JPS58126953A - Sintered tungsten carbide tool material and its manufacture - Google Patents

Sintered tungsten carbide tool material and its manufacture

Info

Publication number
JPS58126953A
JPS58126953A JP57008960A JP896082A JPS58126953A JP S58126953 A JPS58126953 A JP S58126953A JP 57008960 A JP57008960 A JP 57008960A JP 896082 A JP896082 A JP 896082A JP S58126953 A JPS58126953 A JP S58126953A
Authority
JP
Japan
Prior art keywords
powder
sintered body
tungsten carbide
sintered
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57008960A
Other languages
Japanese (ja)
Inventor
Tatsuro Kuratomi
倉富 龍郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57008960A priority Critical patent/JPS58126953A/en
Publication of JPS58126953A publication Critical patent/JPS58126953A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a tool material having a sintered structure free from segregation by forming an imprefectly sintered body from a molded body consisting of tungsten carbide powder and cobalt powder in a specified ratio, pulverizing the sintered body, and forming a perfectly sintered body by an ordinary- pressure sintering method. CONSTITUTION:A mixture of 70-95wt% tungsten carbide powder with 30- 5wt% cobalt powder is compression-molded and heated at 800-1,300 deg.C in vacuum for 10-60min to form an imperfectly sintered body. The sintered body is pulverized to homogeneous imperfectly sintered powder, and the powder is compression-molded under about 300-1,000kg/cm<2> pressure and heated at about 1,300-1,600 deg.C in vacuum to form a perfectly sintered body by an ordinary- pressure sintering method. Thus, a spongy sintered structure made of cobalt powder is filled into the gaps among uniformly dispersed tungsten carbide particles and bonded to the separate particles to prevent the ununiform distribution of carbide particles.

Description

【発明の詳細な説明】 本発明は、製品である粉末焼結炭化タングステン系工具
材を製造する前駆工程における炭化タングステン系不完
全焼結体を粉砕した粉末を均質になるように良く混合し
た不完全焼結体粉末を完全焼結した゛粉末焼結炭化タン
グステン系  !工具材およびその製造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing powder sintered tungsten carbide-based tool material by homogeneously mixing powder obtained by pulverizing an incompletely sintered tungsten carbide body in a precursor process for manufacturing a powdered sintered tungsten carbide tool material. Completely sintered tungsten carbide based completely sintered powder! This invention relates to tool materials and their manufacturing methods.

本発明は、本発明の粉末焼結炭化タングステン系工具材
を製造する原料には、単一炭化タングステンの粉末また
は炭化タングステン系複炭化物の粉末または炭化タング
ステン粉末に他種の硬質炭化物の粉末を加えた混合粉末
を炭化タングステン系粉末として使用し、斯様な炭化タ
ングステン系粉末を結合する材料にはコバルトの粉末ま
たはコバルト粉末にニッケル粉末を加えたコバルト−ニ
ッケル混合粉末をコバルト系粉末として使用する。
In the present invention, the raw materials for producing the powder sintered tungsten carbide tool material of the present invention include single tungsten carbide powder, tungsten carbide double carbide powder, or tungsten carbide powder with other types of hard carbide powder. A mixed powder obtained by adding nickel powder to cobalt powder is used as a tungsten carbide-based powder, and cobalt powder or a cobalt-nickel mixed powder obtained by adding nickel powder to cobalt powder is used as a material for bonding such tungsten carbide-based powder.

本発明は、上記した炭化タングステン系粉末にコバルト
粉末またはコバルト−ニッケル混合粉末を添加した混合
粉末を圧縮成形し、其の圧縮成形体を800℃乃至1,
300℃の範囲内の温度にて加熱して不完全焼結体をつ
くり、其の不完全焼結体を粉砕して不完全焼結体の粉末
をつくり、其の不完全焼結体の粉末を充分に混和して其
の不完全焼結体の粉末を形成している個々の不完全焼結
体粒子のかたよりをなくし、其の均質に混合した不完全
焼結体粉末を常圧焼結法または加圧焼結法または静水圧
加圧焼結法によって完全焼結を行って粉末焼結炭化タン
グステン系工具材を製造する方法と、斯様な製造法によ
って製造した炭化タングステン系焼結粒子のかたよりを
防止して偏析をなくした粉末焼結炭化タングステン系工
具材に関するものである。
The present invention involves compression molding a mixed powder obtained by adding cobalt powder or cobalt-nickel mixed powder to the above-described tungsten carbide powder, and molding the compression molded product at 800°C to 1.
An incomplete sintered body is produced by heating at a temperature within a range of 300°C, the incomplete sintered body is pulverized to produce a powder of the incomplete sintered body, and the incomplete sintered body is powdered. The particles of the incompletely sintered body are sufficiently mixed to eliminate the distortion of the individual incompletely sintered particles forming the incompletely sintered body powder, and the homogeneously mixed incompletely sintered body powder is sintered under normal pressure. A method for producing a powder sintered tungsten carbide tool material by performing complete sintering using a pressure sintering method, a pressure sintering method, or an isostatic pressure sintering method; This invention relates to a powder sintered tungsten carbide tool material that prevents distortion and eliminates segregation.

本発明の目的は、以上に説明したように、炭化タングス
テン系焼結粒子のかたよりを防止して偏析をなくした切
削性能の優れた粉末焼結炭化タングステン系工具材を提
供すると共に其の粉末焼結炭化タングステン系工具材を
製造する工業的に有勃な方法を提供しようとするもので
あるO 次に、本発明の方法によって粉末焼結炭化タングステン
系工具材を製造する工程および作用について説明すると
共に製造した粉末焼結炭化タングステン系工具材につい
て説明する。
As explained above, an object of the present invention is to provide a powder sintered tungsten carbide tool material with excellent cutting performance that prevents sintered tungsten carbide particles from shifting and eliminates segregation. The present invention aims to provide an industrially viable method for manufacturing a tungsten carbide tool material.Next, the process and operation of manufacturing a powder sintered tungsten carbide tool material by the method of the present invention will be described. The powder sintered tungsten carbide tool material produced together with the above will be explained.

不完全焼結体用原料には、炭化タングステン粉末または
炭化タングステン系複炭化物の粉末または炭化タングス
テン粉末に他種の硬質炭化物粉末を加えた炭化タングス
テン系混合粉末を、70重量%乃至95重量%と、コバ
ルト粉末またはコバルト粉末にニッケル粉末を加えたコ
バルト−ニッケル混合粉末を30重量%乃至5重量%と
の割合範囲内より選定した割合にて混合した混合物を使
用する。斯様に調製した不完全焼結用原料にパラフィン
等の接着剤を添加し混合した不完全焼結体用原料を、圧
縮成形装置または圧縮押出装置等の成形装置を用いて適
当な形状の成形体を成形し、其の成形体を真空中または
水素雰囲気中にて800℃乃至i、 300℃の範囲内
より選定した温度にて10分間乃至60分間加熱して不
完全焼結体を生成する。其の生成した不完全焼結体を粉
砕して不完全焼結体粉末をつくる。次いで、不完全焼結
体粉末を混合機を用いて充分に混和して均質に混和した
不完全焼結体粉末をつくる。次いで、均質に混和した不
完全焼結体粉末を常圧焼結法または加圧焼結法または静
水圧焼結法によって完全焼結体をつくる。其の常圧焼結
法による場合は、均等に混和した不完全焼結体粉末を3
00kf、/+!乃至1.000 kg/dの範囲内よ
り選定した圧力を用いて圧縮成形して成形体をつくり、
其の成形体を真空中または水素雰囲気中にて1.300
℃乃至1,600℃の範囲内より選定した温度にて加熱
し、其の加圧焼結法による場合は、均質に混和した不完
全焼結体粉末を加圧加熱室内に充填して300に9/d
乃至1,000に97−の範囲内より選定した圧力にて
加圧すると共に、1.300℃乃至1.500℃の範囲
内より選定した温度にて加熱し、其の静水圧加圧焼結法
による場合は、均質に混和した不完全焼結体粉末を軟鉄
板等の軟質板をもって成形した容器内に充填して密封し
た容器を静水圧加圧加熱室内に装填して300眩/d乃
至1,000に97−の範囲内より選定した圧力を加え
ると共に1,300℃乃至1.500℃の範囲内より選
定した温度にて加熱して、完全焼結体を生成することを
特徴とする粉末焼結炭化タングステン系工具材の製造 
  リ法である。
The raw material for the incomplete sintered body is 70% to 95% by weight of tungsten carbide powder, tungsten carbide double carbide powder, or tungsten carbide mixed powder obtained by adding other types of hard carbide powder to tungsten carbide powder. , a mixture of cobalt powder or a cobalt-nickel mixed powder obtained by adding nickel powder to cobalt powder in a ratio selected from within the ratio range of 30% by weight to 5% by weight is used. The raw material for the incomplete sintered body prepared by adding an adhesive such as paraffin to the raw material for the incomplete sintering prepared in this manner and mixing the raw material for the incomplete sintered body is molded into an appropriate shape using a molding device such as a compression molding device or a compression extrusion device. The molded body is heated in vacuum or in a hydrogen atmosphere at a temperature selected from a range of 800°C to 300°C for 10 to 60 minutes to produce an incompletely sintered body. . The resulting incompletely sintered body is crushed to produce incompletely sintered body powder. Next, the incompletely sintered powder is sufficiently mixed using a mixer to produce a homogeneously mixed incompletely sintered powder. Next, the homogeneously mixed incompletely sintered powder is subjected to normal pressure sintering, pressure sintering, or isostatic pressure sintering to produce a completely sintered body. In the case of the pressureless sintering method, 3 times the incompletely sintered powder is mixed evenly.
00kf, /+! A molded body is made by compression molding using a pressure selected from a range of 1.000 kg/d to 1.000 kg/d,
The molded body is heated to 1.300 in vacuum or hydrogen atmosphere.
Heating is performed at a temperature selected from the range of 1,600°C to 1,600°C, and when using the pressure sintering method, the incompletely sintered compact powder mixed homogeneously is filled into the pressure heating chamber to a temperature of 300°C. 9/d
Pressure is applied at a pressure selected from a range of 97 to 1,000°C, and heated at a temperature selected from a range of 1.300°C to 1.500°C, and the isostatic pressure sintering method is performed. In this case, homogeneously mixed incompletely sintered powder is filled into a container formed with a soft plate such as a soft iron plate, and the sealed container is loaded into a hydrostatic pressure heating chamber and heated at 300 dazz/d to 1. ,000 to a pressure selected from the range of 97- and heated at a temperature selected from the range of 1,300°C to 1,500°C to produce a completely sintered body. Manufacture of sintered tungsten carbide tool materials
It is a law.

以上に説明した方法によって製造し−た粉末焼結炭化タ
ングステン系工具材は、単一炭化タングステンの粉末ま
たは炭化タングステン系複炭化物の粉末または炭化タン
グステン粉末に他種の硬質炭化物粉末を加えた炭化タン
グステン系混合粉末が均質に分散していて、其の均質に
分散している個々の炭化物粒子の間隙に、コバルト粉末
またはコバルト−ニッケル混合粉末より成る海綿状構造
の焼結組織体が充塞すると共に個々の炭化物粒子に結合
した状態を生成していて、炭化物粒子のかたよりを防止
して、偏析をなくした焼結組織を構成していることを特
徴とし次粉末焼結炭化タングステン系工具材である。
The powder-sintered tungsten carbide-based tool material manufactured by the method described above is made of single tungsten carbide powder, tungsten carbide-based double carbide powder, or tungsten carbide powder prepared by adding other types of hard carbide powder to tungsten carbide powder. The system mixed powder is homogeneously dispersed, and the gaps between the individual carbide particles are filled with sintered bodies with a spongy structure made of cobalt powder or cobalt-nickel mixed powder, and the individual particles are This powder-sintered tungsten carbide-based tool material is characterized by forming a state in which the tungsten carbide particles are bonded to carbide particles, preventing the carbide particles from shifting, and forming a sintered structure that eliminates segregation.

次に・本発明の方法にエリ粉末焼結炭化タングステン系
工具材を製造する工程および製造して得られた粉末焼結
炭化タングステン系工具材について説明する。
Next, the process of manufacturing a powder sintered tungsten carbide tool material according to the method of the present invention and the powder sintered tungsten carbide tool material obtained by manufacturing will be explained.

実施例 1゜ 不完全焼結体を製造する原料には、単一炭化タングステ
ン粉末を85重量%とコバルト粉末を15重量%との割
合にて混合した混合物を使用した。斯様に調合した不完
全焼結体用原料に接着用のパラフィンを添加して混合し
た不完全焼結体用原料を、圧縮成形装置により圧縮成形
体をつくつ几。其の圧縮成形体を水素雰囲気中にて1,
150℃の温度にて30分間加熱して不完全焼結体を製
造した。次いで、其の不完全焼結体を粉砕機を用いて不
完全焼結体粉末をつくった。次いで、其の不完全焼結体
粉末にペンゾールを加えて混和した混和物をボールミル
に装入して更に微粉化すると共に均質に混和した不完全
焼結体粉末をつくった0次いで、均質に混和した不完全
焼結体粉末を圧縮成形装置により900)cp/cJの
圧力を加えて不完全焼結体粉末の圧縮成形体を成形し念
。次いで、其の圧縮成形体を水素雰囲気中にて1,37
0℃の温度にて50分間加熱して焼結体を製造した。焼
結作業を終えて得た焼結体は、炭化タングステン粉末が
均質に分散していて、其の均質に分散している個々の炭
化タングステン粒子の間隙に、コバルト粉末が焼結して
成る海綿状構造の焼結組織体が充塞していて、其の充塞
しているコバルト粉末焼結組織体が、個々の炭化タング
ステン粒子を結合していて、炭化タングステン粒子のか
たよりのない焼結組織を構成していて、工具材として高
い生産性を発揮できる粉末焼結炭化タングステン系工具
材でめった。
Example 1 A mixture of 85% by weight of single tungsten carbide powder and 15% by weight of cobalt powder was used as a raw material for producing an incompletely sintered body. The raw material for the incomplete sintered body prepared in this manner is mixed with paraffin for bonding, and the raw material for the incomplete sintered body is made into a compression molded body using a compression molding device. The compression molded body was heated in a hydrogen atmosphere for 1,
An incompletely sintered body was produced by heating at a temperature of 150° C. for 30 minutes. Next, the incomplete sintered body was used in a pulverizer to produce incomplete sintered body powder. Next, pensol was added to the incomplete sintered body powder and the mixture was charged into a ball mill and further pulverized and homogeneously mixed to create an incompletely sintered body powder. A pressure of 900) cp/cJ was applied to the incomplete sintered body powder using a compression molding device to form a compression molded body of the incomplete sintered body powder. Next, the compression molded body was heated to 1,37% in a hydrogen atmosphere.
A sintered body was produced by heating at a temperature of 0° C. for 50 minutes. The sintered body obtained after the sintering process is a sponge in which tungsten carbide powder is homogeneously dispersed, and cobalt powder is sintered in the gaps between the individual tungsten carbide particles that are homogeneously dispersed. The cobalt powder sintered structure is filled with a sintered structure having a shaped structure, and the filled cobalt powder sintered structure binds individual tungsten carbide particles, forming a sintered structure with no distortion of the tungsten carbide particles. We have developed a powdered sintered tungsten carbide tool material that can exhibit high productivity as a tool material.

実施例2゜ 不完全焼結体を製造する原料には、炭化タングステンが
80重量%と炭化チタンが20重量%との割合を成せる
炭化タングステン−炭化チタン複炭化物の粉末を83重
量%と、コバルト粉末が78重量%とニッケル粉末が2
2重量%との割合を成せるコバルト−ニッケル混合粉末
を17重量%との割合にて混合した混合物を使用した。
Example 2 Raw materials for producing an incomplete sintered body include 83% by weight of tungsten carbide-titanium carbide double carbide powder, which has a ratio of 80% by weight of tungsten carbide and 20% by weight of titanium carbide. 78% by weight cobalt powder and 2% nickel powder
A mixture was used in which a cobalt-nickel mixed powder having a proportion of 2% by weight was mixed with a proportion of 17% by weight.

斯様に調合した不完全焼結体用原料に接着用のパラフィ
ンを添加して混合し次子完全焼結体用原料を、圧縮成形
装置により圧縮成形体をつくつ次。其の圧縮成形体を真
壁中にて1、150℃の温度にて20分間加熱して不完
全焼結体を製造した。次いで、其の不完全焼結体を粉砕
機を用いて不完全焼結体粉末をつくった。
Paraffin for adhesion was added to the raw material for the incomplete sintered body prepared in this way and mixed, and the raw material for the Tsushiko complete sintered body was then made into a compression molded body using a compression molding device. The compression molded body was heated in a wall at a temperature of 1,150° C. for 20 minutes to produce an incompletely sintered body. Next, the incomplete sintered body was used in a pulverizer to produce incomplete sintered body powder.

次いで、其の不完全焼結体粉末にペンゾールを加えで混
和した混和物をボールミルに装入して更に微粉化すると
共に充分に混和した不完全焼結体粉末をつくつfco次
いで、均質に混和した不完全焼結体粉末を圧縮成形装置
により1,000kf/dの圧力を加えて不完全焼結体
粉末の圧縮成形体を成形した。次いで、其の圧縮成形体
を真空中にて1.450℃の温度にて30分間加熱して
焼結体を製造した。焼結作業を終えて得た焼結体は、炭
化タングステン−炭化チタン複炭化物粉末が均質に分散
していて、其の均質に分散している個々の炭化タングス
テン−炭化チタン複炭化物粒子の間隙に、コバルト−ニ
ッケル混合粉末が焼結して成る海綿状構造の焼結組織体
が充塞していて、其の充塞しているコバルト−ニッケル
混合粉末焼結組織体が、個々の炭化タングステン−炭化
チタン複炭化物粒子を結合   ”していて、炭化タン
グステン−炭化チタン複炭化物粒子のかたよりのない焼
結組織を構成していて、工具材として高い生産性を発揮
できる粉末焼結炭化タングステン系工具材であった。
Next, the mixture obtained by adding Penzol to the incomplete sintered body powder is charged into a ball mill and further pulverized, and the incompletely sintered body powder is fully mixed. A pressure of 1,000 kf/d was applied to the incompletely sintered body powder using a compression molding device to form a compression molded body of the incompletely sintered body powder. Next, the compression molded body was heated in a vacuum at a temperature of 1.450° C. for 30 minutes to produce a sintered body. The sintered body obtained after the sintering process has tungsten carbide-titanium carbide double carbide powder dispersed homogeneously, and in the gaps between the individual tungsten carbide-titanium carbide double carbide particles that are homogeneously dispersed. , is filled with a sintered structure having a spongy structure formed by sintering a cobalt-nickel mixed powder, and the filled cobalt-nickel mixed powder sintered structure is filled with individual tungsten carbide-titanium carbide. It is a powdered sintered tungsten carbide tool material that binds double carbide particles and forms a sintered structure with no distortion of tungsten carbide-titanium carbide double carbide particles, and can demonstrate high productivity as a tool material. Ta.

実施例 & 不完全焼結体を製造する原料には、炭化タングステン粉
末が70重量%と炭化タンタル粉末が30重量%との割
合を成せる炭化タングステン−炭化メンタル混合粉末を
82重量%と、コバルト粉末を18重量%との割合にて
混合した混合物を使用し念0斯様に調合し次子完全焼結
体用原料である混合粉末に接着用パラフィンを添加した
不完全焼結体用原料を、圧縮成形装置により圧縮成形体
をつくった。其の圧縮成形体を真空中にて1.150℃
の温度にて20分間加熱して不完全焼結体を製造し九〇
次いで、其の不完全焼結体を粉砕機を用いて不完全焼結
体粉末をつくった。次いで、其の不完全焼結体粉末にペ
ンゾールを加えて混和し之混合物をボールミルに装入し
て更に微粉化すると共に充分に混和し次子完全焼結体粉
末をつくつ之。次いで、均質に混和した不完全焼結体粉
末を容器内に充填して、其の容器をホットプレスにおけ
る高温高圧発生室内に装填した。次いで、其の高温高圧
発生室内に装填した容器内の不完全焼結体用原料に60
01f/iの圧力を加えると共に1,420℃の温度に
て20分間加熱した0次いで、高温高圧発生室内より容
器を押し出して、其の容器内より焼結体を取り出した0
取り出して得た焼結体は、炭化タングステン粉末と炭化
タンタル粉末とが均質に分散していて、其の均質に分散
している個々の炭化タングステン粒子および個々の炭化
タンタル粒子の間隙に、コバルト粉末が焼結して成る海
綿状構造の焼結組織体が充塞していて、其の充塞してい
るコバルト粉末焼結組織体が、個々の炭化タングステン
粒子および個々の炭化タンタル粒子を結合していて、炭
化タングステン粒子および炭化タンタル粒子のかたより
のない焼結組織を構成していて、工具材として高い生産
性を発揮できる粉末焼結炭化タングステン系工具材であ
つ次。
Examples & Raw materials for producing an incomplete sintered body include 82% by weight of tungsten carbide-mental carbide mixed powder with a ratio of 70% by weight of tungsten carbide powder and 30% by weight of tantalum carbide powder, and cobalt. A raw material for an incomplete sintered body is prepared by adding paraffin for bonding to the mixed powder, which is a raw material for a Tsujiko complete sintered body, using a mixture of powders mixed at a ratio of 18% by weight. A compression molded body was produced using a compression molding device. The compression molded product was heated to 1.150℃ in a vacuum.
An incompletely sintered body was produced by heating at a temperature of 90 minutes for 20 minutes, and the incompletely sintered body was then used in a pulverizer to produce incompletely sintered body powder. Next, Penzol is added to the incompletely sintered powder and mixed, and the mixture is charged into a ball mill and further pulverized and thoroughly mixed to produce Tsushiko's completely sintered powder. Next, the homogeneously mixed incompletely sintered powder was filled into a container, and the container was loaded into a high temperature and high pressure generation chamber in a hot press. Next, the raw material for the incomplete sintered body in the container loaded into the high temperature and high pressure generation chamber was
The container was heated at a temperature of 1,420°C for 20 minutes while applying a pressure of 01f/i.Then, the container was pushed out of the high temperature and high pressure generation chamber, and the sintered body was taken out from inside the container.
The sintered body taken out has tungsten carbide powder and tantalum carbide powder homogeneously dispersed, and cobalt powder is added to the gaps between the individual tungsten carbide particles and the individual tantalum carbide particles that are homogeneously dispersed. The cobalt powder is filled with a sintered body having a spongy structure formed by sintering, and the filled cobalt powder sintered body binds individual tungsten carbide particles and individual tantalum carbide particles. It is a powdered sintered tungsten carbide tool material that has a uniform sintered structure of tungsten carbide particles and tantalum carbide particles, and can exhibit high productivity as a tool material.

以上に説明した実施例にて製造した本発明の粉未焼結炭
化タングステン系工具材より成るチップと、炭化タング
ステン粉末をコバルトのみにて焼結した炭化タングステ
ン焼結体より成るチップとを使用して切削作業を行った
場合の実績は次の如くであった。
A chip made of the powdered unsintered tungsten carbide tool material of the present invention manufactured in the example described above and a chip made of a tungsten carbide sintered body obtained by sintering tungsten carbide powder with only cobalt were used. The actual results when cutting work was carried out were as follows.

アルミニウムが88重量%と珪素が12重量%との組成
のシルミンより成る直径80ミリ、長さ25ミリのピス
トン外径を切削する作業において、炭化タングステン焼
結体より成るチップを使用した場合は、−回の研磨にて
連続して490個切削できたのに対し、本発明の粉末焼
結炭化タングステン系工具材より成るチップを使用した
場合は、−回の研磨にて連続して530個乃至590個
切削でき次。また、銅が88重量%と錫が8重量%と亜
鉛が4重量%との組成の砲金より成る内径34ミリ、長
さ75ミリの軸受メタルの内径を切削する作業において
、炭化タングステン焼結体より成るチップを使用した場
合は、−回の研磨にて連続して63個切削できたのに対
して、本発明の粉末焼結炭化タングステン系工具材より
成るチップ”を使用し念場合は、−回の研磨にて連続し
て65個乃至76個切削できた0この切削実験によって
明75\なように、アルミニウム合金材の切削作業およ
び銅合金材の切削作業においては、炭化タングステン焼
結体より成るチップに比較して本発明の粉末焼結炭化タ
ングステン系工具材より成るチップは著しく高い生産性
を実現することカニできた。
When a tip made of tungsten carbide sintered body is used to cut a piston outer diameter of 80 mm in diameter and 25 mm in length, which is made of Silumin with a composition of 88% by weight of aluminum and 12% by weight of silicon, -490 pieces could be cut continuously in - times of polishing, whereas when using the tip made of the powder sintered tungsten carbide tool material of the present invention, 530 pieces could be cut continuously in - times of polishing. I was able to cut 590 pieces. In addition, in the process of cutting the inner diameter of a bearing metal with an inner diameter of 34 mm and a length of 75 mm, which is made of gunmetal with a composition of 88% by weight of copper, 8% by weight of tin, and 4% by weight of zinc, sintered tungsten carbide When using a tip made of the powdered sintered tungsten carbide tool material of the present invention, 63 pieces could be cut continuously in - times of polishing. - It was possible to cut 65 to 76 pieces in succession in three polishing sessions.As this cutting experiment clearly shows, when cutting aluminum alloy materials and copper alloy materials, tungsten carbide sintered The chips made of the powdered sintered tungsten carbide tool material of the present invention were able to achieve significantly higher productivity than the chips made of the powdered sintered tungsten carbide tool material of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)単一炭化タングステンの粉末または炭化タングス
テン系複炭化物の粉末または炭化タングステン粉末に他
種の硬質炭化物の粉末を加゛えた炭化タングステン系混
合粉末を70重量%乃至95重量%と、コバルト粉末ま
たはコバルト粉末にニッケル粉末を加えたコバルト−ニ
ッケル混合粉末を30重量%乃至5重量%との割合範囲
内より選定した割合にて混合した混合粉末を不完全焼結
用原料とし、其の不完全焼結体を圧縮成形した成形体を
真窒中または水素雰囲気中にて800℃乃至1,500
℃の範囲内より選定した温度にて10分間乃至60分間
加熱して不完全焼結体を生成し、次いで、其の生成した
不完全焼結体を粉砕して不完全焼結体粉末を生成し、次
いで、生成した不完全焼結粉末を充分に混和して均質な
不完全焼結粉末を生成し、次いで、生成した均質な不完
全焼結粉末を常圧焼結法または加圧焼結法または静水圧
加圧焼結法によって焼結して生成した完全焼結給体であ
って、単一炭化タングステンの粉末または炭化タングス
テン系複炭化物の粉末または炭化タングステン粉末に他
種の硬質炭化物の粉末を加えた炭化タングステン系混合
粉末が均質に分散していて、其の均質に分散している個
々の炭化物粒子の間隙に、コバルト粉末またはコバルト
−ニッケル混合粉末より成る海綿状構造の焼結組織体が
充塞すると共に個々の炭化物粒子に結合した状態を生成
していて、炭化物粒子のかたよりを防止して、偏析をな
くした焼結組織を構成していることを特徴とする粉末焼
結炭化タングステン系工具材0
(1) 70% to 95% by weight of a single tungsten carbide powder, a tungsten carbide double carbide powder, or a tungsten carbide mixed powder obtained by adding other types of hard carbide powder to the tungsten carbide powder, and cobalt powder. Alternatively, a cobalt-nickel mixed powder obtained by adding nickel powder to cobalt powder in a proportion selected from 30% to 5% by weight is used as the raw material for incomplete sintering, and the A compact obtained by compression molding a sintered compact is heated at 800°C to 1,500°C in nitrogen or hydrogen atmosphere.
Generate an incomplete sintered body by heating at a temperature selected from within the range of ℃ for 10 to 60 minutes, and then crush the generated incomplete sintered body to generate incomplete sintered body powder. Next, the generated incompletely sintered powder is sufficiently mixed to generate a homogeneous incompletely sintered powder, and then the generated homogeneous incompletely sintered powder is subjected to pressureless sintering or pressure sintering. A completely sintered body produced by sintering using a sintering method or isostatic pressure sintering method, which is a powder of single tungsten carbide, a powder of tungsten carbide-based double carbide, or a powder of tungsten carbide and another type of hard carbide. A tungsten carbide mixed powder containing powder is homogeneously dispersed, and a spongy sintered structure made of cobalt powder or cobalt-nickel mixed powder is formed in the spaces between the individual carbide particles that are homogeneously dispersed. Powdered sintered tungsten carbide characterized by forming a sintered structure in which the bodies are filled and bonded to individual carbide particles, preventing the carbide particles from shifting and eliminating segregation. System tool material 0
(2)単一炭化タングステンの粉末または炭化タングス
テン系複炭化物の粉末または炭化タンゲステン粉末に他
種の硬質炭化物の粉末を加えた炭化タングステン系混合
粉末を70重量%乃至95重量%と、コバルト粉末また
はコバルト粉末にニッケル粉末を加えたコバルト−ニッ
ケル混合粉末を30重量%乃至5重量%との割合範囲内
より選定した割合にて混合した混合粉末を不完全焼結体
用原料とし、其の不完全焼結用原料を圧縮成形した成形
体を真空中または水素雰囲気中にて800℃乃至’1,
300℃の範囲内より選定した温度にて10分間乃至6
0分間加熱して不完全焼結体を生成し、次いで、其の生
成した不完全焼結体を粉砕して不完全焼結体粉末を生成
し、次いで、常圧焼結法によって、生成した不完全焼結
体の粉末を300呻/d乃至1. D 00 kp/d
の範囲内の圧力にて圧縮成形した不完全焼結体粉末の圧
縮成形体を真空中または水素雰囲気中で1.300℃乃
至1,600℃の範囲内の温度にて加熱し、または、加
圧焼結法によって、生成した不完全焼結体の粉末を加圧
加熱室内に充填して3001g/i乃至1.000梅/
−の範囲内の圧力にて加圧すると共に、1、500℃乃
至1,500’Cの範囲内の温度にて加熱し、または、
静水圧加圧加熱法によって、生成した不完全焼結体の粉
末を軟鉄板−にて成形した容器内に充填して密封した容
器を静水圧加圧加熱室内に装填して500kg/i乃至
1.0001w/iの範囲内の圧力にて静水圧加圧する
と共に1,300’C乃至1,500℃の範囲内の温度
にて加熱して、焼結体を生成することを特徴とする粉末
焼結炭化タングステン工具材の製造法。
(2) 70% to 95% by weight of single tungsten carbide powder, tungsten carbide double carbide powder, or tungsten carbide powder mixed with other types of hard carbide powder, and cobalt powder or Cobalt-nickel mixed powder, which is made by adding nickel powder to cobalt powder, is mixed in a ratio selected from 30% by weight to 5% by weight, and the mixed powder is used as a raw material for an incomplete sintered body. A molded body obtained by compression molding the raw material for sintering is heated to 800°C to '1, in a vacuum or in a hydrogen atmosphere.
10 minutes to 6 days at a temperature selected from within the range of 300℃
Heating for 0 minutes to generate an incomplete sintered body, then pulverizing the generated incomplete sintered body to generate incomplete sintered body powder, and then using an atmospheric pressure sintering method to generate an incomplete sintered body. Powder of incompletely sintered body is heated at 300 m/d to 1. D 00 kp/d
A compacted compact of incompletely sintered powder compacted at a pressure within the range of 1.300°C to 1,600°C in a vacuum or hydrogen atmosphere, By the pressure sintering method, the powder of the incompletely sintered body produced is filled into a pressurized heating chamber and the amount is 3001 g/i to 1.000 ume/i.
- pressurized at a pressure within the range of and heated at a temperature within the range of 1,500°C to 1,500'C, or
The powder of the incomplete sintered body produced by the hydrostatic pressure heating method was filled into a container formed from a soft iron plate, and the sealed container was loaded into a hydrostatic pressure heating chamber to produce a powder of 500 kg/i to 1. Powder sintering characterized by producing a sintered body by isostatic pressing at a pressure within the range of .0001 w/i and heating at a temperature within the range of 1,300'C to 1,500°C. Manufacturing method for carbide tungsten tool material.
JP57008960A 1982-01-25 1982-01-25 Sintered tungsten carbide tool material and its manufacture Pending JPS58126953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57008960A JPS58126953A (en) 1982-01-25 1982-01-25 Sintered tungsten carbide tool material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57008960A JPS58126953A (en) 1982-01-25 1982-01-25 Sintered tungsten carbide tool material and its manufacture

Publications (1)

Publication Number Publication Date
JPS58126953A true JPS58126953A (en) 1983-07-28

Family

ID=11707232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57008960A Pending JPS58126953A (en) 1982-01-25 1982-01-25 Sintered tungsten carbide tool material and its manufacture

Country Status (1)

Country Link
JP (1) JPS58126953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037287A (en) * 1997-11-26 2000-03-14 Praxair S.T. Technology, Inc. Laser clad pot roll sleeves and bushings for galvanizing baths

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037287A (en) * 1997-11-26 2000-03-14 Praxair S.T. Technology, Inc. Laser clad pot roll sleeves and bushings for galvanizing baths

Similar Documents

Publication Publication Date Title
US3052967A (en) Porous metallic material and method
CN107557642A (en) Alloy for balancing weight and preparation method thereof and balancing weight
JPH0579735B2 (en)
JPH08199280A (en) Copper-tungsten alloy and its production
CN101468391A (en) Mixing method of iron-based powder for powder metallurgy
JPH0442441B2 (en)
CN112453384B (en) Preparation method of diffusion bonding titanium powder
JPS58126953A (en) Sintered tungsten carbide tool material and its manufacture
JP2001073127A (en) PRODUCTION OF LOW OXYGEN HIGH DENSITY Cu/Cr SPUTTERING TARGET
US5071473A (en) Uniform coarse tungsten carbide powder and cemented tungsten carbide article and process for producing same
EP0011981B1 (en) Method of manufacturing powder compacts
JPS59100233A (en) Manufacture of flake-like mother alloy for preparation of dental amalgam
US1895354A (en) Resintered hard metal composition
JPS5871303A (en) Production of tungstem carbide tool material
JPS58167735A (en) Manufacture of composite sintered body of tangsten carbide-titanium carbide
JPS6043423B2 (en) Method for manufacturing tool alloy with composite structure
US3231344A (en) Sintered intermetallic bodies composed of aluminum and niobium or tantalum
JPS62243726A (en) Cu-tib2 composite sintered material
JPS59182944A (en) Hard carbide composite sintered high speed steel and its production
JPH0688153A (en) Production of sintered titanium alloy
JPH07133157A (en) Electrically conductive ceramics and its production
JPH11277515A (en) High density boron nitride and manufacture of high density boron nitride particle
RU2214325C1 (en) Method for making diamond tool
JPS62164847A (en) Manufacture of porous sintered compact
US4208209A (en) Process for cold pressing finely ground metals