JPS59182944A - Hard carbide composite sintered high speed steel and its production - Google Patents

Hard carbide composite sintered high speed steel and its production

Info

Publication number
JPS59182944A
JPS59182944A JP5510783A JP5510783A JPS59182944A JP S59182944 A JPS59182944 A JP S59182944A JP 5510783 A JP5510783 A JP 5510783A JP 5510783 A JP5510783 A JP 5510783A JP S59182944 A JPS59182944 A JP S59182944A
Authority
JP
Japan
Prior art keywords
carbide
sintering
powder
sintered
speed steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5510783A
Other languages
Japanese (ja)
Inventor
Tatsuro Kuratomi
倉富 龍郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5510783A priority Critical patent/JPS59182944A/en
Publication of JPS59182944A publication Critical patent/JPS59182944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a hard carbide composite sintered high speed steel provided with high tool performance by coating Co or Ni on the powder particles of a hard carbide such as Cr3C2 or the like, mixing a suitable amt. thereof with high speed steel powder, and sintering the mixture under an adequate sintering condition. CONSTITUTION:Co or Ni is coated on the particles of the powder of a hard carbide such as Cr3C2, Mo2C, WC, VC, NbC, TaC, TiC, ZrC, HfC or the like, and 10-50wt% the coated powder and is mixed with 90-50% high speed steel powder to obtain a raw material for sintering. The raw material for sintering is compression molded under a pressure of 5-10t/cm<2> and is sintered in a vacuum or under atm. pressure at 1,200-1,300 deg.C or is subjected to pressure heating and sintering under 3-8t/cm<2> and at 1,200-1,300 deg.C or to hot hydrostatic pressure heating and sintering. The hard carbide composite sintered high speed steel in which the Co or Ni film and the high speed steel particles are sintered to each other and the sintered structure thereof is sintered to the hard carbide particles, is thus obtd.

Description

【発明の詳細な説明】 本発明は、高速度鋼粉末にコバルトまたはニッケルを被
覆した硬質炭化物粉末を加えた混合粉末を焼結用原料と
して使用して、硬質炭化物を複合した焼結高速度鋼を製
造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a mixed powder in which hard carbide powder coated with cobalt or nickel is added to high speed steel powder as a raw material for sintering to produce sintered high speed steel composited with hard carbide. The present invention relates to a method for manufacturing.

コバルトまたはニッケルを被覆した硬質炭化物粉末にお
ける硬質炭化物としては、炭化クロム、炭化モリブデン
、炭化タングステン、炭化バナジウム、炭化ニオブ、炭
化タンタル、炭化チタン、炭化ジルコニウム、炭化ハフ
ニウムを使用するものである。斯様な硬質炭化物粉末の
個々の粒子にコバルトまたはニッケルを被覆するには電
気メツキ被覆或は焼結被覆等の公知の方法を用いて行う
ことができる。
As the hard carbide in the hard carbide powder coated with cobalt or nickel, chromium carbide, molybdenum carbide, tungsten carbide, vanadium carbide, niobium carbide, tantalum carbide, titanium carbide, zirconium carbide, and hafnium carbide are used. Individual particles of such hard carbide powder can be coated with cobalt or nickel using known methods such as electroplating or sintering.

本発明の硬質炭化物複合焼結高速度鋼を製造する方法は
、硬質炭化物と良く焼結する性質を持っているコバルト
およびニッケルを硬質炭化物粉末における個々の粒子の
表面に被覆して、其の硬質炭化物粒子を被覆しているコ
バルトまたはニッケルの皮膜が焼結工程において硬質炭
化物粒子に焼結すると共に高速度鋼粉末における高速度
鋼粒子とも焼結するものであって、硬質炭化物粉末と高
速度鋼粉末とが混合している混合状態の橙かの個々の硬
質炭化物粒子と個々の高速度鋼粒子とが硬質炭化物粒子
を被覆しているコバルト皮膜またはニッケル皮膜を焼結
媒剤として、焼結作用を行って複合焼結組織体を生成す
ることを特徴とするものである。
The method for producing hard carbide composite sintered high-speed steel of the present invention involves coating the surfaces of individual particles in hard carbide powder with cobalt and nickel, which have the property of sintering well with hard carbides, to increase the hardness of the hard carbide powder. The cobalt or nickel film covering the carbide particles is sintered into hard carbide particles in the sintering process and is also sintered with the high speed steel particles in the high speed steel powder, so that the hard carbide powder and the high speed steel are sintered. Individual orange hard carbide particles in a mixed state with powder and individual high speed steel particles are sintered using a cobalt film or nickel film covering the hard carbide particles as a sintering medium. The method is characterized in that a composite sintered structure is produced by performing the following steps.

本発明は、以上に説明したように硬質炭化物によく焼結
する性質を有しているコバルトまたはニッケルを硬質炭
化物粒子の表面に被覆したコバルト被覆硬質炭化物粉末
またはニッケル被覆硬質炭化物粉末を高速度鋼粉末に加
えた混合粉末を焼結用原料として使用して、斯様に調製
した焼結用原料を高速度鋼に適当した焼結温度を用いて
焼結作業を行うことを特徴とする硬質炭化物複合焼結高
速度鋼を製造する有効な方法を提供すると共に、高速度
鋼粉末を焼結した焼結高速度鋼に比較して著しく高い工
具性能を備えた硬質炭化物複合焼結高速度鋼を提供する
ととを目的とするものである。
As explained above, the present invention uses cobalt-coated hard carbide powder or nickel-coated hard carbide powder in which the surface of hard carbide particles is coated with cobalt or nickel, which has the property of sintering well into hard carbide. A hard carbide characterized in that a mixed powder added to the powder is used as a sintering raw material, and the sintering raw material thus prepared is sintered at a sintering temperature suitable for high-speed steel. Provides an effective method for producing composite sintered high-speed steel, and provides a hard carbide composite sintered high-speed steel with significantly higher tooling performance compared to sintered high-speed steel made from sintered high-speed steel powder. The purpose is to provide.

次に、本発明の方法により硬質炭化物複合焼結高速度鋼
を製造する工程および作用を説明すると共に製造した硬
質炭化物複合焼結高速度鋼について説明する。
Next, the process and operation of manufacturing hard carbide composite sintered high-speed steel by the method of the present invention will be explained, as well as the manufactured hard carbide composite sintered high-speed steel.

硬質炭化物複合焼結高速度鋼を製造するに当り使用する
焼結用原料には炭化クロム、炭化モリブデン、炭化タン
グステン、炭化バナジウム、炭化ジルコニウム、炭化ハ
フニウム、炭化チタン、炭化ニオブ、炭化タンタルのう
ちより選択した硬質炭化物の粉末の個々の粒子の表面に
コバルトまたはニッケルを被覆しているコバルト被覆硬
質炭化物粉末またはニッケル被覆硬質炭化物粉末を10
重量%乃至50重量%と、高速度鋼粉末を90重量%乃
至50重量%との割合範囲内より選定した割合にて混合
した混合粉末を使用するものである。斯様に調製した焼
結用原料を焼結して硬質炭化物複合焼結高速度鋼を製造
する焼結作業は、製品の使用目的および使用した焼結用
原料により適当した焼結方式を採用し、5 ton /
 crl乃至10 ton / crlの範囲内の圧力
を用いて圧縮成形した成形体を1.200℃乃至1.3
00℃の範囲内の焼結用温度を用いて真空中にて焼結を
行うか、水素ガス等の還元性ガスの雰囲気中にて焼結を
行い、或は、3 ton/ crl乃至8 ton /
 crlの範囲内の焼結用圧力と、1.200℃乃至1
.300℃の範囲内の焼結用圧力とを用いて加圧加熱焼
結を行うか熱間静水圧加圧加熱焼結を行って焼結体を生
成する。斯様ないずれかの方法によって焼結して得られ
る焼結体は、焼結用原料中にて高速度鋼粉末と混合して
いるコバルト被覆硬質炭化物粉末の個々の粒子を被覆し
ているコバルト皮膜またはニッケル被覆硬質炭化物粉末
の個々の粒子を被覆しているニッケル皮膜と、高速度鋼
粉末の個々の粒子とが液相焼結して焼結組織を生成する
と共に其の焼結組織が個々のコバルト被覆硬質炭化物粒
子における硬質炭化物粒子または個々のニッケル被覆硬
質炭化物粒子における硬質炭化物粒子に焼結して、複合
焼結組織体を構成している硬質炭化物複合焼結高速度鋼
である。
Sintering raw materials used to produce hard carbide composite sintered high-speed steel include chromium carbide, molybdenum carbide, tungsten carbide, vanadium carbide, zirconium carbide, hafnium carbide, titanium carbide, niobium carbide, and tantalum carbide. 10 cobalt-coated hard carbide powders or nickel-coated hard carbide powders in which cobalt or nickel is coated on the surface of each individual particle of the selected hard carbide powder.
A mixed powder is used in which a proportion of high speed steel powder is selected from a proportion range of 90% to 50% by weight and 90% to 50% by weight. In the sintering process of producing hard carbide composite sintered high-speed steel by sintering the sintering raw material prepared in this way, a sintering method suitable for the intended use of the product and the sintering raw material used is adopted. ,5 tons/
A molded body compression molded using a pressure within the range of crl to 10 ton/crl is heated to 1.200°C to 1.3°C.
Sintering is performed in a vacuum using a sintering temperature within the range of 00°C, or sintering is performed in an atmosphere of reducing gas such as hydrogen gas, or 3 ton/crl to 8 ton /
Sintering pressure within the range of crl and 1.200 °C to 1
.. A sintered body is produced by performing pressure heating sintering using a sintering pressure within the range of 300° C. or by performing hot isostatic pressing heating sintering. The sintered body obtained by sintering by any of these methods consists of cobalt coating individual particles of cobalt-coated hard carbide powder mixed with high speed steel powder in the sintering raw material. The nickel coating covering the individual particles of the coating or nickel-coated hard carbide powder and the individual particles of the high speed steel powder undergo liquid phase sintering to produce a sintered structure, and the sintered structure This is a hard carbide composite sintered high-speed steel in which the hard carbide particles in the cobalt-coated hard carbide particles or the hard carbide particles in the individual nickel-coated hard carbide particles are sintered to form a composite sintered structure.

次に、実施例により硬質炭化物複合焼結高速度鋼を製造
する作業と、製造して得られる本発明の硬質炭化物複合
焼結高速度鋼について説明する。本実施例において使用
するコバルト被覆硬質炭化物粉末またはニッケル被覆硬
質炭化物粉末は昭和電工の製品を用い、高速度鋼粉末は
三菱製鋼の製品を用いた。
Next, the work of manufacturing a hard carbide composite sintered high-speed steel and the hard carbide composite sintered high-speed steel of the present invention obtained by manufacturing will be described in accordance with Examples. The cobalt-coated hard carbide powder or nickel-coated hard carbide powder used in this example was a product of Showa Denko, and the high-speed steel powder was a product of Mitsubishi Steel.

実施例 1゜ 焼結用原料には、高速度鋼粉末を50重量%と、12重
量%のコバルトを被覆しているコバルト被覆炭化タング
ステン粉末を50重量%との割合にて混合した混合粉末
を使用した。斯様に調合した混合粉末を機械プレスを用
いて10ton / crlの圧力にて圧縮成形して成
形体を生成した。其の成形体を真空中にて1.280℃
の焼結用温度を用いて30分間加熱して焼結体を生成し
た。其の生成した焼結体は、原料中にて高速度鋼粉末と
混合していたコバルト被覆炭化タングステン粉末の個々
のコバルト被覆炭化タングステン粒子を被覆しているコ
バルト皮膜と、個々の高速度鋼粒子とが液相焼結して焼
結組織を形成すると共に、其の焼結組織が個々のコバル
ト被覆炭化タングステン粒子における個々の炭化タング
ステン粒子に液相焼結して複合焼結組織体を構成してい
て、其の構成している複合焼結組織体である炭化タング
ステン複合焼結高lIA 速度より成る硬質炭化物複合焼結高速度鋼であった。
Example 1゜The raw material for sintering was a mixed powder in which 50% by weight of high-speed steel powder and 50% by weight of cobalt-coated tungsten carbide powder coated with 12% by weight of cobalt were mixed. used. The mixed powder thus prepared was compression molded using a mechanical press at a pressure of 10 tons/crl to produce a molded body. The molded body is heated to 1.280℃ in a vacuum.
A sintered body was produced by heating for 30 minutes using a sintering temperature of . The resulting sintered body consists of a cobalt film covering each cobalt-coated tungsten carbide particle of the cobalt-coated tungsten carbide powder mixed with high-speed steel powder in the raw material, and a cobalt film covering each cobalt-coated tungsten carbide particle, and each high-speed steel particle. are liquid-phase sintered to form a sintered structure, and the sintered structure is liquid-phase sintered to each individual tungsten carbide particle in each cobalt-coated tungsten carbide particle to form a composite sintered structure. It was a hard carbide composite sintered high speed steel consisting of a tungsten carbide composite sintered high speed steel whose composite sintered structure was tungsten carbide.

実施例 2 焼結用原料には、高速度鋼粉末を60重量%と、12重
量%のコバルトを被覆している炭化二モリブデン粉末を
40重量%との割合にて混合した混合粉末を使用した。
Example 2 As a raw material for sintering, a mixed powder was used in which 60% by weight of high-speed steel powder and 40% by weight of dimolybdenum carbide powder coated with 12% by weight of cobalt were mixed. .

斯様に調合した混合粉末を機械プレスを用いて10 t
on / crlの圧力にて圧縮成形して成形体を生成
した。其の成形体を真空中にて1.280℃の温度を用
いて30分間加熱して焼結体を生成した。其の生成した
焼結体は、原料の混合粉末中にて高速度鋼粉末と混合し
ていたコバルト被覆炭化二モリブデン粉末の個々の炭化
二モリブデン粒子を被覆しているコバルト皮膜と個々の
高速度鋼粒子とが液相焼結して焼結組織を形成すると共
に、其の焼結組織が個々のコバルト被覆炭化二モリブデ
ン粒子における個々の炭化二モリブデン粒子に液相焼結
して複合焼結組織体を構成していて其の構成している複
合焼結組織体である炭化二モリブデン複合焼結高速度鋼
より成る硬質炭化物複合焼結高速度鋼であった。
Using a mechanical press, 10 t of the mixed powder prepared in this manner was
A molded body was produced by compression molding at a pressure of on/crl. The compact was heated in vacuum at a temperature of 1.280°C for 30 minutes to produce a sintered body. The resulting sintered body consists of a cobalt film covering each dimolybdenum carbide particle of cobalt-coated dimolybdenum carbide powder mixed with high-speed steel powder in the raw material mixed powder, and a cobalt film covering each individual dimolybdenum carbide particle and each high-speed steel powder. The steel particles are liquid-phase sintered to form a sintered structure, and the sintered structure is liquid-phase sintered to each individual dimolybdenum carbide particle in each cobalt-coated dimolybdenum carbide particle to form a composite sintered structure. It was a hard carbide composite sintered high-speed steel made of dimolybdenum carbide composite sintered high-speed steel, which constitutes a composite sintered structure.

実施例 3 焼結用原料には、高速度鋼粉末を60重量%と、25重
量%のニッケルを被覆している炭化チタン粉末を40重
量%との割合にて混合した混合粉末を使用した。斯様に
調合した焼結用原料を、冷間静水圧プレスを用いて11
1 ton / crlの圧力にて圧縮成形して成形体
を生成した。其の成形体を水素ガス雰囲気中にて1.2
70℃の温度を用いて30分間加熱して液相焼結を行っ
て焼結体を生成した。其の生成した焼結体は、焼結用原
料の混合粉末中にて高速度鋼粉末と混合していたニッケ
ル被覆炭化チタン粉末の個々の炭化チタン粒子を被覆し
ているニッケル皮膜と個々の高速度鋼粒子とが液相焼結
して焼結組織を形成すると共に、其の焼結組織が個々の
ニッケル被覆炭化チタン粒子における個々の炭化チタン
粒子に液相焼結して複合焼結組織体を構成していて、其
の構成している複合焼結組織体である炭化チタン複合焼
結高速度鋼より成る硬質炭化物複合焼結高速度鋼であっ
た。
Example 3 A mixed powder prepared by mixing 60% by weight of high-speed steel powder and 40% by weight of titanium carbide powder coated with 25% by weight of nickel was used as a raw material for sintering. The raw material for sintering prepared in this way was pressed into 11 pieces using a cold isostatic press.
A molded body was produced by compression molding at a pressure of 1 ton/crl. The molded body was heated for 1.2 hours in a hydrogen gas atmosphere.
Liquid phase sintering was performed by heating at a temperature of 70° C. for 30 minutes to produce a sintered body. The resulting sintered body consists of a nickel film covering each titanium carbide particle of the nickel-coated titanium carbide powder that was mixed with the high-speed steel powder in the mixed powder of the sintering raw material, and a nickel film covering each titanium carbide particle and each high-speed steel powder. The speed steel particles are liquid-phase sintered to form a sintered structure, and the sintered structure is liquid-phase sintered to each individual titanium carbide particle in each nickel-coated titanium carbide particle to form a composite sintered structure. It was a hard carbide composite sintered high-speed steel consisting of a titanium carbide composite sintered high-speed steel, which is a composite sintered structure.

実施例 4゜ 焼結用原料には、高速度鋼粉末を60重量%と、16重
量%のコバルトを被覆している炭化バナジウム粉末を4
0重量%との割合にて混合した混合粉末を使用した。斯
様に調合した焼結用原料を冷間静水圧プレスを用いて1
0 ton /crlの圧力にて圧縮成形して成形体を
生成した。
Example 4 The raw materials for sintering include 60% by weight of high-speed steel powder and 4% by weight of vanadium carbide powder coated with 16% by weight of cobalt.
A mixed powder mixed at a ratio of 0% by weight was used. The raw materials for sintering prepared in this way were processed using a cold isostatic press.
A molded body was produced by compression molding at a pressure of 0 ton/crl.

其の成形体を真空中にて1.270℃の温度を用いて3
0分間加熱して液相焼結を行って焼結体を生成した。其
の生成した焼結体は、焼結用原料の混合粉末中にて高速
度鋼粉末と混合していたコバルト被覆炭化バナジウム粉
末の個々の炭化バナジウム粒子を被覆しているコバルト
皮膜と、個々の高速度鋼粒子とが液相焼結して焼結組織
を形成すると共に、其の焼結組織が個々のコバルト被覆
炭化バナジウム粒子における個々の炭化バナジウム粒子
に液相焼結して複合焼結組織体を構成していて、其の構
成している複合焼結組織体である炭化バナジウム複合焼
結高速度鋼より成る硬質炭化物複合焼結高速度鋼であつ
た。
The molded body was heated in a vacuum at a temperature of 1.270°C for 3
A sintered body was produced by heating for 0 minutes to perform liquid phase sintering. The resulting sintered body consists of a cobalt film covering each vanadium carbide particle of the cobalt-coated vanadium carbide powder mixed with high-speed steel powder in the mixed powder of the raw material for sintering, and a cobalt film covering each vanadium carbide particle. The high-speed steel particles undergo liquid phase sintering to form a sintered structure, and the sintered structure is liquid phase sintered to individual vanadium carbide particles in individual cobalt-coated vanadium carbide particles to form a composite sintered structure. It was a hard carbide composite sintered high-speed steel consisting of vanadium carbide composite sintered high-speed steel, which constituted the composite sintered body.

実施例 5゜ 焼結用原料には、高速度鋼粉末を70重量%と、16重
量%のコバルトを被覆している炭化クロム粉末を30重
量%との割合にて混合した混合粉末を使用した。斯様に
調合した焼結用原料を、熱間静水圧加圧加熱装置を用い
て8 ton/cdの静水圧を加えると同時に1.27
0℃の温度にて30分間加熱して液相焼結を行って焼結
体を生成した。其の生成した焼結体は、焼結用原料の混
合粉末中にて高速度鋼粉末と混合していたコバルト被覆
炭化クロム粉末の個々の粒子における炭化珪素粒子を被
覆しているコバルト皮膜と、個々の高速度鋼粒子とが液
相焼結して焼結組織を形成すると共に、其の焼結組織が
個々のコバルト被覆炭化クロム粒子における個々の炭化
クロム粒子に液相焼結して複合焼結組織体を構成してい
て、其の構成している複合焼結組織体である炭化クロム
複合焼結高速度鋼より成る硬質炭化物複合焼結高速度鋼
であった。
Example 5゜The raw material for sintering was a mixed powder in which 70% by weight of high-speed steel powder and 30% by weight of chromium carbide powder coated with 16% by weight of cobalt were mixed. . The raw material for sintering prepared in this manner was subjected to a hydrostatic pressure of 8 ton/cd using a hot isostatic pressure heating device, and at the same time 1.27 ton/cd of hydrostatic pressure was applied.
Liquid phase sintering was performed by heating at a temperature of 0° C. for 30 minutes to produce a sintered body. The produced sintered body includes a cobalt film covering silicon carbide particles in individual particles of cobalt-coated chromium carbide powder mixed with high-speed steel powder in the mixed powder of the raw material for sintering; Individual high-speed steel particles are liquid-phase sintered to form a sintered structure, and the sintered structure is liquid-phase sintered to individual chromium carbide particles in individual cobalt-coated chromium carbide particles to form a composite sintered structure. It was a hard carbide composite sintered high-speed steel consisting of a chromium carbide composite sintered high-speed steel, which constituted a compact structure, and the composite sintered structure constituted by the composite sintered structure.

以上に説明した実施例にて製造して得た硬質炭化物複合
焼結高速度鋼を570℃の温度にて焼戻した場合の硬度
はHRC6B乃至69を示した。
When the hard carbide composite sintered high-speed steel produced in the examples described above was tempered at a temperature of 570° C., the hardness was HRC 6B to 69.

実施例において使用した高速度鋼粉末を機械プレスを用
いて8 ton / caの圧力にて圧縮成形した成形
体を真空中にて1,230℃の温度にて焼結した焼結体
を570℃の温度にて焼戻した場合の硬度はHRC65
を示した。即ち、実施例にて製造した硬質炭化物複合焼
結高速度鋼は、其の硬質炭化物複合焼結高速度鋼を製造
する焼結用原料における構成要素として使用した高速度
鋼粉末を焼結して得た焼結高速度鋼に比して著しく高い
高度を備えた焼結鋼材であることが実鐙できた。
The high-speed steel powder used in the examples was compression-molded using a mechanical press at a pressure of 8 ton/ca, and the compact was sintered at a temperature of 1,230°C in a vacuum at a temperature of 570°C. The hardness is HRC65 when tempered at a temperature of
showed that. That is, the hard carbide composite sintered high-speed steel manufactured in the examples was obtained by sintering the high-speed steel powder used as a component in the sintering raw material for manufacturing the hard carbide composite sintered high-speed steel. It was found that the stirrup was a sintered steel material with a significantly higher height than the obtained sintered high-speed steel.

Claims (2)

【特許請求の範囲】[Claims] (1)炭化クロム、炭化モリブデン、炭化タングステン
、炭化バナジウム、炭化ニオブ、炭化タンタル、炭化チ
タン、炭化ジルコニウム、炭化ハフニウムのうちより選
択した硬質炭化物の粉末の個々の粒子に、コバルトまた
はニッケルを被覆しているコバルト被覆硬質炭化物粉末
またはニッケル被覆硬質炭化物粉末を10重量%乃至5
0重量%と、高速度鋼粉末を90重量%乃至50重量%
との割合範囲内より選定した割合にて混合した混合粉末
を焼結用原料として使用し、其の焼結用原料を1、20
0℃乃至1.300℃の範囲内の温度を用いて焼結した
焼結体であって、焼結用原料中の多数個のコバルト被覆
硬質炭化物粒子におけるコバルト皮膜またはニッケル被
覆硬質炭化物粒子におけるニッケル皮膜と多数個の高速
度鋼粒子とが相互に焼結して焼結組織を・形成している
と共に其の焼結組織が、個々のコバルト被覆硬質炭化物
粒子における硬質炭化物粒子または個々のニッケル被覆
硬質炭化物粒子における硬質炭化物粒子と焼結して複合
焼結組織体を構成していることを特徴とする硬質炭化物
複合焼結高速度鋼。
(1) Individual particles of hard carbide powder selected from chromium carbide, molybdenum carbide, tungsten carbide, vanadium carbide, niobium carbide, tantalum carbide, titanium carbide, zirconium carbide, and hafnium carbide are coated with cobalt or nickel. 10% to 5% by weight of cobalt-coated hard carbide powder or nickel-coated hard carbide powder.
0 wt% and 90 wt% to 50 wt% high speed steel powder.
A mixed powder mixed in a ratio selected from within the ratio range is used as a raw material for sintering, and the raw material for sintering is
A sintered body sintered at a temperature in the range of 0°C to 1.300°C, the cobalt coating on a large number of cobalt-coated hard carbide particles or the nickel on nickel-coated hard carbide particles in the sintering raw material. The coating and a large number of high-speed steel particles are mutually sintered to form a sintered structure, and the sintered structure is composed of hard carbide particles in individual cobalt-coated hard carbide particles or individual nickel-coated particles. A hard carbide composite sintered high-speed steel characterized in that hard carbide particles are sintered with hard carbide particles to form a composite sintered structure.
(2)炭化クロム、炭化モリブデン、炭化タングステン
、炭化バナジウム、炭化ニオブ、炭化タンタル、炭化チ
タン、炭化ジルコニウム、炭化ハフニウムのうちより選
択した硬質炭化物の粉末の個々の硬質炭化物粒子にコバ
ルトまたはニッケルを被覆しているコバルト被覆硬質炭
化物粉末またはニッケル被覆硬質炭化物粉末を10重量
%乃至50重量%と、高速度鋼粉末を90重量%乃至5
0重量%との割合範囲内より選定した割合にて混合した
混合粉末を焼結用原料とし、其の焼結用原料を5ton
 / ctl乃至10ton/c4の範囲内の圧力を用
いて圧縮成形した成形体を1.200℃乃至1.300
℃の範囲内の温度を用いて真空焼結または常圧焼結を行
い、或は、3ton/crl乃至8ton/caの範囲
内の圧力と1,200℃乃至1,300℃の範囲内の圧
力とを用いて加圧加熱焼結を行い、または熱間静水圧加
圧加熱焼結を行って複合焼結組織体を生成することを特
徴とする硬質炭化物複合焼結高速度鋼の製造法。
(2) Individual hard carbide particles of hard carbide powder selected from chromium carbide, molybdenum carbide, tungsten carbide, vanadium carbide, niobium carbide, tantalum carbide, titanium carbide, zirconium carbide, and hafnium carbide are coated with cobalt or nickel. 10% to 50% by weight of cobalt-coated hard carbide powder or nickel-coated hard carbide powder, and 90% to 5% by weight of high-speed steel powder.
A mixed powder mixed in a ratio selected from within the ratio range of 0% by weight was used as the raw material for sintering, and the raw material for sintering was 5 tons.
/ctl to 10ton/c4 The molded body was compression molded using a pressure in the range of 1.200℃ to 1.300℃.
Vacuum sintering or pressureless sintering using a temperature in the range of °C, or a pressure in the range of 3 ton/crl to 8 ton/ca and a pressure in the range of 1,200 °C to 1,300 °C. 1. A method for producing a hard carbide composite sintered high-speed steel, the method comprising performing pressure heating sintering using or hot isostatic pressure pressing heating sintering to produce a composite sintered structure.
JP5510783A 1983-04-01 1983-04-01 Hard carbide composite sintered high speed steel and its production Pending JPS59182944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5510783A JPS59182944A (en) 1983-04-01 1983-04-01 Hard carbide composite sintered high speed steel and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5510783A JPS59182944A (en) 1983-04-01 1983-04-01 Hard carbide composite sintered high speed steel and its production

Publications (1)

Publication Number Publication Date
JPS59182944A true JPS59182944A (en) 1984-10-17

Family

ID=12989525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5510783A Pending JPS59182944A (en) 1983-04-01 1983-04-01 Hard carbide composite sintered high speed steel and its production

Country Status (1)

Country Link
JP (1) JPS59182944A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627802A (en) * 1985-07-03 1987-01-14 Kubota Ltd Composite ring and its production
JPH01225749A (en) * 1988-03-03 1989-09-08 Isamu Kikuchi Sintered material for oilless bearing and production thereof
KR100652649B1 (en) 2004-12-16 2006-12-01 재단법인 포항산업과학연구원 METHOD OF MAKING WC-Co FEEDSTOCK POWDERS WITH Co FILMS FOR THERMAL SPRAYING
KR100739630B1 (en) 2006-01-18 2007-08-10 한국기계연구원 Method for fabricating wear-resistant alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627802A (en) * 1985-07-03 1987-01-14 Kubota Ltd Composite ring and its production
JPH0220686B2 (en) * 1985-07-03 1990-05-10 Kubota Ltd
JPH01225749A (en) * 1988-03-03 1989-09-08 Isamu Kikuchi Sintered material for oilless bearing and production thereof
KR100652649B1 (en) 2004-12-16 2006-12-01 재단법인 포항산업과학연구원 METHOD OF MAKING WC-Co FEEDSTOCK POWDERS WITH Co FILMS FOR THERMAL SPRAYING
KR100739630B1 (en) 2006-01-18 2007-08-10 한국기계연구원 Method for fabricating wear-resistant alloy

Similar Documents

Publication Publication Date Title
US5778301A (en) Cemented carbide
CN102134660B (en) Functionally gradient hard alloy with cubic phase-rich surface and preparation method thereof
EP0534191A1 (en) Cermets and their production and use
JPS5856018B2 (en) High-density phase boron nitride composite sintered body for cutting tools and its manufacturing method
CN102443714A (en) Preparation method for superfine hard alloy
US5128080A (en) Method of forming diamond impregnated carbide via the in-situ conversion of dispersed graphite
SE2250729A1 (en) Additive manufacturing techniques and applications thereof
US4280841A (en) Method for manufacturing a mechanical seal ring
JPS59182944A (en) Hard carbide composite sintered high speed steel and its production
JPH04323366A (en) Target for sputtering and its production
US3320038A (en) Sintered tantalum carbide bodies
US2806800A (en) Boron and carbon containing hard cemented materials and their production
JPS59118852A (en) Composite high speed steel of sintered hard alloy and its production
JPH04371546A (en) Diamond-based sintered body and production thereof
JPH07216492A (en) Hard material and its production
JP3626378B2 (en) TiB2-Ti (CN) -based composite and production method thereof
JPS6244554A (en) Hard material-tungsten carbide composite sintered compact and its production
CN115404384B (en) High-entropy ceramic-transition metal combined tungsten carbide-based hard composite material and preparation method thereof
JPH0710517A (en) Production of fine combined carbide powder for producing tungsten carbide-based cemented carbide
JPS59563B2 (en) Manufacturing method of diamond sintered body
USRE22073E (en) Hard metal tool allot
JPS5819408A (en) Manufacture of composite carbide-boride solidified body
JPS5935974B2 (en) Manufacturing method for tungsten carbide tool materials
CN1566388A (en) TiC hard alloy
JPS58167735A (en) Manufacture of composite sintered body of tangsten carbide-titanium carbide