JPH0656877B2 - Method for producing tantalum oxide thin film - Google Patents

Method for producing tantalum oxide thin film

Info

Publication number
JPH0656877B2
JPH0656877B2 JP62228872A JP22887287A JPH0656877B2 JP H0656877 B2 JPH0656877 B2 JP H0656877B2 JP 62228872 A JP62228872 A JP 62228872A JP 22887287 A JP22887287 A JP 22887287A JP H0656877 B2 JPH0656877 B2 JP H0656877B2
Authority
JP
Japan
Prior art keywords
tantalum oxide
thin film
film
oxide thin
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62228872A
Other languages
Japanese (ja)
Other versions
JPS6471166A (en
Inventor
耕二 山岸
久和 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62228872A priority Critical patent/JPH0656877B2/en
Publication of JPS6471166A publication Critical patent/JPS6471166A/en
Publication of JPH0656877B2 publication Critical patent/JPH0656877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、半導体素子などの電子デバイスにおける例え
ばキャパシタのための誘電体材料として用いられる酸化
タンタル薄膜の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a tantalum oxide thin film used as a dielectric material for, for example, a capacitor in an electronic device such as a semiconductor element.

<従来の技術> 近年、DRAMなどの半導体素子においては、微細化、高集
積化が進んでおり、これらに使用するキャパシタの面積
は、ますます縮小が望まれている。しかし、面積の縮小
をしてもメモリを保持するに必要な電荷量には限界があ
り、最小限の容量は保たれなければならない。
<Prior Art> In recent years, semiconductor elements such as DRAMs have been miniaturized and highly integrated, and the area of capacitors used for these has been desired to be further reduced. However, even if the area is reduced, there is a limit to the amount of electric charge required to hold the memory, and the minimum capacity must be maintained.

従来、キャパシタの誘電膜は、形成のしやすさなどから
誘電率が約3.9のシリコン酸化膜が用いられてきた
が、必要容量を保持するためには、その膜厚を更に薄く
しなければならない。膜厚を薄くすると誘電膜には高電
界が印加され、その結果、絶縁破壊によって素子が破壊
されるという危険が生じる。現在の4MDRAMにおいては、
メモリキャパシタに使用するシリコン酸化膜はすでに絶
縁破壊耐圧から、信頼性が保証できる限界の膜厚で使用
している状況にある。
Conventionally, a silicon oxide film having a dielectric constant of about 3.9 has been used as the dielectric film of a capacitor because of its ease of formation. However, in order to maintain the required capacitance, the film thickness must be made thinner. I have to. When the film thickness is made thin, a high electric field is applied to the dielectric film, and as a result, there is a risk that the device is destroyed by dielectric breakdown. In the current 4M DRAM,
The silicon oxide film used for the memory capacitor is already in a state of being used with a film thickness of the limit that can guarantee the reliability because of the dielectric breakdown voltage.

そのため今後の集積化デバイスにおいては、より高い誘
電率を有する誘電膜を使用し、キャパシタ面積を縮小す
る方法が研究されている。この中で最も有望視されてい
るものには、酸化タンタル、酸化チタンなどがある。
Therefore, in future integrated devices, a method of using a dielectric film having a higher dielectric constant to reduce the capacitor area has been studied. Among these, the most promising are tantalum oxide and titanium oxide.

酸化タンタル薄膜は、スパッタ法、熱酸化法、陽極酸化
法、CVD法、光CVD法などで形成することができ、
誘電率はSi の5〜6倍であり、これによって大幅な面
積縮小が望める。
The tantalum oxide thin film can be formed by a sputtering method, a thermal oxidation method, an anodic oxidation method, a CVD method, an optical CVD method, or the like,
The permittivity is 5 to 6 times that of Si, and it is expected that the area will be greatly reduced.

しかし、これらの高誘電体膜は絶縁性の面で、シリコン
酸化膜よりも劣っている。即ち、酸化タンタルを500
℃以下の温度で形成すると、一般にアモルファス状態と
なる。高温で形成した酸化タンタル膜は、通常、結晶化
しており、結晶粒界を通じて電流が流れやすいことから
絶縁性に問題があり実用化は困難である。この面からは
低温形成膜が有利であるが、低温形成膜には安定な化学
量論組成から組成のずれが有り、この膜中の酸素欠損が
電流の通路となるため、通常の状態では実用可能な絶縁
性の高い膜は得られない。そのため、保持している電荷
がリーク電流で放出され、メモリーの保持が困難になる
ことから実用化が遅れている。このリーク電流を低減す
るためには、何等かの方法で欠陥を減らしてやる必要が
ある。例としては、CVD法で酸化タンタルを形成する
際、Ti を含む原料ガスを混入させて、5価のTa を4
価の元素であるTi で置換することで実質的に酸素欠損
を解消する方法が発表されている。(IEDM Tech.Dig.,2
9−6.PP.680−683,1986) また、光CVDによる酸化タンタル膜は比較的絶縁特性
に優れ、特に膜形成後のアニールによって膜中の酸素欠
損を排除する処理を追加することにより、実用的な特性
が得られている。(Extended abstracts of the 19th C
onference on Solid State Devices and Materials,Tok
yo,1987) <発明が解決しようとする問題点> 上記従来技術、特に光CVD酸化タンタルの光酸素アニ
ール時において酸素欠損を解消する場合、比較的簡単な
プロセスですぐれた誘電膜を形成することができるとい
う利点がある反面、下地がSiまたは、シリサイドなどの
ように成分としてSi を含んでいる必要があり、キャパ
シタ等として用いる場合に電極材料が限られることから
実使用においてはプロセス及び適用機器に制限があっ
た。
However, these high dielectric films are inferior to the silicon oxide film in terms of insulating property. That is, 500 tantalum oxide
When it is formed at a temperature of ℃ or less, it is generally in an amorphous state. The tantalum oxide film formed at a high temperature is usually crystallized and a current easily flows through the crystal grain boundaries, so that there is a problem in the insulating property and it is difficult to put it into practical use. From this point of view, the low-temperature formed film is advantageous, but the low-temperature formed film has a composition deviation from the stable stoichiometric composition, and oxygen deficiency in this film serves as a current path, so it is practically used under normal conditions. A possible highly insulating film cannot be obtained. Therefore, the held electric charge is released as a leak current, which makes it difficult to hold the memory, which delays its practical application. In order to reduce this leak current, it is necessary to reduce defects by some method. As an example, when tantalum oxide is formed by the CVD method, a raw material gas containing Ti is mixed to change the pentavalent Ta to 4
A method of substantially eliminating oxygen deficiency by substituting Ti, which is a valent element, has been announced. (IEDM Tech.Dig., 2
9-6.PP.680-683,1986) In addition, the tantalum oxide film formed by photo-CVD has relatively excellent insulating properties, and in particular, by adding a treatment for eliminating oxygen vacancies in the film by annealing after film formation, Practical characteristics are obtained. (Extended abstracts of the 19th C
onference on Solid State Devices and Materials, Tok
yo, 1987) <Problems to be solved by the invention> In order to eliminate oxygen vacancies in the above-mentioned conventional technique, especially in photo-oxygen annealing of photo-CVD tantalum oxide, it is necessary to form an excellent dielectric film by a relatively simple process. On the other hand, it is necessary to contain Si as a component such as Si or silicide, and the electrode material is limited when it is used as a capacitor, etc. in the actual use because of the advantage that it is possible to process and applied equipment. There was a limit.

本発明は、これら欠陥を解消する元素をイオン注入によ
って膜中に導入し、その後の処理を通じて安定でリーク
電流の小さい酸化タンタル膜を下地材料の成分に関係な
く形成することを目的とする。
An object of the present invention is to introduce an element that eliminates these defects into the film by ion implantation, and to form a stable tantalum oxide film having a small leakage current regardless of the composition of the underlying material through subsequent processing.

<問題を解決するための手段> 本発明は、酸化タンタル薄膜の製造方法に係り、低温プ
ロセスにより非晶質酸化タンタル薄膜を形成後、4属元
素をイオン注入法によって上記薄膜内に注入し、その
後、光エネルギーまたは高周波電界によって活性化した
酸化剤を含む酸化雰囲気中で熱処理することを特徴とす
る酸化タンタル薄膜の製造方法である。
<Means for Solving the Problem> The present invention relates to a method for producing a tantalum oxide thin film, in which an amorphous tantalum oxide thin film is formed by a low temperature process, and then a Group 4 element is implanted into the thin film by an ion implantation method. After that, a heat treatment is carried out in an oxidizing atmosphere containing an oxidant activated by light energy or a high frequency electric field, which is a method for producing a tantalum oxide thin film.

<発明の作用> 本発明の方法によれば、酸化タンタル薄膜の欠陥を軽減
或いは解消する元素イオン注入法によって膜中に導入す
るため、Si 等の4属元素を含まない金属電極上でも、
絶縁性の優れた酸化タンタル薄膜を形成することができ
る。
<Operation of the Invention> According to the method of the present invention, since it is introduced into the film by the element ion implantation method for reducing or eliminating defects in the tantalum oxide thin film, even on a metal electrode containing no Group 4 element such as Si,
It is possible to form a tantalum oxide thin film having excellent insulating properties.

<実施例> 第1図は、酸化タンタルを誘電膜とする積層型キャパシ
ターを備えた、ダイナミックランダムアクセスメモリの
セルの断面である。第2図にその形成工程を示す。
<Example> FIG. 1 is a cross section of a cell of a dynamic random access memory provided with a multilayer capacitor having a dielectric film of tantalum oxide. FIG. 2 shows the forming process.

まず、フィルド酸化膜3が形成されたSi 基板1上に通
常のMOSデバイス製造工程を用いて、ゲート酸化膜を
介してゲート電極4を形成し、続いてゲート電極4の周
囲にサイドウォール5を形成し、それらをマスクとして
イオン注入法によりソース,ドレイン領域2を形成す
る。上記工程によりSi 基板1にトランジスタ部を形成
する。その後ゲート電極4が形成されたSi 基板1の表
面を被って絶縁膜6を形成し、その上にレジストを塗布
し、キャパシタ用のコンタクトホール等のパターニング
を行った後、エッチングによりコンタクトホールを開口
する。(第2図(a))。
First, the gate electrode 4 is formed via the gate oxide film on the Si substrate 1 on which the filled oxide film 3 is formed, using a normal MOS device manufacturing process, and then the sidewall 5 is formed around the gate electrode 4. Then, the source / drain regions 2 are formed by ion implantation using these as a mask. The transistor portion is formed on the Si substrate 1 by the above steps. After that, an insulating film 6 is formed so as to cover the surface of the Si substrate 1 on which the gate electrode 4 is formed, a resist is applied on the insulating film 6, and a contact hole for a capacitor is patterned, and then the contact hole is opened by etching. To do. (Fig. 2 (a)).

次にスパッタ法やCVD法を用いて、上記コンタクトホ
ールを通してSi 基板1に被着し、且つ周辺の絶縁膜6
上に延在する金属薄膜を形成する。この金属薄膜は、キ
ャパシタの下部電極7となるが、従来、成分としてSi
を含有する必要があり、ポリシリコンやタングステンシ
リサイドなどの材料に限られていた。本実施例の場合に
は、後の工程で温度的に耐えられるものであれば電極材
料を考慮する必要はなく、典型的な例としては、Mo,
W,Al等が使用可能である。この金属薄膜7を従来のホ
トリソグラフィ技術を用いて電極形状等にパターニング
したのち、CVD法などで酸化タンタル8を形成する。
このとき成膜は比較的低温で処理することができるCV
D,光CVDを利用する。成膜された酸化タンタル8上
から、Ti ,Siなどをイオン注入する。(第2図
(b))このとき、典型的な注入条件は酸化タンタル膜厚2
50Åに対してSi を注入する場合、加速電圧30KeV,
注入量2.5×1014cm-2である。しかし、この場合一般的
には加速電圧をSi が酸化タンタル膜中へ到達する程度
の電圧,例えば20〜80KeVにすれば良く、注入量
も、欠陥密度を上回る量、例えば5.0×1013〜1.0×1015
cm-2とすれば良い。
Next, using a sputtering method or a CVD method, the Si substrate 1 is deposited through the contact holes and the insulating film 6 around the Si substrate 1 is deposited.
A metal thin film extending above is formed. This metal thin film serves as the lower electrode 7 of the capacitor, but conventionally, as a component, Si
Was required, and was limited to materials such as polysilicon and tungsten silicide. In the case of the present embodiment, it is not necessary to consider the electrode material as long as it can withstand temperature in the subsequent process, and as a typical example, Mo,
W, Al, etc. can be used. After patterning this metal thin film 7 into an electrode shape and the like by using a conventional photolithography technique, tantalum oxide 8 is formed by a CVD method or the like.
At this time, film formation can be performed at a relatively low temperature CV
D, photo CVD is used. Ti, Si, etc. are ion-implanted from above the deposited tantalum oxide film 8. (Fig. 2
(b)) At this time, the typical implantation condition is tantalum oxide film thickness 2
When Si is injected to 50Å, acceleration voltage is 30 KeV,
The injection volume is 2.5 × 10 14 cm -2 . However, in this case, generally, the accelerating voltage may be set to a voltage at which Si reaches the tantalum oxide film, for example, 20 to 80 KeV, and the amount of implantation is higher than the defect density, for example, 5.0 × 10 13 to 1.0. × 10 15
cm -2 is fine.

上記条件によって、膜中に4属元素を含んだ酸化タンタ
ルが得られるが、これらが欠陥と結合して安定な状態に
なるためには、適当な温度に一定時間以上保持すること
により再分布を生じさせる必要がある。さらに、この処
理を酸化性の雰囲気中で行うことによって残留する酸素
欠損を補うことができ、より特性向上を図ることが出来
る。この時の酸化剤は、単なる酸素でもよいが、紫外光
照射や放電、高周波誘導などの手法で活性化した強力な
酸化剤を用いれば、より有効である。この時の典型的な
処理条件は、基板加熱温度400℃,酸素分圧1気圧、
紫外光照射強度5mW/cm2(185nm波長)、保持時間1
時間である。上記温度は300〜600℃で保持時間は
温度にもよるが30分以上行えば良い。
Under the above conditions, tantalum oxide containing a Group 4 element in the film can be obtained, but in order for these to be bound to defects and become stable, the redistribution can be achieved by holding at an appropriate temperature for a certain period of time or more. Need to occur. Further, by performing this treatment in an oxidizing atmosphere, residual oxygen vacancies can be compensated for, and the characteristics can be further improved. The oxidant at this time may be simple oxygen, but it is more effective if a strong oxidant activated by a method such as ultraviolet light irradiation, discharge, high frequency induction is used. Typical processing conditions at this time are a substrate heating temperature of 400 ° C., an oxygen partial pressure of 1 atm,
UV light irradiation intensity 5mW / cm 2 (185nm wavelength), holding time 1
It's time. The temperature is 300 to 600 ° C., and the holding time may be 30 minutes or longer, although it depends on the temperature.

上記処理を行った後、酸化タンタル薄膜上にキャパシタ
の上部電極となる金属薄膜9を形成し、キャパシタ部以
外の部分をその部分の膜下に存在する酸化タンタル薄膜
とともにエッチング除去し、キャパシタ部を得る。上記
工程によって誘導体としてすぐれた特性をもつ酸化タン
タル膜を得ることができる。
After the above treatment, a metal thin film 9 to be an upper electrode of the capacitor is formed on the tantalum oxide thin film, and a portion other than the capacitor portion is removed by etching together with the tantalum oxide thin film existing under the portion film to remove the capacitor portion. obtain. Through the above steps, a tantalum oxide film having excellent characteristics as a derivative can be obtained.

<発明の効果> 本発明による酸化タンタル薄膜中への4属元素のイオン
注入のプロセスを施すことにより、下部電極の材料の制
約なしに、優れた絶縁性のある高誘電薄膜を提供するこ
とが可能となり、極めて高密度のメモリ素子を実現する
ことが出来る。
<Effects of the Invention> By subjecting the tantalum oxide thin film according to the present invention to ion implantation of a Group 4 element, it is possible to provide a high dielectric thin film having excellent insulating properties without restriction of the material of the lower electrode. It becomes possible to realize an extremely high-density memory device.

【図面の簡単な説明】[Brief description of drawings]

第1図は、酸化タンタルを用いた本発明による半導体装
置の断面図、第2図は、本発明の一実施例を示す工程を
説明する断面図である。 1……シリコン基板、2……N+拡散層、3……フィー
ルド酸化膜、4……ゲートメタル、5……サイドウォー
ル、6……層間絶縁膜、7……下部電極金属、8……酸
化タンタル、9……上部電極金属、10……配線金属、
11……保護絶縁膜
FIG. 1 is a cross-sectional view of a semiconductor device according to the present invention using tantalum oxide, and FIG. 2 is a cross-sectional view illustrating a process showing one embodiment of the present invention. 1 ... Silicon substrate, 2 ... N + diffusion layer, 3 ... Field oxide film, 4 ... Gate metal, 5 ... Sidewall, 6 ... Interlayer insulating film, 7 ... Lower electrode metal, 8 ... Tantalum oxide, 9 ... upper electrode metal, 10 ... wiring metal,
11 ... Protective insulation film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸化タンタル薄膜の製造方法において、低
温プロセスにより非晶質酸化タンタル薄膜を形成後、4
属元素をイオン注入法によって上記薄膜内に注入し、そ
の後、光エネルギーまたは高周波電界によって活性化し
た酸化剤を含む酸化雰囲気中で熱処理を行うことを特徴
とする、酸化タンタル薄膜の製造方法。
1. A method for producing a tantalum oxide thin film, wherein after the amorphous tantalum oxide thin film is formed by a low temperature process, 4
A method for producing a tantalum oxide thin film, which comprises implanting a metal element into the above thin film by an ion implantation method, and then performing heat treatment in an oxidizing atmosphere containing an oxidant activated by light energy or a high frequency electric field.
JP62228872A 1987-09-10 1987-09-10 Method for producing tantalum oxide thin film Expired - Fee Related JPH0656877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62228872A JPH0656877B2 (en) 1987-09-10 1987-09-10 Method for producing tantalum oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62228872A JPH0656877B2 (en) 1987-09-10 1987-09-10 Method for producing tantalum oxide thin film

Publications (2)

Publication Number Publication Date
JPS6471166A JPS6471166A (en) 1989-03-16
JPH0656877B2 true JPH0656877B2 (en) 1994-07-27

Family

ID=16883190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62228872A Expired - Fee Related JPH0656877B2 (en) 1987-09-10 1987-09-10 Method for producing tantalum oxide thin film

Country Status (1)

Country Link
JP (1) JPH0656877B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225148A (en) * 1988-03-04 1989-09-08 Toshiba Corp Thin film of dielectric and manufacture thereof
JPH04359557A (en) * 1991-06-06 1992-12-11 Nec Corp Method of manufacturing semiconductor device
US5320972A (en) * 1993-01-07 1994-06-14 Northern Telecom Limited Method of forming a bipolar transistor
KR100319571B1 (en) 1998-03-12 2002-01-09 루센트 테크놀러지스 인크 Electronic Components With Doped Metal Oxide Dielectric Materials And A Process For Making Electronic Components With Doped Metal Oxide Dielectric Materials
KR100494322B1 (en) * 1999-12-22 2005-06-10 주식회사 하이닉스반도체 Method of manufacturing a capacitor in a semiconductor device
JP3944367B2 (en) * 2001-02-06 2007-07-11 松下電器産業株式会社 Method for forming insulating film and method for manufacturing semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147177A (en) * 1975-06-12 1976-12-17 Fujitsu Ltd A treatment method of tantaum oxide
JPS57167669A (en) * 1981-03-27 1982-10-15 Fujitsu Ltd Capacitor and manufacture thereof

Also Published As

Publication number Publication date
JPS6471166A (en) 1989-03-16

Similar Documents

Publication Publication Date Title
US7446363B2 (en) Capacitor including a percentage of amorphous dielectric material and a percentage of crystalline dielectric material
US6118146A (en) Microelectronic capacitors having tantalum pentoxide dielectrics
US6548368B1 (en) Method of forming a MIS capacitor
US7206215B2 (en) Antifuse having tantalum oxynitride film and method for making same
JP2000022111A (en) Formation of capacitor for semiconductor element using high-temperature oxidation
JPH077085A (en) Method of manufactureing integrated circuit capacitor dielectric and capacitor manufactured by this its method
US6953722B2 (en) Method for patterning ceramic layers
US6077737A (en) Method for forming a DRAM having improved capacitor dielectric layers
JPH0656877B2 (en) Method for producing tantalum oxide thin film
JP2502789B2 (en) Method for manufacturing thin film transistor
US6833605B2 (en) Method of making a memory cell capacitor with Ta2O5 dielectric
JP3646013B2 (en) Method for manufacturing DRAM capacitor
KR0179563B1 (en) Forming method of inter layer planarization film in a semiconductor device
JP2000031418A (en) Method for improving electrical conductivity between electrode and plug within laminated capacitor and the laminated capacitor
KR100243275B1 (en) Capacitor of semiconductor device and manufacturing method thereof
JP2002203916A (en) Semiconductor device and its manufacturing method
JP3316848B2 (en) Method for manufacturing capacitor structure using tantalum oxide film
KR100224728B1 (en) Fabrication method for Ta205 dielectric layer capacitor
KR100238225B1 (en) Method for fabricating of capacitor in semiconductor device
JPH06291255A (en) Semiconductor device and manufacture thereof
KR19980014185A (en) Method of forming capacitor
JPS62130550A (en) Manufacture of mis type capacitor
JPS6367333B2 (en)
JPH0629217A (en) Formation method of thin film
KR19980026091A (en) Capacitor Manufacturing Method for Semiconductor Devices

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees