JPS58130554A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58130554A
JPS58130554A JP57012310A JP1231082A JPS58130554A JP S58130554 A JPS58130554 A JP S58130554A JP 57012310 A JP57012310 A JP 57012310A JP 1231082 A JP1231082 A JP 1231082A JP S58130554 A JPS58130554 A JP S58130554A
Authority
JP
Japan
Prior art keywords
resistance
polycrystalline silicon
semiconductor device
high resistance
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57012310A
Other languages
Japanese (ja)
Inventor
Makoto Nakase
中瀬 真
Toshinobu Yanase
柳瀬 年延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57012310A priority Critical patent/JPS58130554A/en
Publication of JPS58130554A publication Critical patent/JPS58130554A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Abstract

PURPOSE:To provide a low resistance part or a high resistance part to the titled device, by providing an energy beam reflecting mask on a poly Si pattern, irradiating the beam, and activating ion implanted impurities. CONSTITUTION:An FET is formed by a conventional method. By a high resistance poly Si layer 12, a poly Si gate 61 and a poly Si wiring 62 on a field oxide film 3 are connected. Then, an Al mask 21 is provided, P ions are implanted in the layer 12, the entire surface is irradiated by a laser beam, and the P ions are activated. The laser beam is reflected by the Al, and the implanted part of P is selectively heated. The gate electrode 61 and a high resistance layer 221 are not heated at all. Therefore, the low resistance part is not formed by the infiltration of P into the electrode 61 and the layer 221, and a wiring 22 having load resistance 221 as designed and a low resistance part 222 for a VDD wire is obtained. It is effective when P, As, and B are used for obtaining the low resistance and N, O, and Ar are used for obtaining the high resistance.

Description

【発明の詳細な説明】 〔発明の技術的背景とその間一点〕 近年、半導体装置の高密度化、高性能化の妥結から、多
結晶シリコンを負荷抵抗として用いる技術が[!#5さ
れている。かかる半導体装置は、今までの6トランジス
タによ)構成されるメモリセルを、4トランジスタ+2
負荷抵抗とするもので、骸負荷抵抗はトランジスタ上に
絶縁膜を介して設けることかで龜るため、平N的には4
トランジスタの面積でメ毫りを構成で龜る点に最大の特
長を有す石、iた、この負荷抵抗体を一部低抵糺化し、
ワードツイン中v、I)ツインの配婦に用い、メモリの
アタセスタイムをよシ短かくする方式がある・ こうした半導体装置は従来、以下に説明する諏l凶(a
)〜(f)に示す方法によ如釈造姑れている。
[Detailed Description of the Invention] [Technical Background of the Invention and One Point Between] In recent years, with the increasing density and high performance of semiconductor devices, technology using polycrystalline silicon as a load resistor has become popular. #5 has been done. Such a semiconductor device replaces the conventional memory cell (6 transistors) with 4 transistors + 2 transistors.
It is used as a load resistance, and since the bulk load resistance is slowed down by providing it on the transistor through an insulating film, it is 4 in terms of N.
The biggest advantage of this technology is that it reduces the area of the transistor by changing its structure.
There is a method used in the word twin mode (v, I) to significantly shorten the access time of the memory.
) to (f).

(1)を丁、P型シリコン基板J K下部にp+反転防
止領域1を有するフィールド咳化膜1を選iR酸化法に
より形成した後フィールド酸化膜1でw5ft′L友烏
状の基板1表向に熱酸化処理によりr−)敵化線となる
峡化膜4を成長させ、更に多結晶シリコン層5を堆積し
、例えば燐を咳多結晶シリコンP−5に熱拡散した(M
l凶(a)図示)。
(1) After forming a field oxidation film 1 having a p+ inversion prevention region 1 at the bottom of a P-type silicon substrate JK by iR oxidation method, the field oxide film 1 is formed into a w5ft'L cross-shaped substrate 1 surface. On the other hand, a thermal oxidation treatment is applied to grow a gorge film 4 which will become an enemy line (r-), and a polycrystalline silicon layer 5 is further deposited, and for example, phosphorus is thermally diffused into the polycrystalline silicon P-5 (M
(a) shown).

ω) 次いで、多結晶シリコンNIIjを写真蝕刻ff
1Kより/中ターニングしてダート電極61と例えばv
、Dライン用船−6mを形成し、この電極−1をマスク
として酸化膜4を遇択エツチングしてr−)酸化8Fを
形成した後、f−1電極−1及びフィールド酸化jlJ
kマスクとして露崩し九基板1に鴫を熱拡散しでれ+型
のソース、ドレイン領域8.9を形成した(第1図(b
)図示)。
ω) Next, photo-etch the polycrystalline silicon NIIjff
Turning from 1K/middle to the dirt electrode 61 and, for example, v
, D line charter-6m is formed, and the oxide film 4 is selectively etched using this electrode-1 as a mask to form r-) oxide 8F, and then f-1 electrode-1 and field oxide jlJ
As a k-mask, a + type source and drain region 8.9 was formed by thermally diffusing a droplet onto the exposed substrate 1 (see Fig. 1(b)).
).

(iM)  次イテ、全面にCVD−8iO□Ill 
J OtJllに検し、r−計電極61及び配4N)6
1上の第1のCVL)−8102M J Oに写真蝕刻
法ycよシ開孔部Jハ。
(iM) Next iteration, CVD-8iO□Ill all over
JOtJll, r-meter electrode 61 and wiring 4N) 6
1 on the first CVL)-8102M JO by photolithography yc and opening part Jc.

Il、を形成した後、全面にアンドーグ多結晶シリコン
層を堆層し、ひきつづきこれを/4ター二ンダして開孔
部JJIIJJI を介してP −計電極61及び配線
6sと接続し九高抵抗の多結晶シリ;ン/4ターン12
を形成し九(第1図(C)1示)。
After forming Il, an undoped polycrystalline silicon layer is deposited on the entire surface, and then it is connected to the P-metal electrode 61 and the wiring 6s through the opening JJIIJJI to form a nine-high resistance. polycrystalline silicon/4 turns 12
9 (shown in Figure 1 (C) 1).

(N)  Rイテ、全面に# 2 OCVD−1110
2膜11を堆積し九彼% vDDライン配線配線6接K
接続高抵抗多結晶シリコン/々ターンJ1上の第200
VD−19102膜J1を写真蝕刻法によ如遺択的に除
去して露出させ、ひきつづき例えばpoct、拡散によ
って燐を高抵抗多結晶シリコン/譬ターンJ1中に選択
的に拡散せしめて、低抵抗部14豐と為抵抗部14#′
を有する多結晶シリコン配線14を形成する(第1図(
d)図示)、なお、低抵抗部14諺はvDDライン配m
−璽と平行に走りてv、)Dライン配線61の低抵抗化
を図シ、高抵抗部14−は負荷抵抗に&る。
(N) Rite, #2 OCVD-1110 on the entire surface
Deposit 2 films 11 and 9% vDD line wiring wiring 6 connections K
Connect high resistance polycrystalline silicon/200th on turn J1
The VD-19102 film J1 is selectively removed and exposed by photolithography, and then phosphorus is selectively diffused into the high resistance polycrystalline silicon/conductor J1 by, for example, poct diffusion, to form a low resistance film. Part 14 and resistance part 14#'
A polycrystalline silicon wiring 14 having a
d) As shown in the diagram), the low resistance section 14 is the vDD line arrangement.
The high resistance part 14 is used as a load resistance.

(V)  次いで、全面に第s o cvn−sio、
績1jを堆積した後、前記開孔部JJ、に対応する箇所
、負# k t7L J 4 s O#l WT OC
VD−810□1114 J J 。
(V) Then, the entire surface was coated with the second so cvn-sio,
After depositing 1j, the part corresponding to the opening JJ, negative #k t7L J 4 s O#l WT OC
VD-810□1114 J J.

1jにコンタクトホールJ61+16gを開孔し、かつ
?型のソース、ドレイン領域8,9に対応する第1〜I
A 3 (D CVD1iO□rl+ J O,J J
 。
A contact hole J61+16g is opened in 1j, and ? The first to I corresponding to the source and drain regions 8 and 9 of the type
A 3 (D CVD1iO□rl+ J O, J J
.

JiifCわたるコンタクトホール16暑 (ソースの
コンタクトホールは図示せず)を開孔した。
Sixteen contact holes (the source contact hole is not shown) were opened across the semiconductor.

つづイテ、第3 OCVD−810□M J 5 全面
4CALMlを真空蒸着し、これをバタ・−ニングして
AA配@77〜J9を形成した後、全面にリン銑加ガラ
ス(pea ) lhどの保躾麟20を堆積して半導体
装置を製造した(第1図く・)図示)・しかしながら、
上述した従来法によ)得られ九半導体装置にあって唸、
第1凶(・)に示す如く、アンド−!多結晶シリコンか
らなる負荷抵抗141が下層の高濃度のv4(或いは砒
系)を含む多結晶シリコンからなるダート電極6と開孔
部J J、を介して接触しているため、rely’−)
電極−中の不純物がその接触面を通して負荷抵抗141
に拡散する。史に、vDDライン用の低抵抗部74.形
成の燐拡散時にも拡散マスクの第2OCVD−810,
膜11の境界から負荷抵抗141への横方向拡散が生じ
る・その結果、負荷抵抗741が設計値どうシの高抵抗
化にならず、十分な砿能を果さない・特に、負荷抵抗1
41を構成する多結晶シリコン中での不純物の拡散速度
は単結晶シリコンに比べて約1桁以上大きいため、実質
的に負荷抵抗の高抵抗化領域が両サイドからの燐拡散に
よ〉縮小乃至消滅してし壜う、8体的には、下層のr−
)電極−中の不純物が燐で、負荷抵抗1(、の形成後に
1000℃の熱処塩を60分間行なうと、15JIm以
上燐が負荷抵抗141中に侵入して不良を招く、このむ
とは、多結晶シリコンを負荷抵抗として用いる高密度デ
バイスでは、その負荷抵抗O1kさが10μm以下が殆
んどで、高密度になる程、その長さが蝮かくなることを
考えると、極めて高密度化上、問題がある。
Next, 3rd OCVD-810□MJ5 After vacuum-depositing 4CAL Ml on the entire surface and butter-coating it to form AA patterns @77 to J9, phosphor-added glass (pea) was applied to the entire surface. A semiconductor device was manufactured by depositing Shirin 20 (as shown in Figure 1).However,
According to the above-mentioned conventional method), there are nine semiconductor devices obtained.
As shown in the first evil (・), and-! Since the load resistor 141 made of polycrystalline silicon is in contact with the dirt electrode 6 made of polycrystalline silicon containing a high concentration of v4 (or arsenic) in the lower layer via the opening JJ, rely'-)
Impurities in the electrode pass through its contact surface to the load resistance 141.
spread to. Historically, the low resistance section 74 for the vDD line. The second OCVD-810 diffusion mask is also used during phosphorus diffusion during formation.
Lateral diffusion occurs from the boundary of the membrane 11 to the load resistor 141. As a result, the load resistor 741 does not achieve the high resistance of the designed value and does not achieve sufficient performance.In particular, when the load resistor 1
Since the diffusion rate of impurities in the polycrystalline silicon constituting 41 is about one order of magnitude higher than that in single crystal silicon, the high resistance region of the load resistance is substantially reduced or reduced due to the diffusion of phosphorus from both sides. The lower r-
) The impurity in the electrode 141 is phosphorus, and if heat treatment at 1000°C is performed for 60 minutes after forming the load resistor 1, more than 15 JIm of phosphorus will enter the load resistor 141 and cause defects. In most high-density devices that use crystalline silicon as a load resistance, the load resistance O1k is 10 μm or less, and considering that the higher the density, the longer the length becomes. There's a problem.

このようなことから、不純物として拡散係畝の小さい砒
素を用いることが考えられるが、大なシ小なシ上述した
不良発生を回避できない。
For this reason, it is conceivable to use arsenic with small diffusion ridges as an impurity, but it is not possible to avoid the above-mentioned defects due to large or small ridges.

また、負荷抵抗の形成後の熱処塊温度を低く抑えること
が有効であるが、デバイスの%性に悪影響t&はすばか
シが、本質的な不安定性を解l内で龜ない。
Furthermore, although it is effective to keep the heat treatment mass temperature low after the formation of the load resistor, it has a negative effect on the performance of the device and does not lead to inherent instability within the solution.

〔発明の目的〕[Purpose of the invention]

本発明線設計値通シの負荷抵抗となる為抵抗熱と低抵抗
部を有する多結晶シリコン配−を備え九半導体装置0I
lli造方法を提供しようとするものである。
9 semiconductor device 0I equipped with a polycrystalline silicon wiring having resistance heat and a low resistance part to serve as a load resistance through the design value of the present invention line.
lli construction method.

〔発明の#i賛〕[#i praise of invention]

本発明は為抵抗もしくは低抵抗の多結晶シリコソノ4タ
ーンにエネルギービームを反射するマスク材を選択的に
形成し、このマスク材を用い1不純物を骸多結晶シリコ
ンパターンに選択的にイオン注入した後、エネルギービ
ームを照射してイオン注入された不純物を前記マスク材
に対して竜ルアアラインで活性化することによって、横
方向への不純物拡散がなく、設計値過多の負#抵抗とな
る高抵抗部と低抵抗部とを癩する多結晶シリコン配森を
備えた半導体装置を得ることかで参る。
In the present invention, a mask material that reflects an energy beam is selectively formed on four turns of low-resistance polycrystalline silicon, and one impurity is selectively ion-implanted into a skeleton polycrystalline silicon pattern using this mask material. By irradiating the energy beam and activating the ion-implanted impurities into the mask material with a dragon luer alignment, there is no lateral diffusion of impurities and a high resistance part with a negative # resistance exceeding the design value is created. The goal is to obtain a semiconductor device having a polycrystalline silicon layer that forms a low-resistance portion.

上記方法に用いるマスク材料としては、例えばAj 、
 No・W + Ts等を挙げることができる。
Examples of mask materials used in the above method include Aj,
Examples include No.W + Ts.

上記方法の不純物のうちで低抵抗化の丸めの不純物とし
ては、例えば燐、砒素等を、高抵抗化するための不純物
としては、例えば窒素、酸素、アルゴン蝉を用いること
かで龜る・上記方法のエネルギービームとしては、例え
ばレーデビーム、電子ビーム、イオンビーム勢を挙げる
ことができる。
Among the impurities used in the above method, examples of rounding impurities for lowering resistance include phosphorus, arsenic, etc., and impurities for increasing resistance such as nitrogen, oxygen, and argon cicada. Examples of the energy beam used in this method include a Lede beam, an electron beam, and an ion beam.

〔発明の実施例〕[Embodiments of the invention]

実施例1 前述した従来法の(1)〜(1)と同様な工1iKよ9
高抵抗の多結晶シリーン/帝ターンJ1を形成した(第
2図(a)図示)。
Example 1 Process 1iK-9 similar to the conventional methods (1) to (1) described above.
A high-resistance polycrystalline silicone/teitan J1 was formed (as shown in FIG. 2(a)).

次いで、全面に厚さ2 am (Dアル(ニクム膜II
を蒸着し丸後、低抵抗部形成予定部上のアル1=ウム膜
IJを選択的に除去した。つづいて、アルミニウム@1
1をマスクとして露出した多結晶シリコンノ譬I−ン7
3に燐を加速電圧109 K@V 、  F” −スd
i 3 X l O/ c−の4k14:でイオン注入
し丸。その後、例えばIJ/−極度のレーデビームを全
面に照射してイオン注入され九−を活性化して低抵抗部
22冨と高抵抗部XZ、を有する多結晶シリコン配#2
2を形成した(M2im(b)m示)、この時、^抵抗
部ト杓(負荷抵抗)121に熱が加わらないようにレー
デビームのエネルギー及び照射時間を十分にコントロー
ルした。
Then, a 2 am (D Al(Nicum film II) film was applied to the entire surface.
After evaporation, the Al1=U film IJ on the portion where the low resistance portion was to be formed was selectively removed. Next, aluminum @1
Example of polycrystalline silicon exposed using 1 as a mask I-7
3 to accelerate phosphorus at voltage 109 K@V, F”-sd
Ion implantation with 4k14 of i 3 X l O/c-. After that, ions are implanted by irradiating the entire surface with, for example, an extreme Radhe beam to activate the polycrystalline silicon layer #2 having a low resistance part 22 and a high resistance part XZ.
At this time, the energy and irradiation time of the radar beam were sufficiently controlled so as not to apply heat to the resistor (load resistor) 121.

次いで、アル1=ウム膜2ノを除去した後前述した値来
法のへ)1住と同様な方法によシCVD−810、膜の
堆積、コンタクトホールの開孔、AA配線の形成、保−
朧の被&を経て千尋体装置管製造し九。
Next, after removing the Al 1 = U film 2, the film was deposited using CVD-810, the contact hole was opened, the AA wiring was formed, and the maintenance was performed using the same method as described above. −
After going through Oboro no Hikari & Co., Ltd., he manufactured the Chihiro Body Equipment Tube.

しかして、本i明によればff1f燐をイオン注入手段
で多結晶シリコンノ4ターンJ2tlL導入す4+丸め
、多結晶シリコンパターンJ2の温度上昇を招くことな
くr9ibaの領域のみに蜘を尋人で龜る。また、レー
デビームを反射するアルミニウムー21fマスク材とし
−C用い、レーずビームにより選択的に燐の注入部をア
ニールする丸め、該注入部のみを局部的に加熱できる・
更eこ、マスク材としてのアル建具つ^11によシ低抵
抗の多結晶シリコンからなるダート電極61と接触する
多結1シリコンの高抵抗部[h4全く加熱されない丸め
、骸電極−1から高抵抗部111に不純物が拡散するの
を阻止できる。ltりて、従来法で問題となっていた熱
旭環に伴なう燐の滲み出しによる負荷抵抗の低抵抗化を
防止でき、設計値どお9の抵抗値をもつ負荷抵抗jjl
とvりDライン用の低抵抗部21璽を有する多結晶シリ
コン配線1jを形成で自る。
According to the present invention, ff1f phosphorus is introduced into the polycrystalline silicon pattern J2tlL by ion implantation means. It's cloudy. In addition, by using -C as an aluminum-21F mask material that reflects the Laser beam, it is possible to selectively anneal the phosphorus implanted area with the Laser beam and heat only the implanted area locally.
Moreover, the high resistance part of polycrystalline silicon that contacts the dirt electrode 61 made of polycrystalline silicon with low resistance [h4 The round shape that is not heated at all, from the skeleton electrode-1] Impurities can be prevented from diffusing into the high resistance portion 111. In addition, it is possible to prevent the resistance of the load resistance from becoming low due to the oozing of phosphorus due to the heat cycle, which was a problem with the conventional method, and it is possible to prevent the resistance of the load resistance from decreasing due to the oozing of phosphorus due to the heat sink, which was a problem with the conventional method.
A polycrystalline silicon wiring 1j having a low resistance portion 21 for the D line is formed.

実施例2 実施例1で使用した燐の代J)K砒素を加速電圧40に
@V、l/−1量4 X 10”/−0*件でイオン注
入し、その後同様な工1で半導体装置を製造し九。
Example 2 J) K arsenic was ion-implanted in place of the phosphorus used in Example 1 at an acceleration voltage of 40@V at a l/-1 amount of 4 x 10"/-0*, and then a semiconductor was prepared using the same process 1. 9. Manufacture the device.

本実施例2では拡散係数の小さi砒素を不純物として用
い九丸め、更に再現性よく負荷抵抗が形成された多結晶
シリプン配線を備え九半導体ate得ることができた。
In Example 2, arsenic having a small diffusion coefficient was used as an impurity, and nine semiconductors were obtained, including polycrystalline silicon wiring in which a load resistance was formed with good reproducibility.

IIIII/A例3 実施例1の高抵抗の多結晶シリコンパターンの代すに燐
をドー!した低抵抗の多結晶シリコンI4ターンを形成
し、全面にアル建ニウム膜を島着し九後、高抵抗部予定
部上のアルミニクム膜會逆に選択的に除去した1次いで
、アルミニウム膜をマスクとして低抵抗の多結晶シリコ
ンΔターyK窒素を加速電圧100に・V、P−ズ量3
X10  /−の条件でイオン注入し、レーデビームを
照射して高抵抗部を選択的に形成し喪。
III/A Example 3 The high resistance polycrystalline silicon pattern of Example 1 was replaced with phosphorus! 4 turns of low-resistance polycrystalline silicon were formed, and an aluminum film was deposited on the entire surface. After that, the aluminum film was selectively removed on the planned high-resistance portion. Next, the aluminum film was masked. As a low resistance polycrystalline silicon Δtar yK nitrogen at an accelerating voltage of 100 V, P-ze amount 3
Ion implantation was performed under the condition of

本実施例3によれば多結晶シリコン/譬ターン中O燐の
滲み出しKよる負荷抵抗の低抵抗化がなく、カつレーデ
アニールによる高抵抗化のため、窒素が均一に分布し、
多結晶シリコンのダレインサイズも制御できることから
、所望の抵抗値をもつ負荷抵抗と低抵抗部を有する多結
晶シリコン配線を形成できた。
According to Example 3, there is no reduction in the load resistance due to oozing of O phosphorus in the polycrystalline silicon/container, and the resistance is increased by the cutter annealing, so that nitrogen is uniformly distributed.
Since the dale size of polycrystalline silicon can also be controlled, a polycrystalline silicon wiring having a load resistor with a desired resistance value and a low resistance portion can be formed.

〔発明の効果〕〔Effect of the invention〕

以上詳述し九如く1本発#14によれば高抵抗部と低抵
抗部とが寸法的に精度よく作られ、かつ高抵抗部の抵抗
値も精度よく制御され九多結晶シリコン配線を形成で亀
、素子の歩留シの向上と1IIil!f度化が可能な半
導体装置の製造方法を提供で龜るものであるe
As described in detail above, according to Kuyoku Ippon #14, the high resistance part and the low resistance part are made with high dimensional precision, and the resistance value of the high resistance part is also precisely controlled to form a 9 polycrystalline silicon wiring. Well, the improvement of device yield and 1IIIil! It is important to provide a method for manufacturing semiconductor devices that can be

【図面の簡単な説明】[Brief explanation of drawings]

第1図(1)〜(・)は従来法による半導体装置の製造
工程を示す断面図、第2図(a)、伽)は本発明の実施
例IKおける半導体装置の製造工@O一部を示す断肉図
である。 J・・・pailシリコン基板、1・・・フィール)’
ml化展、6!・・・r−)電極、σ愈・・・v0ツイ
ン用配線、r・・・r−1酸化膜、8・・・y−黒領域
、9・・・トレイン領域、J O、J J 、 J J
 ・CVD−8103編、11・・・高抵抗の多結晶シ
リコンパターン、17〜1g・・・ム4配置1、JJ−
・アル建ニウム展(マスク材)、22.・・・高抵抗部
、XS、・・・低抵抗部、22・・・多結晶シリコン配
p。
Fig. 1 (1) to (•) are cross-sectional views showing the manufacturing process of a semiconductor device according to the conventional method, and Fig. 2 (a) and 2) are part of the manufacturing process of the semiconductor device in the embodiment IK of the present invention. FIG. J...pail silicon substrate, 1...feel)'
ml exhibition, 6! ... r-) electrode, σ-electrode, v0 twin wiring, r... r-1 oxide film, 8... y-black region, 9... train region, J O, J J, JJ
・CVD-8103 edition, 11...High resistance polycrystalline silicon pattern, 17-1g...Mu4 arrangement 1, JJ-
・Alkenium exhibition (mask material), 22. ...High resistance part, XS, ...Low resistance part, 22...Polycrystalline silicon distribution p.

Claims (1)

【特許請求の範囲】 1、 高抵抗部と低抵抗部を1する多結晶シリコン配W
Iを備えた半導体装置の製造において、高抵抗もしく#
fiti抵抗の多結iVリコンノ母ターンにエネルギー
ビームを反射するTスフ材を選択的に形成する工程と、
級マスク材を用いて多結晶シリコンツクターンに選択的
に不純物をイオン注入する工程と、全面にエネルギービ
ームを照射してイオン注入された不純物を活性化せしめ
、多結1シリコン/譬ターンに低抵抗部もしくは高抵抗
部を形成する工程とを具備したことをIl!l1Itと
する半導体装置の*遣方法。 2、低抵抗化の丸めの不純物か燐、砒凧、ボg/である
ことを%値とする待tt請求の範囲鶴1積配畝の半導体
装置の製造方法。 34I+抵抗化の丸めの不1II4A物がが本、酸系、
アルゴンであることを%像とする%軒稍求の範S第1積
記躯の半導体装置の製造方法。
[Claims] 1. Polycrystalline silicon interconnection W forming a high-resistance part and a low-resistance part
In the manufacture of semiconductor devices equipped with I, high resistance or #
a step of selectively forming a T-spout material that reflects the energy beam on the multi-connected iV reconno mother turn of the fiti resistor;
This process involves selectively ion-implanting impurities into polycrystalline silicon using a grade mask material, and irradiating the entire surface with an energy beam to activate the ion-implanted impurities. Il! *How to use a semiconductor device as l1It. 2. A method for manufacturing a semiconductor device with one stacked ridge arrangement in which the percentage value is phosphorus, arsenic, and bog/ as rounded impurities for lower resistance. 34I + resistance rounded non-1II4A product, acid-based,
A method for manufacturing a semiconductor device in the first product range of the % evacuation model using argon as the % image.
JP57012310A 1982-01-28 1982-01-28 Manufacture of semiconductor device Pending JPS58130554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57012310A JPS58130554A (en) 1982-01-28 1982-01-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012310A JPS58130554A (en) 1982-01-28 1982-01-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58130554A true JPS58130554A (en) 1983-08-04

Family

ID=11801739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012310A Pending JPS58130554A (en) 1982-01-28 1982-01-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58130554A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128448A (en) * 1987-11-12 1989-05-22 Toshiba Corp Wiring connection of semiconductor device
US4935376A (en) * 1989-10-12 1990-06-19 At&T Bell Laboratories Making silicide gate level runners
WO1992007380A1 (en) * 1990-10-15 1992-04-30 Seiko Epson Corporation Semiconductor device having switching circuit to be switched by light and its fabrication process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128689A (en) * 1978-03-27 1979-10-05 Intel Corp Method of forming contact area between polycrystal sllicon layers
JPS56144532A (en) * 1980-04-11 1981-11-10 Fujitsu Ltd Manufacture of semiconductor device
JPS56157023A (en) * 1980-05-08 1981-12-04 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128689A (en) * 1978-03-27 1979-10-05 Intel Corp Method of forming contact area between polycrystal sllicon layers
JPS56144532A (en) * 1980-04-11 1981-11-10 Fujitsu Ltd Manufacture of semiconductor device
JPS56157023A (en) * 1980-05-08 1981-12-04 Fujitsu Ltd Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128448A (en) * 1987-11-12 1989-05-22 Toshiba Corp Wiring connection of semiconductor device
US4935376A (en) * 1989-10-12 1990-06-19 At&T Bell Laboratories Making silicide gate level runners
WO1992007380A1 (en) * 1990-10-15 1992-04-30 Seiko Epson Corporation Semiconductor device having switching circuit to be switched by light and its fabrication process

Similar Documents

Publication Publication Date Title
US5705413A (en) Method of manufacturing an electronic device using thermally stable mask
US5581093A (en) Contact structure of an interconnection layer for a semiconductor device and a multilayer interconnection SRAM
US6194255B1 (en) Method for manufacturing thin-film transistors
JP3658213B2 (en) Manufacturing method of semiconductor device
KR20000001169A (en) Method of fabricating thin film transistor
US6172380B1 (en) Semiconductor material
KR19980086477A (en) Semiconductor device manufacturing method and semiconductor device
JPH0629320A (en) Manufacture of thin film transistor
JPS643045B2 (en)
JPS58206121A (en) Manufacture of thin-film semiconductor device
JPS58130554A (en) Manufacture of semiconductor device
KR100234894B1 (en) Crystalizing method of amorphous silicon layer and method of fabricating thin film transistor using the same
KR100250182B1 (en) Method of forming semiconductor crystal and semiconductor device
JPH03270066A (en) Semiconductor device and manufacture thereof
JPS643046B2 (en)
JPH0656877B2 (en) Method for producing tantalum oxide thin film
JP3210313B2 (en) Method for improving characteristics of polycrystalline silicon thin film
JPS5825222A (en) Manufacture of semiconductor device
JPH04250617A (en) Doping method for impurity in semiconductor and manufacture of semiconductor device
JP2699578B2 (en) Method of manufacturing semiconductor thin film and method of manufacturing thin film transistor using the same
JP3291845B2 (en) Crystal growing method and channel forming method for MOS transistor
JPH02114559A (en) Manufacture of semiconductor memory
JPH01214110A (en) Manufacture of semiconductor device
JP2641971B2 (en) Superconducting element and fabrication method
JPH0573324B2 (en)