使用し得る。
In addition, each component of the apparatus described above may be changed as appropriate to those having various configurations having similar functions. for example,
In this example, the winding bobbin 11 has an octagonal prism shape with eight plate member installation areas, but is not limited to this, and may have various polygonal shapes depending on the desired number of plate member installation areas. can be used.

更に1.E記の例では、巻取りボビン!lの回転手段、
光伝送体ファイバ13の供給手段、及びトラバース機構
とから本発明でいう巻付は手段が構成されているが、こ
の巻付は手段としては、例えば光伝送体ファイバ供給手
段から繰出した光伝送体ファイバを、固定された基体の
回りを旋回するガイドによって巻取り部へ巻付ける方式
など種々の方式のものを必要に応じて通用可能である。
Furthermore 1. In the example in E, the winding bobbin! l rotation means,
The means for winding the optical fiber 13 and the traverse mechanism constitute the winding means in the present invention. Various methods can be used as needed, such as a method in which the fiber is wound around a winding section by a guide that rotates around a fixed base.

次に、このような構成の装置を用いた本発明の方法の主
要工程について説明する。
Next, the main steps of the method of the present invention using the apparatus having such a configuration will be explained.

[工程(a)] まず、第1図に示した構成の溝付き板部材9を、第2図
及び第3図に示した装置の多角形状の巻取りボビン11
の周壁面に、満10の設けられた面9aが外側に向き、
かつ溝IOが巻取りボビン11の回転軸(八角柱形状の
中心軸)に対して垂直な方向となるように、ボルト等で
着脱自在に固定し光伝送体ファイバ13の巻付は面を形
成する。
[Step (a)] First, the grooved plate member 9 having the configuration shown in FIG. 1 is placed on the polygonal winding bobbin 11 of the apparatus shown in FIGS.
10 faces 9a are provided on the peripheral wall surface facing outward,
In addition, the groove IO is removably fixed with bolts or the like so that the groove IO is perpendicular to the rotation axis of the winding bobbin 11 (center axis of the octagonal prism), and the winding of the optical transmission fiber 13 forms a surface. do.

次に、巻戻しボビン12から光伝送体ファイバ13を引
き出し、これをガイドローラ、テンションローラー14
及び巻初め位置(最初に光伝送体を供給する溝に対応し
た位置)にセットされたトラバースガイド15の溝18
に通し、更に、その端部を巻取りボビン11の板部材の
巻初め位置に対応する部分に固定する。この状態で、光
伝送体ファイバ13にはテンションローラー14によっ
て適度な張力が付与され、また以後の巻付は操作中でも
その張力がテンションローラーによって一定に制御でき
るようになっている。
Next, the optical fiber 13 is pulled out from the unwinding bobbin 12, and the optical fiber 13 is connected to the guide roller and tension roller 14.
and the groove 18 of the traverse guide 15 set at the winding start position (the position corresponding to the groove that initially supplies the optical transmission body).
Further, the end portion thereof is fixed to a portion of the plate member of the winding bobbin 11 corresponding to the winding start position. In this state, a suitable tension is applied to the optical transmission fiber 13 by the tension roller 14, and the tension can be controlled at a constant level by the tension roller during subsequent winding operations.

ここで、駆動モーター16を作動させ、巻取りボビン1
1を矢印Aの方向に回転させる。
Here, the drive motor 16 is activated and the winding bobbin 1 is
1 in the direction of arrow A.

すると、巻取りボビン11の周壁に設置された板部材9
のトラバースガイド15に対応した位置にある溝上には
光伝送体ファイバ13が供給され、更に、テンションロ
ーラー14によって付与された張力の作用でスムーズに
該溝内にこれが配置され、該溝に添った方向に正しく配
列されつつ、そこへ巻き付けられる。
Then, the plate member 9 installed on the peripheral wall of the winding bobbin 11
The optical fiber 13 is supplied onto the groove at a position corresponding to the traverse guide 15, and is smoothly placed in the groove by the action of the tension applied by the tension roller 14, so that it follows the groove. It is wound there while being arranged correctly in the direction.

巻取りボビン11が一周回転したところで、トラバース
ガイド15の位置を、板部材9の次の溝に対応した位置
に移動させ、同様の操作を行なう。以下、ボビン11が
一周するごとに、トラバースガイド15の位置を所定の
(満10の配列に対応した)ピッチで矢印Bの方向に移
動させて、同様に巻取り操作を行ない、第4図に示すよ
うに順次光伝送体を溝に供給して、これを配列していく
。所定の光伝送体13の板部材−トでの配列が得られて
たところで、巻取ボビン11の回転を止める。
When the winding bobbin 11 has rotated once, the position of the traverse guide 15 is moved to a position corresponding to the next groove of the plate member 9, and the same operation is performed. Thereafter, each time the bobbin 11 goes around, the position of the traverse guide 15 is moved in the direction of the arrow B at a predetermined pitch (corresponding to a full 10 array), and the winding operation is performed in the same manner, as shown in FIG. As shown, the optical transmission bodies are sequentially supplied to the grooves and arranged. When the predetermined arrangement of the light transmitting bodies 13 on the plate members is obtained, the rotation of the winding bobbin 11 is stopped.

なお、この装置では、トラバースガイド15の一往路(
復路)で一層の光伝送体列を板部材9上に形成できる。
In addition, in this device, one outward path of the traverse guide 15 (
On the return trip), one more layer of optical transmission bodies can be formed on the plate member 9.

従って、第5図に示した2層積みなどの光伝送体列の複
数層巻きを巻取りボビン11の周壁に形成するには、ト
ラバースガイド15の往路、復路の回数を所望に応じて
調整すれば良い。
Therefore, in order to form a multi-layer winding of the optical transmitter array on the peripheral wall of the winding bobbin 11, such as the two-layer stack shown in FIG. Good.

また、この複数層巻きの場合は、例えば第5図に示すよ
うに先に形成された前層の光伝送体ファイバ列が、次の
層を構成する各光伝送体ファイバの配列を正すガイドの
役割りを果すことになる。つまり、前層のファイバ列の
互いに隣り合った光伝送体ファイバによって新たに溝が
形成され、この溝がガイドとして作用し、この溝に次層
を形成する光伝送体ファイバを組み込むことによって、
精密な俵積みが実現される。
In addition, in the case of this multi-layer winding, for example, as shown in FIG. He will fulfill his role. In other words, a new groove is formed by the optical transmission fibers adjacent to each other in the fiber row of the previous layer, and this groove acts as a guide, and by incorporating the optical transmission fiber forming the next layer into this groove,
Accurate bale stacking is achieved.

更に、複数層巻取りの作業をより効率的に行なうために
は、巻戻しボビン12を複数設け、必要な巻き層数と等
しい本数の光伝送体ファイバを一度に供給し、巻取りボ
ビン11に一括して巻取らせることもできる。この場合
、一定張力が付与された各々の光伝送体ファイバは、ト
ラバースガイド15に設けられた複数の溝に入る。最下
層すなわち一番先行して巻取られる光伝送体ファイバは
、巻取りボビンIIの周壁トの板部材9の溝に沿って巻
取られ、以下それと平行した形で、第2層、第3層、・
・・どなる光伝送体ファイバが直前に形成された前層フ
ァイバ列をガイドとしながら巻取られていく。
Furthermore, in order to perform multi-layer winding work more efficiently, a plurality of unwinding bobbins 12 are provided, and a number of optical transmission fibers equal to the required number of winding layers are supplied at once to the winding bobbin 11. It is also possible to wind it all at once. In this case, each optical transmission fiber to which a constant tension is applied enters a plurality of grooves provided in the traverse guide 15. The lowest layer, that is, the optical fiber that is wound first, is wound along the groove of the plate member 9 on the peripheral wall of the winding bobbin II, and then the second layer, the third layer, etc. are wound in parallel thereto. layer,·
...A roaring optical transmission fiber is wound up while using the previous layer fiber row formed just before as a guide.

[工程(b)] 次に、上述のようにして溝付き板部材9上に形成した光
伝送体ファイバ列と板部材9との接着が行なわれる。
[Step (b)] Next, the optical transmission fiber array formed on the grooved plate member 9 as described above and the plate member 9 are bonded together.

この接着は、一層巻の場合には、板部材9と慈坂部材9
上の光伝送体13との隙間に、また複数層巻の場合には
更に板部材9上の光伝送体ファイバ13同士の隙間にも
接着剤を含浸、充填させた後、固化させて行なうことが
できる。なお、ここで用いる接着剤としては、例えば黒
色軟質エポキシ樹脂などの比較的粘性の低い、すなわち
板部材と光伝送体との隙間、あるいは各光伝送体間の隙
間に、十分に含浸、充填可能な程度の粘性を有する接着
剤を用いれば良い。
In the case of single-layer winding, this adhesion is performed between the plate member 9 and the Jisaka member 9.
After impregnating and filling the gap with the optical transmission body 13 above, or in the case of multi-layer winding, also the gap between the optical transmission body fibers 13 on the plate member 9, solidify the adhesive. Can be done. Note that the adhesive used here has relatively low viscosity, such as black soft epoxy resin, which can be sufficiently impregnated and filled into the gap between the plate member and the optical transmission body, or the gap between each optical transmission body. An adhesive having a certain level of viscosity may be used.

[工程(c)コ 上述のようにして光伝送体列と板部材9との接着が終了
したところで、各板部材端部間9bで光伝送体列をカッ
ター等で切断して8個の断片に分割し、更に各板部材を
巻取りボビン11から取り外して、光伝送体列付き板部
材9を得る。
[Step (c)] When the adhesion between the optical transmitter array and the plate member 9 is completed as described above, the optical transmitter array is cut with a cutter or the like between the ends 9b of each plate member to form eight pieces. Further, each plate member is removed from the winding bobbin 11 to obtain a plate member 9 with an optical transmission body array.

なお、この例のように巻取りボビン11の周壁面(8面
)の全てに溝付き板部材9を設置した場合には、ここで
計8個の光伝送体列付き板部材を同時に得ることができ
る。
Note that when the grooved plate members 9 are installed on all of the peripheral wall surfaces (eight sides) of the winding bobbin 11 as in this example, a total of eight plate members with optical transmission body arrays can be obtained at the same time. Can be done.

[工程(d)] 次に、上記工程(c)で得た、光伝送体列付き板部材9
 (9−1)に、必要に応じて第6図に示すようにその
端部に中間部材7を接着してから、更に、板部材9−1
と同一サイズの他の板部材9−2(溝付きでも溝無しで
も良い)を接着して、2枚の板部材9−1.9−2間に
光伝送体列を決着固定する。
[Step (d)] Next, the plate member 9 with the optical transmission body array obtained in the above step (c)
(9-1), if necessary, as shown in FIG. 6, glue the intermediate member 7 to the end of the plate member 9-1
Another plate member 9-2 (with or without grooves) of the same size is adhered to fix the optical transmission body array between the two plate members 9-1 and 9-2.

また他の方法として、第7図に示すように光伝送体付き
板部材9 (9−1a 、 9−1b)どうしを2枚、
光伝送体列を介して接着して、2枚の板部材9間に決着
固定する。なお、光伝送体列付き板部材9同上を接着す
る場合には、この段階で接着される2つの光伝送体列の
配列が、例えば第7図の板部材9−1aに接着された光
伝送体列と、板部材9−1bに接着された光伝送体列の
関係のように対応するように、用いる溝付き板部材の溝
の配列を適宜調整しておくと良い。あるいは、場合によ
っては、同一の溝の配列を有する板部材を用い、組立て
体の側面にはみ出す板部材部分をカットしても良い。
As another method, as shown in FIG. 7, two plate members 9 (9-1a, 9-1b) with optical transmission bodies
It is adhered and fixed between the two plate members 9 via the optical transmission body array. In addition, when bonding the plate member 9 with optical transmitter arrays, the arrangement of the two optical transmitter arrays to be adhered at this stage is, for example, the optical transmitter array bonded to the plate member 9-1a in FIG. It is preferable to adjust the arrangement of the grooves of the grooved plate member used so as to correspond to the relationship between the array of light transmitting bodies and the array of light transmitting bodies bonded to the plate member 9-1b. Alternatively, depending on the case, plate members having the same groove arrangement may be used and the portions of the plate members protruding from the sides of the assembly may be cut.

なお、この工程における各部材の接着にも低粘性の接着
剤を用いれば良い。
Note that a low-viscosity adhesive may also be used to bond each member in this step.

最後に各光伝送体の端面が位置する2面を鏡面研摩して
光伝送体アレイを完成する。なお、上述の接着固定は、
クランプ等を用いることによってより確実なものとなる
Finally, the two surfaces on which the end faces of each optical transmission body are located are mirror-polished to complete the optical transmission body array. In addition, the adhesive fixation mentioned above is
This can be made more reliable by using a clamp or the like.

以上、−木の連続したファイバ状光伝送体13を用い1
巻取り部が回転することによって、そこにファイバ状光
伝送体13が巻取られる場合における本発明を説明した
As described above, using the continuous fiber-like optical transmission body 13 of -tree, 1
The present invention has been described in the case where the fiber-like optical transmission body 13 is wound up by the rotation of the winding part.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、光伝送体の並設
を、多角形状の基体の周壁に溝付き板部材を固定して巻
取り面を形成し、この巻取り面にファイバ状の光伝送体
を巻付けるという簡単な操作で行なえ、かつ、板部材に
設けられた溝がガイドとなって光伝送体が配列されるの
で、光伝送体の配列が該溝によって自動的に決定され、
常に高い配列精度での作業性良い光伝送体の並設を実施
できる。
As explained above, according to the present invention, the parallel arrangement of optical transmission bodies is achieved by fixing a grooved plate member to the peripheral wall of a polygonal base body to form a winding surface, and forming a winding surface on this winding surface. This can be done with a simple operation of winding the optical transmitters, and the grooves provided in the plate member act as guides to arrange the optical transmitters, so the arrangement of the optical transmitters is automatically determined by the grooves. ,
Optical transmission bodies can be arranged side by side with always high alignment accuracy and good workability.

また、一度に複数の光伝送体列付き板部材を形成でき、
光伝送体アレイの生産効率は従来法に比べて大幅に改善
され、かつ光伝送体アレイの品質も高性能かつ安定した
ものとなる。
In addition, it is possible to form a plurality of plate members with optical transmission body arrays at once,
The production efficiency of the optical transmitter array is greatly improved compared to the conventional method, and the quality of the optical transmitter array is also high-performance and stable.

〔実施例〕〔Example〕

以下、実施例により更に本発明の詳細な説明する。 Hereinafter, the present invention will be further explained in detail with reference to Examples.

実施例1 笛2図にγメ篤3図に余した祷薩の契署を用いて光伝送
体アレイの作成を以下のようにして実施した。
Example 1 An optical transmitter array was created in the following manner using the signatures of the prayers left in Figure 2 of the flute and Figure 3 of the Gamma Atsushi.

まず、弗化ビニリデン80モル%とテトラフルオロエチ
レン20モル%からなる共重合体(屈折率nI)1.4
00)33重量部、連続塊状重合法で得たポリメチルメ
タクリレート(屈折率nD1.492 ) 33fi量
部、メチルメタクリレート単量体33重量部、ベンジル
ジメチルケタール0.1重量部、ハイドロキノン0.1
重量部を、80℃に加熱し、混線部を通して、径が2.
0amのノズルより押し出し、続いて押し出したファイ
バを、80℃に加熱され、窒素ガスが10mj/l1i
nの速度で流れる揮発部を8分で通過させてから、6本
の円状に等間隔に設置された400Wの高圧水銀灯の中
心にファイバを通過させ約5分間光を照射し、20cI
Il/winの速度でニップローラーで引き取った。
First, a copolymer (refractive index nI) consisting of 80 mol% vinylidene fluoride and 20 mol% tetrafluoroethylene was used.
00) 33 parts by weight, 33 parts by weight of polymethyl methacrylate (refractive index nD 1.492) obtained by continuous bulk polymerization, 33 parts by weight of methyl methacrylate monomer, 0.1 part by weight of benzyl dimethyl ketal, 0.1 part by weight of hydroquinone.
The weight part was heated to 80°C and passed through the cross wire part to a diameter of 2.
The extruded fiber was extruded from a 0 am nozzle, and the extruded fiber was heated to 80°C and nitrogen gas was heated at 10 mj/l1i.
After passing through the volatile part flowing at a speed of n in 8 minutes, the fiber was passed through the center of six 400W high-pressure mercury lamps installed at equal intervals in a circle and irradiated with light for about 5 minutes.
It was taken off with a nip roller at a speed of Il/win.

得られたファイバの径は800−であり、インターフア
コ干渉顕微鏡により測定した屈折率分布は、中心部が1
.460 、周辺部が1.451であり、中心部から周
辺部に向って連続的に減少していた。
The diameter of the obtained fiber was 800 mm, and the refractive index distribution measured by an interfaco interference microscope was 1 at the center.
.. 460 and 1.451 at the periphery, decreasing continuously from the center to the periphery.

なお、得られたファイバの核磁気共鳴法(NMR)によ
る組成分析の結果は、中心部には弗化ビニリデンとテト
ラフルオロエチレンの共重合体が33重量%、周辺部に
は43重量%それぞれ含まれていた。メチルメタクリレ
ート単量体の残留分は、全体として0.9重量%であっ
た。(以下、これをレンズファイバと称する。)次に、
このレンズファイバを、巻戻しボビンに巻付は第2図及
び第3図に示された装置にセットした。
In addition, the results of compositional analysis of the obtained fiber by nuclear magnetic resonance spectroscopy (NMR) showed that the center portion contained 33% by weight of vinylidene fluoride and tetrafluoroethylene copolymer, and the peripheral portion contained 43% by weight. It was. The residual amount of methyl methacrylate monomer was 0.9% by weight overall. (Hereinafter, this will be referred to as a lens fiber.) Next,
This lens fiber was wound onto a rewinding bobbin and set in the apparatus shown in FIGS. 2 and 3.

これとは別に、アルミ製の板(326m+a X35a
v+)の一方の表面をNC加工して、その横手方向に対
して直角な方向に両端一杯に伸び、先に形成したレンズ
ファイバの直径と等しいピッチで正確に平行な250本
のV溝を形成し、■溝付き板部材を多数得た。
Apart from this, an aluminum plate (326m+a x 35a
v+) is NC-processed to form 250 exactly parallel V-grooves that extend to the full extent of both ends in a direction perpendicular to the transverse direction and have a pitch equal to the diameter of the previously formed lens fiber. (2) A large number of grooved plate members were obtained.

このようにして得た■溝付き板部材を、先に述べたよう
な位置関係で巻取りボビンの各周壁面にボルトで固定し
、そこにレンズファイバの巻取り面を形成した。
The grooved plate member thus obtained was fixed with bolts to each circumferential wall surface of the winding bobbin in the positional relationship as described above, and the winding surface of the lens fiber was formed thereon.

次に、巻戻しボビンからレンズファイバを引き出し、こ
れをガイドローラー、テンションローラー及び最初にレ
ンズファイバを供給する板部材の溝に対応した位置にセ
ットされたトラバースガイドに通し、更に、その端部な
巻取りボビンの板部材の巻初め位置に対応する部分に固
定した。
Next, the lens fiber is pulled out from the unwinding bobbin, passed through a guide roller, a tension roller, and a traverse guide set at a position corresponding to the groove of the plate member that initially supplies the lens fiber. It was fixed to a portion of the plate member of the winding bobbin corresponding to the winding start position.

この状態で、レンズファイバにはテンションローラーに
よって張力が付与され、また以後の巻付は操作中でもそ
の張力が一定となるよう制御された。
In this state, tension was applied to the lens fiber by a tension roller, and subsequent winding was controlled so that the tension remained constant during the operation.

ここで、駆動モーターを作動させ、巻取りボビンを先に
述べた方向に60r、p、m、の速度で回転させ、板部
材上の最初の溝にレンズファイバを供給して巻付けを開
始した。
Here, the drive motor was activated and the winding bobbin was rotated in the above-mentioned direction at a speed of 60 r, p, m, and the lens fiber was supplied to the first groove on the plate member to start winding. .

この操作に際して、テンションローラーによって付与さ
れた張力の作用でレンズファイバはスムーズに溝内に配
置され、該溝に沿った方向に正しく配列された。
During this operation, the lens fibers were smoothly placed in the grooves due to the tension applied by the tension rollers, and were correctly aligned in the direction along the grooves.

更に、巻取りボビンが一周するごとに、トラバースガイ
ドの位置を、板部材の溝の配列に対応したピッチで移動
させ、巻付は操作を続行した。
Furthermore, each time the winding bobbin made one revolution, the position of the traverse guide was moved at a pitch corresponding to the arrangement of the grooves in the plate member, and the winding operation was continued.

板部材上の谷溝にレンズファイバが配列された、すなわ
ち1層のレンズファイバ列が形成された時点で、トラバ
ースガイドを反転させ、すなわちこれまでと逆方向に上
記と同様にその移動ピッチを調節しつつ移動させ、既に
形成されている1層目の互いに隣合ったレンズファイバ
間に更に2層目を構成するレンズファイバを順次巻付け
た。
When the lens fibers are arranged in the valley grooves on the plate member, that is, one layer of lens fiber rows is formed, the traverse guide is reversed, that is, the movement pitch is adjusted in the same manner as above in the opposite direction. The lens fibers constituting the second layer were further wound one after another between the adjacent lens fibers of the already formed first layer.

巻取り面上に2層巻きが形成されたところで、巻取りボ
ビンの回転を止めた。
When two layers of winding were formed on the winding surface, the rotation of the winding bobbin was stopped.

次に、このようにして溝付き板部材上に形成したレンズ
ファイバ列(2層積み)と板部材とを、板部材と該板部
材上の各レンズファイバの隙間及び該板部材上の各レン
ズファイバ間の隙間に、黒色軟質エポキシ樹脂を含浸、
充填させた後、それを固化させて接着固定した。
Next, the lens fiber array (two-layer stack) formed on the grooved plate member in this way and the plate member are connected to the gap between the plate member and each lens fiber on the plate member and each lens on the plate member. The gap between the fibers is impregnated with black soft epoxy resin.
After filling, it was solidified and fixed with adhesive.

このようにしてレンズファイバ列と板部材との接着が終
了したところで、各板部材端部間でレンズファイバ列を
カッターで切断して8個の断片に分割し、更に各板部材
を巻取りボビンから取り外して、円柱状レンズ列付き板
部材を8個得た。
When the lens fiber array and the plate member have been bonded together in this way, the lens fiber array is cut with a cutter between the ends of each plate member to divide it into eight pieces, and each plate member is then wound into a winding bobbin. Eight plate members with cylindrical lens arrays were obtained.

続いて、レンズ列付き板部材の端部に中間部材を接着し
てから、該板部材と同一サイズのアルミ製の他の板部材
を黒色軟質エポキシ樹脂によって接着し、二枚の板部材
間にプラスチックレンズ列の2層積みが挟着された組立
て体を形成した。
Next, an intermediate member is glued to the end of the plate member with the lens array, and then another aluminum plate member of the same size as the plate member is glued with black soft epoxy resin, and the space between the two plate members is Two stacks of plastic lens arrays formed a sandwiched assembly.

最後に、この組立て体の各レンズの端面が位置する2面
を鏡面加工して、光伝送体アレイを得た。
Finally, the two surfaces on which the end surfaces of each lens of this assembly are located were mirror-finished to obtain a light transmitting body array.

以上の操作を繰り返して得られた光伝送体アレイの多数
についてその品質を検査したところ、各アレイのレンズ
は、板部材に形成されたV溝の配列に従って配列精度良
く並設されており、各伝送体アレイを、1mm当り6.
4本のスリット像を用いるMTF測定装置に組み込んで
その特性を評価したところ、各光伝送体アレイのいずれ
においても、伝送された像は、コントラスト良く、鮮明
であり、良好な解像特性が得られ、またレンズ周辺部の
光散乱も非常に小さくなっていた。
When we inspected the quality of a large number of optical transmitter arrays obtained by repeating the above operations, we found that the lenses of each array were arranged side by side with good alignment accuracy according to the arrangement of the V-grooves formed in the plate member. The transmitter array is 6mm per 1mm.
When we incorporated it into an MTF measuring device that uses four slit images and evaluated its characteristics, we found that the transmitted images had good contrast and clarity, and good resolution characteristics were obtained for each optical transmitter array. Furthermore, light scattering around the lens periphery was also extremely small.

実施例2 まず、第7図に示した板部材9−1a及び9−1bのよ
うに溝の配列にずれのある2種の板部材の多数を実施例
1と同様の方法で形成し、更にそれらを別々に用い、か
つレンズファイバを一層巻とする以外は、実施例1と同
様にして、2種のレンズファイバ付き板部材を得た。
Example 2 First, a large number of two types of plate members having misaligned groove arrangements, such as plate members 9-1a and 9-1b shown in FIG. 7, were formed in the same manner as in Example 1, and Two types of plate members with lens fibers were obtained in the same manner as in Example 1, except that they were used separately and the lens fiber was wound in a single layer.

次に、このようにして得た2種のレンズファイバ付き板
部材を、黒色軟質エポキシ樹脂によって第7図に示した
位置関係で接着し、2枚に板部材間にレンズ列の2層積
みが挟着された組立て体を形成した。
Next, the two types of plate members with lens fibers obtained in this way were adhered with black soft epoxy resin in the positional relationship shown in Figure 7, so that two layers of lens arrays were stacked between the two plate members. A sandwiched assembly was formed.

最後に、この組立て体の各レンズの端面が位置する2面
を鏡面加工して、光伝送体アレイを得た。
Finally, the two surfaces on which the end surfaces of each lens of this assembly are located were mirror-finished to obtain a light transmitting body array.

以上の操作を繰り返して得られた光伝送体アレイの多数
について実施例1と同様にしてその品質を検査したとこ
ろ、各アレイのレンズは、板部材に形成されたV溝の配
列に従って配列結反良く並設されており、各伝送体アレ
イを、lIIIm当り6.4本のスリット像を用いるM
TF測定装置に組み込んでその特性を3層価したところ
、各光伝送体アレイのいずれにおいても、伝送された像
は、コントラスト良く、鮮明であり、良好な解像特性が
得られ、またレンズ周辺部の光散乱も非常に小さくなっ
ていた。
When the quality of a large number of optical transmission body arrays obtained by repeating the above operations was inspected in the same manner as in Example 1, it was found that the lenses of each array were arranged in accordance with the arrangement of the V-grooves formed in the plate member. They are well arranged in parallel, and each transmission body array is
When installed in a TF measuring device and evaluated its characteristics in three layers, it was found that for each optical transmitter array, the transmitted image had good contrast, was clear, and had good resolution characteristics. The light scattering in the area was also very small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に用いることのでき板部材の斜視図、
第2図は光伝送体列を形成するための本発明の装置の概
略図、第3図は第2図の装置の主要部の拡大斜視図、第
4図及び第5図は光伝送体列の形成例を示す断面図、第
6図及び第7図は本発明の方法の工程(d)を示した組
立て体の側面図、第8図〜第10図は従来の方法の主要
工程を示す組立て体の側面側から見た模式図である。 1:研削盤テーブル   2:定盤 3:真空チャック定盤 4.4−1 、4−2 :板部材 4−1a、4−2a
 :研削面5:砥石        6:作業台 7:中間部材 8:円柱状光伝送体 9.9−1 、9−1a、9−1b、 9−2 +板部
材9a:溝の設けられた面  9b:板部材端部間lO
:溝 ++: l取りポビン    12:巻戻しボビン13
°フアイバ状の光伝送体 】4゛テンシヨンローラー 15:トラバースガイド  16:駆動モーター17:
トラバース部 18:トラバースガイド溝
FIG. 1 is a perspective view of a plate member that can be used in the present invention;
FIG. 2 is a schematic diagram of the apparatus of the present invention for forming an optical transmission body array, FIG. 3 is an enlarged perspective view of the main part of the apparatus shown in FIG. 2, and FIGS. 4 and 5 are optical transmission body arrays. 6 and 7 are side views of the assembly showing step (d) of the method of the present invention, and FIGS. 8 to 10 show the main steps of the conventional method. FIG. 3 is a schematic diagram of the assembly seen from the side. 1: Grinding machine table 2: Surface plate 3: Vacuum chuck surface plate 4.4-1, 4-2: Plate members 4-1a, 4-2a
: Grinding surface 5: Grinding wheel 6: Workbench 7: Intermediate member 8: Cylindrical light transmitting body 9.9-1, 9-1a, 9-1b, 9-2 + Plate member 9a: Grooved surface 9b : Between the ends of the plate member lO
:Groove++: L take-up bobbin 12: Rewinding bobbin 13
°Fiber-like optical transmission body] 4゛Tension roller 15: Traverse guide 16: Drive motor 17:
Traverse part 18: Traverse guide groove

Claims (1)

【特許請求の範囲】 1)円柱状光伝送体を列状に並設した光伝送体列を2枚
の板部材で挟着して光伝送体アレイを製造する方法にお
いて、多角柱形状基体の周壁面に、ファイバ状の光伝送
体の直径に等しいピッチで平行な複数の溝が設けられた
板部材を、該溝を有する面が外向し、かつ該溝が前記多
角柱形状の中心軸と垂直となるような向きで着脱自在に
固定して巻取り面を形成し、該巻取り面に、前記溝をガ
イドとしてファイバ状の光伝送体を一層または数層巻付
けて光伝送体列を前記基体周壁面に固定された板部材上
に形成する工程(a)と、該光伝送体列を該板部材に接
着固定する工程(b)と、該光伝送体列を該板部材端部
で切断し、光伝送体列付き板部材を形成する工程(c)
と、該工程(c)で得られた光伝送体列付板部材に他の
板部材を接着するか、または前記工程(c)で得た光伝
送体列付き板部材の2枚を接着して、2枚の板部材間に
光伝送体列を挟着する工程(d)とを有することを特徴
とする光伝送体アレイの製造方法。 2)その多角柱形状の周壁面に、ファイバ状の光伝送体
の直径に等しいピッチで平行な複数の溝が設けられた板
部材を、該溝を有する面を外向させ、かつ該溝と前記多
角柱形状部の中心軸とが垂直となる向きで着脱自在に固
定し得るようになした基体と、溝付き板部材を固定した
該基体の周壁に該板部材に設けられた溝をガイドとして
ファイバ状の光伝送体を一層若しくは数層巻付けるため
の巻付手段とを有してなるものである光伝送体アレイの
製造に用いる装置。 3)前記巻付け手段が、前記基体をその多角柱形状の中
心軸を中心に回転させる回転手段と、該基体に巻付ける
ファイバ状の光伝送体を供給する光伝送体供給手段と、
前記基体周壁面におけるファイバ状の光伝送体の巻付け
位置を制御するトラバース機構とを有してなる特許請求
の範囲第2項記載の光伝送体アレイの製造に用いる装置
[Scope of Claims] 1) In a method for manufacturing an optical transmission array by sandwiching an optical transmission array in which columnar optical transmission bodies are arranged side by side between two plate members, A plate member having a peripheral wall surface provided with a plurality of parallel grooves at a pitch equal to the diameter of the fiber-shaped optical transmission body, the surface with the grooves facing outward, and the grooves being aligned with the central axis of the polygonal prism shape. A winding surface is formed by removably fixed in a vertical direction, and one or several layers of fiber-shaped optical transmission bodies are wound around the winding surface using the groove as a guide to form an array of optical transmission bodies. a step (a) of forming the optical transmitter array on a plate member fixed to the peripheral wall surface of the base; a step (b) adhesively fixing the optical transmitter array to the plate member; and a step (b) of adhesively fixing the optical transmitter array to the plate member end. step (c) of cutting to form a plate member with an array of optical transmitters.
Then, adhere another plate member to the plate member with the optical transmitter array obtained in the step (c), or adhere two of the plate members with the optical transmitter array obtained in the step (c). and a step (d) of sandwiching an optical transmitter array between two plate members. 2) A plate member is provided with a plurality of parallel grooves at a pitch equal to the diameter of the fiber-shaped optical transmission body on its polygonal prism-shaped peripheral wall surface, and the surface with the grooves faces outward, and the grooves and the A base body that can be detachably fixed in a direction in which the central axis of the polygonal columnar part is perpendicular to the base body, and a grooved plate member is fixed to the peripheral wall of the base body, using a groove provided in the plate member as a guide. An apparatus used for manufacturing an optical transmission body array, which comprises a winding means for winding one or several layers of fiber-shaped optical transmission bodies. 3) a rotation means in which the winding means rotates the base body around a central axis of the polygonal column shape; and a light transmission body supply means for supplying a fiber-shaped light transmission body to be wound around the base body;
3. An apparatus used for manufacturing an optical transmission body array according to claim 2, further comprising a traverse mechanism for controlling the winding position of the fiber-shaped optical transmission body on the peripheral wall surface of the base body.
JP62004147A 1987-01-13 1987-01-13 Method and device for manufacturing optical transmission body array Pending JPS63173004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62004147A JPS63173004A (en) 1987-01-13 1987-01-13 Method and device for manufacturing optical transmission body array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62004147A JPS63173004A (en) 1987-01-13 1987-01-13 Method and device for manufacturing optical transmission body array

Publications (1)

Publication Number Publication Date
JPS63173004A true JPS63173004A (en) 1988-07-16

Family

ID=11576664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62004147A Pending JPS63173004A (en) 1987-01-13 1987-01-13 Method and device for manufacturing optical transmission body array

Country Status (1)

Country Link
JP (1) JPS63173004A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4991930A (en) * 1989-11-22 1991-02-12 Eastman Kodak Company Fiber optic array
JP2005292598A (en) * 2004-04-01 2005-10-20 Mitsubishi Rayon Co Ltd Method for manufacturing original plate of rod lens array and method for manufacturing rod lens array

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878104A (en) * 1981-11-04 1983-05-11 Mitsubishi Rayon Co Ltd Laminating method of optical fiber
JPS58114005A (en) * 1981-12-28 1983-07-07 Mitsubishi Rayon Co Ltd Manufacture of optical fiber sheet
JPS6059301A (en) * 1983-09-12 1985-04-05 Noritake Co Ltd Light shieldable plate and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878104A (en) * 1981-11-04 1983-05-11 Mitsubishi Rayon Co Ltd Laminating method of optical fiber
JPS58114005A (en) * 1981-12-28 1983-07-07 Mitsubishi Rayon Co Ltd Manufacture of optical fiber sheet
JPS6059301A (en) * 1983-09-12 1985-04-05 Noritake Co Ltd Light shieldable plate and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4991930A (en) * 1989-11-22 1991-02-12 Eastman Kodak Company Fiber optic array
JP2005292598A (en) * 2004-04-01 2005-10-20 Mitsubishi Rayon Co Ltd Method for manufacturing original plate of rod lens array and method for manufacturing rod lens array
JP4646286B2 (en) * 2004-04-01 2011-03-09 三菱レイヨン株式会社 Method for manufacturing rod lens array original plate and method for manufacturing rod lens array

Similar Documents

Publication Publication Date Title
US3989578A (en) Apparatus for manufacturing optical fiber bundle
CN103201660B (en) Lighting converter
CN100335931C (en) Tool and method for assembling linear elements into ribbon shape, and linear elements assembled into ribbon shape and terminal portion structure of the same
US9188746B2 (en) Optical fiber component, manufacturing method thereof, optical fiber and lens substrate assembly, and manufacturing method thereof
JPS63173004A (en) Method and device for manufacturing optical transmission body array
JP2996309B2 (en) Fiber bundle made of optical fiber and method of manufacturing the same
JP2012022061A (en) Optical fiber unit manufacturing method and manufacturing apparatus
US3694291A (en) Apparatus for making light pipes
JPS63173005A (en) Manufacture of optical transmission body array
KR20170048027A (en) a manufacturing apparatus for optical-fiber plate of skein-type and a manufacturing method of optical-fiber plate
JP4990060B2 (en) Method for manufacturing optical transmitter array
JPS6374001A (en) Method and device for manufacturing transmission body for convergent light
JP2003215381A (en) Method for manufacturing optical fiber array and optical fiber array
JPS63186209A (en) Light transmission body array
JP2004109778A (en) Optical fiber array and its manufacturing method
CN100504467C (en) Optical transmission protocol array primary plate and optical transmission protocol array production method
JP3886746B2 (en) Manufacturing method of optical transmission body
JPS63173003A (en) Manufacture of optical transmission body array
JPS63175823A (en) Optical transmission body array
JPS58137807A (en) Production of optical fiber laminate
JPS6023808A (en) Production of light guide body
JP3847825B2 (en) Manufacturing method of optical transmitter array
JPS6133469A (en) Lamination of optical fiber
JP3556298B2 (en) High density optical fiber array and method of manufacturing the same
JP4009287B2 (en) Manufacturing method of resin optical transmitter array