JPS5871303A - Production of tungstem carbide tool material - Google Patents

Production of tungstem carbide tool material

Info

Publication number
JPS5871303A
JPS5871303A JP56167273A JP16727381A JPS5871303A JP S5871303 A JPS5871303 A JP S5871303A JP 56167273 A JP56167273 A JP 56167273A JP 16727381 A JP16727381 A JP 16727381A JP S5871303 A JPS5871303 A JP S5871303A
Authority
JP
Japan
Prior art keywords
weight
powder
tungsten carbide
stabilized zirconia
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56167273A
Other languages
Japanese (ja)
Other versions
JPS5935974B2 (en
Inventor
Tatsuro Kuratomi
倉富 龍郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56167273A priority Critical patent/JPS5935974B2/en
Publication of JPS5871303A publication Critical patent/JPS5871303A/en
Publication of JPS5935974B2 publication Critical patent/JPS5935974B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a tungsten carbide tool material having excellent oxidation resistance, heat resistance, and mechanical strength by sintering a mixture consisting of tungsten carbide, cobalt or nickel and stabilized zirconia after compression molding. CONSTITUTION:A mixture consisting of 85-77wt% tungsten carbide powder, 15-18% cobalt powder or nickel powder, and 0.5-5% stabilized zirconia powder consisting of 95.5-93.8% zirconia and 4.5-6.2% yttria is used as a raw material and the material is compression-molded under pressure in a 3,000-7,000kg/cm<2> range. The resultant molding is heated to 1,300-1,600 deg.C in an inert gaseous or reducing gaseous atmosphere under atmospheric pressure or is heated to 1,300- 1,500 deg.C under 300-1,000kg/cm<2> pressure or is heated to 1,300-1,500 deg.C simultaneously under application of 300-1,000kg/cm<2> hydrostatic pressure, whereby the raw material is sintered.

Description

【発明の詳細な説明】 本発明は、工具材を構成する硬質材として硬質炭化物を
使用した工具材の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a tool material using hard carbide as a hard material constituting the tool material.

本発明は、工具材を製造するときに使用する硬質炭化物
の粉末としては炭化タングステン粉末を使用するもので
ある。
The present invention uses tungsten carbide powder as the hard carbide powder used when manufacturing tool materials.

本発明は、製造した炭化タングステン系工具材の耐酸化
性と耐熱性と機械的強度とを向上する手段として安定化
ジルコニア粉末を炭化タングステン粉末に添加した混合
粉末を使用することを特徴とするものである。其の炭化
タングステン粉末に添加する安定化ジルコニア粉末は、
ジルコニアが9!+、5重量%乃至93,8重量とイツ
トリアが外、5重量%乃至6,7重量外との範囲内の割
合の組成を成せる安定化ジルコニアの粉末を使用するも
のである。
The present invention is characterized in that a mixed powder in which stabilized zirconia powder is added to tungsten carbide powder is used as a means for improving the oxidation resistance, heat resistance, and mechanical strength of the manufactured tungsten carbide tool material. It is. The stabilized zirconia powder added to the tungsten carbide powder is
Zirconia is 9! Stabilized zirconia powder having a composition with a proportion within the range of 5% by weight to 93.8% by weight and 5% by weight to 6.7% by weight of ittria is used.

炭化タングステン粉末に安定化ジルコニア粉末を添加し
た混合粉末の結合助材にはコバルトの粉末またはニッケ
ルの粉末を使用する0以上に述べたように、本発明は、
工具材とする炭化タングステン系焼結体を製造する場合
に、安定化ジルコニア粉末を添加した原料を使用して、
炭化タングステン系工具材を製造することによって、耐
酸化性と耐熱性と機械的強度とを向上して、切削作業に
おける生産性を高かめた炭化タングステン系工具材を製
造する工業的に優れた方法を提供することを目的とする
ものである。
As described above, the present invention uses cobalt powder or nickel powder as a bonding agent for a mixed powder in which stabilized zirconia powder is added to tungsten carbide powder.
When manufacturing tungsten carbide-based sintered bodies for tool materials, using raw materials to which stabilized zirconia powder is added,
An industrially superior method for manufacturing tungsten carbide tool materials that improves oxidation resistance, heat resistance, and mechanical strength and increases productivity in cutting operations. The purpose is to provide the following.

本発明の方法によって炭化タングステン系工具材を製造
する場合に使用する原料には、炭化タングステン粉末を
85重量%乃至77重量%と、コバルト粉末またはニッ
ケル粉末を15重量%乃至18重量%と、ジルコニアが
955重量%乃至93.6重量%とイツトIJアが4.
5重量%乃至6.2重量%との割合範囲内より選定した
割合の組成を成せる安定化ジルコニア粉末を0.5重量
%乃至5重量%との割合範囲内より選定した割合にて混
合した混合物を使用する。斯様に調合した原料を用いて
行う焼結作業は、常圧焼結法または加圧焼結法または静
水圧加圧焼結法のいずれかの方法によって行う。焼結作
業を常圧焼結法によって行う場合は、原料を所望の寸法
の圧縮型の中に充填して5,000助/aA乃至乙00
0kt/c11[の範囲内エリ選定した圧力を用いて圧
縮成形し、其の成形体を1,300℃乃至1.600℃
の範囲内の温度にて20分間乃至120分間加熱する0
焼結作業を加圧焼結法によって行う場合は、原料を容器
内に充填し、其の容器を高温高圧発生室内に装填して、
其の容器内の原料に300kg/d乃至、1.000 
kg / cJの範囲内より選定した圧力を加えると同
時に1,300℃乃至1.500℃の範囲内より選定し
た温度に加熱し、其の加圧加熱作業を20分間乃至12
0分間持続する。焼結作業を静水圧加圧焼結法によって
行う場合は、原料を軟鉄板等の柔軟質の金属板を用いて
成形した容器内に充填し、其の容器を静水圧加圧加熱室
内に装填して300kl/cJ乃至1.QOOkg/c
Jの範囲内より選定した圧力を加えると同時に1.30
0℃乃至1,500℃の範囲内より選定した温度に加熱
し、其の加圧加熱作業を20分間乃至120分間持続す
る。この焼結作業を終えて得られる焼結体は、炭化タン
グステン粒子の多数個と安定化ジルコニア粒子の多数個
とより成る混合物が焼結した焼結組織体の内部に、コバ
ルト粉末またはニッケル粉末である結合助材粉末が液相
焼結して生成した海綿状構造の金属組織が充塞して個々
の炭化タングステン粒子に結合すると共に安定化ジルコ
ニア粒子に結合して構成した焼結体より成る炭化タング
ステン系工具材である。
The raw materials used to produce tungsten carbide tool materials by the method of the present invention include 85% to 77% by weight of tungsten carbide powder, 15% to 18% by weight of cobalt powder or nickel powder, and zirconia. is 955% to 93.6% by weight, and the IJA is 4.
Stabilized zirconia powder having a composition selected from a proportion range of 5% by weight to 6.2% by weight was mixed in a proportion selected from a proportion range of 0.5% by weight to 5% by weight. Use a mixture. The sintering operation using the raw materials prepared in this manner is performed by any one of the normal pressure sintering method, the pressure sintering method, and the hydrostatic pressure sintering method. When sintering is carried out by the normal pressure sintering method, the raw material is filled into a compression mold of the desired size and the sintering process is carried out at a rate of 5,000 yen/aA to 0000 yen.
Compression molding is carried out using a selected pressure within the range of 0kt/c11[, and the molded product is heated to 1,300℃ to 1.600℃.
Heat for 20 to 120 minutes at a temperature within the range of 0.
When performing sintering work using the pressure sintering method, the raw materials are filled into a container, and the container is loaded into a high temperature and high pressure generation chamber.
300kg/d to 1,000 to the raw material in the container
Apply a pressure selected from within the range of kg / cJ and simultaneously heat to a temperature selected from within the range of 1,300℃ to 1.500℃, and press and heat for 20 minutes to 12 minutes.
Lasts 0 minutes. When sintering is performed using the hydrostatic pressure sintering method, the raw materials are filled into a container formed using a flexible metal plate such as a soft iron plate, and the container is loaded into a hydrostatic pressure heating chamber. 300kl/cJ to 1. QOOkg/c
1.30 at the same time as applying a pressure selected from within the range of J.
It is heated to a temperature selected from the range of 0° C. to 1,500° C., and the pressurizing and heating operation is continued for 20 minutes to 120 minutes. The sintered body obtained by completing this sintering operation is a sintered body in which a mixture of a large number of tungsten carbide particles and a large number of stabilized zirconia particles is sintered, and cobalt powder or nickel powder is placed inside the sintered structure. Tungsten carbide consisting of a sintered body formed by filling a spongy metal structure generated by liquid-phase sintering of a bonding aid powder and bonding to individual tungsten carbide particles, as well as to stabilized zirconia particles. It is a type tool material.

次に、実施例により炭化タングステン系工具材を製造す
る本発明の方法について説明する。
Next, the method of the present invention for manufacturing a tungsten carbide-based tool material will be explained using Examples.

実施例 1゜ 原料には、炭化タングステン粉末を84.5重量%と、
コバルト粉末を15重量%と、ジルコニアが94,6重
量%とイツトリアが4.5重量%との割合の組成を成せ
る安定化ジルコニア粉末をα5重量%との割合にて混合
した混合物を使用した。斯様に調合した原料を焼結する
作業は常圧焼結法によって行い、先づ、其の原料を成形
用型に充填し、5,000kt/dの圧力を加えて圧縮
成形体を生成した。其の生成した成形体を真空中にて1
.500℃に30分間加熱した0この焼結作業にて得ら
れた焼結体は、炭化タングステン粒子の多数個と安定化
ジルコニア粒子の多数個との混合物が焼結した焼結組織
体の内部に、コバルト粉末が液相焼結して生成した海綿
状構造のコバルト組織が充塞して個々の炭化タングステ
ン粒子に結合すると共に個々の安定化ジルコニア粒子に
結合して構成した焼結体であって、工具材として使用で
きる炭化タングステン系工具材であった0 実施例2゜ 原料には、炭化タングステン粉末を83重量%と、コバ
ルト粉末を16重量%と、ジルコニアが94.6重量%
とイツトリアが4,5重量%との割合の組成を成せる安
定化ジルコニア粉末を1重量%との割合にて混合した混
合物を使用した。
Example 1゜ Raw materials include 84.5% by weight of tungsten carbide powder,
A mixture was used in which 15% by weight of cobalt powder was mixed with α5% by weight of stabilized zirconia powder having a composition of 94.6% by weight of zirconia and 4.5% by weight of ittria. . The work of sintering the raw materials prepared in this way was carried out by the pressureless sintering method. First, the raw materials were filled into a mold and a pressure of 5,000 kt/d was applied to produce a compression molded body. . The resulting molded body is heated in a vacuum.
.. The sintered body obtained by this sintering operation was heated to 500°C for 30 minutes. , a sintered body composed of a spongy cobalt structure generated by liquid phase sintering of cobalt powder, which is filled and bonded to individual tungsten carbide particles and bonded to individual stabilized zirconia particles, It was a tungsten carbide-based tool material that could be used as a tool material.Example 2゜The raw materials included 83% by weight of tungsten carbide powder, 16% by weight of cobalt powder, and 94.6% by weight of zirconia.
A mixture of stabilized zirconia powder containing 4.5% by weight of itria and 1% by weight of ittria was used.

斯様に調合した原料を用いて焼結体を製造する作業は実
施例1の場合と同様にして行った。焼結作業を終えて得
られた焼結体は、炭化タングステン粒子の多数個と安定
化ジルコニア粒子の多数個との混合物が焼結した焼結組
織体の内部に、コバルト粉末が液相焼結して生成した海
綿状構造のコバルト組織が充塞して個々の炭化タングス
テン粒子に結合すると共に個々の安定化ジルコニア粒子
に結合して構成した焼結体であって、工具材として使用
できる炭化タングステン系工具材であった。
The operation for producing a sintered body using the raw materials prepared in this manner was carried out in the same manner as in Example 1. The sintered body obtained after the sintering process is a sintered body in which a mixture of many tungsten carbide particles and many stabilized zirconia particles is sintered, and cobalt powder is liquid-phase sintered inside the sintered body. It is a sintered body composed of a spongy cobalt structure formed by filling and bonding to individual tungsten carbide particles and bonding to individual stabilized zirconia particles, and is a tungsten carbide-based material that can be used as a tool material. It was a tool material.

実施例 & 原料には、炭化タングステン粉末を81重量%と、コバ
ルト粉末を17重量%と、ジルコニアが94.−重量%
とイツトリアが4>5重量%との割合の組成を成した安
定化ジルコニア粉末を2重斯様に調合した原料を用いて
焼結作業を行う方法は加圧焼結法によって行った。先づ
、原料を容器内に充填して、其の容器を高温高圧発生室
内に装填した。次いで、其の容器内の原料に500kt
/cjの圧力を加えると同時に1.450℃に加熱して
、其の加圧加熱作業を30分間持続した。−次いで、加
熱を停止し、続いて加圧を常圧にもどして、高温高圧発
生室内より容器を押し出し、其の容器内より焼結体をを
り出した。
Examples & Raw materials include 81% by weight of tungsten carbide powder, 17% by weight of cobalt powder, and 94% by weight of zirconia. -% by weight
The sintering process was carried out using a raw material prepared by mixing stabilized zirconia powder with a composition of 4>5% by weight of 4>5 wt. First, raw materials were filled into a container, and the container was loaded into a high temperature and high pressure generation chamber. Next, 500kt was added to the raw material in the container.
/cj was applied and at the same time heated to 1.450°C, and the pressure and heating operation was continued for 30 minutes. - Next, the heating was stopped, and then the pressurization was returned to normal pressure, the container was pushed out of the high temperature and high pressure generation chamber, and the sintered body was taken out from inside the container.

得られた焼結体は、炭化タングステン粒子の多数個と安
定化ジルコニア粒子の多数個との混合物が焼結した焼結
組織体の内部に、コバルト粉末が液相焼結して生成した
海綿状構造のコバルト組織が充塞して個々の炭化タング
ステン粒子に結合すると共に個々の安定化ジルコニア粒
子に結合して構成した焼結体であって、工具材として使
用できる炭化タングステン系工具材であった。
The obtained sintered body has a spongy structure formed by liquid phase sintering of cobalt powder inside a sintered structure in which a mixture of many tungsten carbide particles and many stabilized zirconia particles is sintered. It was a sintered body composed of a structured cobalt structure filled and bonded to individual tungsten carbide particles and bonded to individual stabilized zirconia particles, and was a tungsten carbide-based tool material that could be used as a tool material.

実施例 4゜ 原料には、炭化タングステン粉末を79重量%と、ニッ
ケル粉末を18重量%と、ジルコニアが94.6重量%
とイツトリアが4.5重量%との割合の組成を成せる安
定化ジルコニア粉末を3重量%との割合にて混合した混
合物を使用した。斯様に調合した原料を用いて焼結体を
製造する作業は静水圧加圧焼結法によって行った。
Example 4゜The raw materials include 79% by weight of tungsten carbide powder, 18% by weight of nickel powder, and 94.6% by weight of zirconia.
A mixture of stabilized zirconia powder containing 4.5% by weight of itria and 3% by weight of ittria was used. The production of a sintered body using the raw materials prepared in this manner was carried out by an isostatic pressure sintering method.

先づ、原料を軟鉄板にて成形、した容器内に充填し、其
の容器を静水圧加圧加熱室内に装填した。
First, the raw material was filled into a container formed from a soft iron plate, and the container was loaded into a hydrostatic pressure heating chamber.

次いで、其の容器内の原料に500kg/dの静水圧を
加えた。続いて、其の原料を1,450’Cに加熱した
。其の加圧加熱作業を30分間持続し念。次いで、加熱
を停止し、加えていた圧力を常圧にもどして、静水圧加
圧加熱室内より容器を押し出して、其の容器内より焼結
体を覗り出した。焼結作業を終えて得た焼結体は、炭化
タングステン粒子の多数個と安定化ジルコニア粒子の多
数個との混合物が焼結した焼結組織体の内部に、ニッケ
ル粉末が液相焼結して生成した海綿状構造のニッケル組
織が充塞していて、其のニッケル組織が個々の炭化タン
グステン粒子に結合すると共に個々の安定化ジルコニア
粒子に結合して構成した焼結体であって、工具材として
使用できる炭化タングステン系工具材であった。
Next, a hydrostatic pressure of 500 kg/d was applied to the raw material in the container. Subsequently, the raw material was heated to 1,450'C. Continue the pressure and heating process for 30 minutes. Next, heating was stopped, the applied pressure was returned to normal pressure, the container was pushed out from the hydrostatic pressure heating chamber, and the sintered body was peeked out from inside the container. The sintered body obtained after the sintering process is a sintered body in which nickel powder is liquid-phase sintered inside a sintered structure in which a mixture of many tungsten carbide particles and many stabilized zirconia particles is sintered. It is a sintered body that is filled with a spongy nickel structure generated by the process, and the nickel structure is bonded to individual tungsten carbide particles and bonded to individual stabilized zirconia particles, and is a tool material. It was a tungsten carbide-based tool material that could be used as a tool.

以上に説明した実施例にて製造した安定化ジルコニアを
含有している炭化タングステン系工具材より成るチップ
と、炭化タングステン粉末にコバルト粉末を加えた混合
物を焼結した安定化ジルコニアを含有していない炭化タ
ングステン−コバルト焼結工具材より成るチップとを切
削性能について比較した実績は次の如くであった〇抗折
力については、常温下で、安定化ジルコニアを含有して
いない炭化−タングステン−コバルト焼結工具材の抗折
力は226kg/dであったのに対し、本発明の方法に
よって製造した安定化ジルコニアを含有している炭化タ
ングステン系工具材の抗折力は2281g/d乃至23
1階/−であった。次に、550℃の温度条件下では、
安定化ジルコニアを含有していない炭化りングステンー
コバルト焼結工具材の抗折力は3%低下したのに対し、
安定化ジルコニアを含有している本発明の方法によって
製造した炭化タングステン系工具材の抗折力は低下しな
かった。
A chip made of a tungsten carbide-based tool material containing stabilized zirconia produced in the example described above, and a tip made of a sintered mixture of tungsten carbide powder and cobalt powder that does not contain stabilized zirconia. The results of comparing the cutting performance of chips made of sintered tungsten carbide-cobalt tool materials were as follows. Regarding transverse rupture strength, at room temperature, chips made of tungsten carbide-cobalt carbide that does not contain stabilized zirconia were compared. The transverse rupture strength of the sintered tool material was 226 kg/d, whereas the transverse rupture strength of the tungsten carbide tool material containing stabilized zirconia produced by the method of the present invention was 2281 g/d to 23.
It was on the 1st floor. Next, under the temperature condition of 550℃,
Whereas the transverse rupture strength of the phosphorus carbide-cobalt sintered tool material that did not contain stabilized zirconia decreased by 3%,
The transverse rupture strength of tungsten carbide-based tools made by the method of the invention containing stabilized zirconia did not decrease.

次に、600℃の温度条件下では、安定化ジルコニア含
有していない炭化タングステン−コバルト焼結工具材の
抗折力は9%低下したのに対し、安定化ジルコニアを含
有している本発明の方法によって製造した炭化タングス
テン系工具材の抗折力の低下は2%であった。切削作業
については、クロム工具鋼材を成形加工して焼き入れし
た輪状体を外径52ミリ、幅15ミリのコロ軸受用外輪
に切削する作業を行った。其の切削作業において、安定
化ジルコニアを含有していない炭化タングステン−コバ
ルト焼結工具材より成るチップを使用した場合は一回の
研磨で連続して26個切削できたのに対し、本発明の方
法で製造した安定化ジルコニアを含有している炭化タン
グステン系工具材より成るチップを使用した場合は一回
の研磨で連結して27個よって、本□発明の方法によっ
て製造した安定化ジルコニアを含有している炭化タング
ステン系工具材は、安定化ジルコニアを含有していない
炭化タングステン−コバルト焼結工具材に比較して、鋼
材の切削作業においては優れた生産性を実現することが
できた。
Next, under a temperature condition of 600°C, the transverse rupture strength of the tungsten carbide-cobalt sintered tool material that does not contain stabilized zirconia decreased by 9%, whereas that of the present invention that contains stabilized zirconia. The reduction in transverse rupture strength of the tungsten carbide tool material produced by this method was 2%. The cutting work involved cutting a ring-shaped body made of chrome tool steel and hardening it into an outer ring for a roller bearing with an outer diameter of 52 mm and a width of 15 mm. In the cutting operation, when using a tip made of tungsten carbide-cobalt sintered tool material that does not contain stabilized zirconia, 26 pieces could be cut continuously in one polishing operation, whereas the present invention When a tip made of tungsten carbide-based tool material containing stabilized zirconia produced by the method is used, 27 chips are connected in one polishing, so that the chips containing stabilized zirconia produced by the method of the present invention are used. The tungsten carbide-based tool material containing stabilized zirconia was able to achieve superior productivity in cutting steel materials compared to a tungsten carbide-cobalt sintered tool material that does not contain stabilized zirconia.

特許出願人   倉 冨 龍 部・ 手続補正書 (1弛) 昭和56年11月17日 轡許庁畏盲 島1)春― 駿 t 事件O表示 炭化タングステン系工具材の製造法 龜 補正をする看 事件との関係  特許出願人本人 神奈川県茅ケ崎市浜竹4丁@2−111屯 補正により
増加する1III14数    なし翫補正Os曝  
詳me説明の− 表補正O内答 纂6員 2行目、j17買 2行目、19行目。
Patent Applicant: Tomi Kura, Department of Procedural Amendments (1st Amendment) November 17, 1980, Japan License Office, 1) Haru-Shunt Incident O: Manufacturing method for tungsten carbide tool materials. Relationship to the case Patent applicant 4-cho Hamatake, Chigasaki City, Kanagawa Prefecture @ 2-111 ton 1III14 number increased due to amendment No correction Os exposure
Detailed me explanation - table correction O internal answer compilation 6 members 2nd line, j17 purchase 2nd line, 19th line.

鶴!貢 5行目crane! Tribute line 5

Claims (1)

【特許請求の範囲】 炭化タングメチン粉末が85重量%乃至77重量%と、
コバルト粉末またはニッケル粉末を15重量%乃至18
重量%と、ジルコニアが95.5重量%乃至v3.5重
量弊とイツトリアが4.5重量%乃至6.Z重量%との
割合範囲内より選定した割合の組成を成せる安定化ジル
コニア粉末を0.5重量%乃至5重量%との割合範囲内
より選定した割合にて混合した混合物を原料とし、箕の
原料を3,000kp/c+J乃至7,0OOk47d
の範囲内の圧力にて圧縮成形した成形体を常圧下にて不
活性ガスまたは還元性ガスの雰囲気中にて1,300℃
乃至1.s00℃の範囲内の温度にて加熱するか、或は
、其の原料に3o。 吻/−乃至1,0OOkf/dの範囲内の圧力を加える
と同時に1.300 ”C乃至1,500”Cの温度に
加熱するか、或は、其の原料に500kz/d乃至1,
0OO1y/dの範囲内の静水圧を加えると同時に1.
300℃乃至1,500℃の温度に加熱するかして、其
の原料を焼結することを特徴とする炭化タングステン系
工具材の製造法〇
[Claims] 85% to 77% by weight of tungmetine carbide powder,
15% to 18% by weight of cobalt powder or nickel powder
95.5% by weight of zirconia to 3.5% by weight and 4.5% to 6.5% by weight of zirconia. A mixture of stabilized zirconia powder having a composition selected from within the proportion range of 0.5 weight % to 5 weight % with Z weight % is used as a raw material. 3,000kp/c+J to 7,0OOk47d of raw materials
The compact was compression molded at a pressure within the range of 1,300°C in an inert gas or reducing gas atmosphere under normal pressure.
~1. Heating at a temperature within the range of s00°C, or heating the raw material at 3°C. The raw material is heated to a temperature of 1.300"C to 1,500"C while applying a pressure in the range of 1.0 to 1,000 kf/d, or the material is heated to a temperature of 500 kz/d to 1,000 kf/d.
While applying hydrostatic pressure within the range of 0OO1y/d, 1.
A method for producing tungsten carbide tool materials characterized by sintering the raw material by heating it to a temperature of 300°C to 1,500°C.
JP56167273A 1981-10-21 1981-10-21 Manufacturing method for tungsten carbide tool materials Expired JPS5935974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56167273A JPS5935974B2 (en) 1981-10-21 1981-10-21 Manufacturing method for tungsten carbide tool materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56167273A JPS5935974B2 (en) 1981-10-21 1981-10-21 Manufacturing method for tungsten carbide tool materials

Publications (2)

Publication Number Publication Date
JPS5871303A true JPS5871303A (en) 1983-04-28
JPS5935974B2 JPS5935974B2 (en) 1984-08-31

Family

ID=15846680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56167273A Expired JPS5935974B2 (en) 1981-10-21 1981-10-21 Manufacturing method for tungsten carbide tool materials

Country Status (1)

Country Link
JP (1) JPS5935974B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037287A (en) * 1997-11-26 2000-03-14 Praxair S.T. Technology, Inc. Laser clad pot roll sleeves and bushings for galvanizing baths
JP2016003375A (en) * 2014-06-18 2016-01-12 株式会社エレニックス Hard metal
CN110396631A (en) * 2019-08-02 2019-11-01 昆明理工大学 A kind of continuous method and device for preparing WC-10Ni-ZrO2 hard alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108866418B (en) * 2018-06-08 2020-08-28 北京科技大学 Preparation method of oxide dispersion-strengthened Fe-Co-Ni medium-entropy alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037287A (en) * 1997-11-26 2000-03-14 Praxair S.T. Technology, Inc. Laser clad pot roll sleeves and bushings for galvanizing baths
JP2016003375A (en) * 2014-06-18 2016-01-12 株式会社エレニックス Hard metal
CN110396631A (en) * 2019-08-02 2019-11-01 昆明理工大学 A kind of continuous method and device for preparing WC-10Ni-ZrO2 hard alloy
CN110396631B (en) * 2019-08-02 2021-04-23 昆明理工大学 Method and device for continuously preparing WC-10Ni-ZrO2 hard alloy

Also Published As

Publication number Publication date
JPS5935974B2 (en) 1984-08-31

Similar Documents

Publication Publication Date Title
JP5456949B2 (en) Method for producing polycrystalline cubic boron nitride cutting tool insert
CN100419105C (en) Metal ceramic material and formation technology
CN111558904A (en) 3D printing manufacturing process of metal ceramic bond CBN grinding wheel
CN111318710A (en) Preparation method of high-holding-force diamond-inlaid tool
JPS5835949B2 (en) Method for manufacturing silicon carbide body
JPS5871303A (en) Production of tungstem carbide tool material
US3510296A (en) Metal fabrication
JPS5816795A (en) Brazing material
JPS59229403A (en) Production of sintered metallic member and binder for injection molding
US6737015B1 (en) Method for producing composite materials and examples of such composite materials
JPH0710517A (en) Production of fine combined carbide powder for producing tungsten carbide-based cemented carbide
JPS58157925A (en) Manufacture of tool material of double carbide of tungsten carbide
JPS5819408A (en) Manufacture of composite carbide-boride solidified body
JPH03229832A (en) Manufacture of nb-al intermetallic compound
JPS58126953A (en) Sintered tungsten carbide tool material and its manufacture
JPH05147917A (en) Production of fine tungsten-based carbide powder
JPS6227503A (en) Production of thin sheet-like sintered metallic member
JPS58167735A (en) Manufacture of composite sintered body of tangsten carbide-titanium carbide
JPS59182944A (en) Hard carbide composite sintered high speed steel and its production
JPS60138044A (en) Composite sintered structural body of cubic boron nitride and cermet and production thereof
JPH0679978B2 (en) Titanium boride ceramics sintered body
JPS58135179A (en) Stabilized zirconia sintered formed body and manufacture
JP5674602B2 (en) Method for manufacturing silicon carbide sintered body and silicon carbide sintered body
JPH036209B2 (en)
JPH0679979B2 (en) Method for producing titanium boride ceramics sintered body