JPS5812477A - Solid-state image pickup element - Google Patents

Solid-state image pickup element

Info

Publication number
JPS5812477A
JPS5812477A JP56109347A JP10934781A JPS5812477A JP S5812477 A JPS5812477 A JP S5812477A JP 56109347 A JP56109347 A JP 56109347A JP 10934781 A JP10934781 A JP 10934781A JP S5812477 A JPS5812477 A JP S5812477A
Authority
JP
Japan
Prior art keywords
film
solid
state image
image pickup
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56109347A
Other languages
Japanese (ja)
Inventor
Michio Yamamura
道男 山村
Koji Yamashita
浩二 山下
Hideaki Nakanishi
秀明 中西
Masayuki Hikiba
正行 引場
Koichi Mayama
真山 晃一
Toshiki Suzuki
鈴木 敏樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56109347A priority Critical patent/JPS5812477A/en
Publication of JPS5812477A publication Critical patent/JPS5812477A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14887Blooming suppression
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To improve the characteristics of a solid-state image pickup element grealy by forming a channel stopper area without extending it to the edge of an oxidized film for element separation. CONSTITUTION:On a substrate 1, a nitrate film 10 is formed and etched away at a part 10a, and the film 10 is masked for ion implantation. Further, a part 10b of the film 10 is etched away and while an oxidized film 6 for element separation is formed, implanted impurities are diffused to form a P area 9a. Consequently, the high-density P area 9a is limited to the part under said film 6 and never extends to the edge of the film. Consequently, the MOS system reduces random noises and the CCD system reduces a dark current, improving the characteristics of a solid-state image pickup element greatly.

Description

【発明の詳細な説明】 本発明はランダム雑音や暗電流を低減できる固体撮像素
子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid-state imaging device that can reduce random noise and dark current.

固体撮像素子としては、走査回路の出力パルスによJ)
Moat)ランジスタを順次オン・オフし、このスイッ
チング作用によってフォトダイオードに蓄見られている
電荷を信号として読み出すMo8)ランジスタ方式と、
電荷を順次転送してゆ(CCD方式とが広く知られてい
る。
As a solid-state image sensor, J)
Moat) A transistor method in which the transistors are sequentially turned on and off and the charge stored in the photodiode is read out as a signal by this switching action;
The CCD method, in which charges are sequentially transferred, is widely known.

このうち、Mo1)ランジスタ方式には次に示すような
問題点がある。すなわち、M08形固体操像素子の問題
点としてランダム雑音があり、このシ・ンダム雑音社画
面上ではちらつきとして観測される。このランダム雑音
の発生原因の1つに撮倫素子内部から発生する成分があ
る。第1図を用いてこの説明を行なう。
Among these, the Mo1) transistor method has the following problems. That is, a problem with the M08 type solid-state image element is random noise, which is observed as flickering on the digital noise screen. One of the causes of this random noise is a component generated from inside the sensor. This will be explained using FIG.

第1図は従来の固体撮像素子の一画素の断面図であシ、
1はp形基板、29口i拡散層、4はゲート、酸化膜、
5はゲート電極、6は素子分離用酸化膜(LOCO8酸
化膜)、Tは層間絶縁膜、・は垂直信号線、9はチャン
ネルストッパとしてのP領域である。ここで、ランダム
雑音の電流成分を1つとすると、 11(KCマ  ・・・・@(1) 烏 の関係があることが知られている。ただし、Cvは垂直
信号@SO容量である。Cvは垂直信号線8と酸化膜を
介してn形基板1との間の容量と、―直信号−・が接触
するl十拡散層2とl形基板1との間Op −n接合容
量成分との和であられされる。Cv O中ではp−1接
合容量成分の方が大であシ、し九がってp−1に接合容
量成分を減少させることによってランダム雑音を減少さ
せてきれいな峰侭画質をうろことが可能である。
Figure 1 is a cross-sectional view of one pixel of a conventional solid-state image sensor.
1 is a p-type substrate, 29 i-diffusion layers, 4 is a gate, an oxide film,
5 is a gate electrode, 6 is an oxide film for element isolation (LOCO8 oxide film), T is an interlayer insulating film, * is a vertical signal line, and 9 is a P region as a channel stopper. Here, if the current component of random noise is one, it is known that there is a relationship of 11 (KC ma...@(1)). However, Cv is the vertical signal @SO capacitance.Cv is the capacitance between the vertical signal line 8 and the n-type substrate 1 via the oxide film, and the Op-n junction capacitance component between the l-diffusion layer 2 and the l-type substrate 1 where -direct signal- is in contact. In Cv O, the p-1 junction capacitance component is larger, and by reducing the p-1 junction capacitance component, random noise is reduced and a clean peak is created. It is possible to change the image quality.

しかし従来技術により上記対策を行なうには次のような
問題があ〕容重でない0例えば垂直信号線8の幅を小さ
くすると容量は小さくなるが断−じやすくなるため小さ
くする。Fi@度がある。壇た、基板濃度を薄くするこ
とKよシ接合容量成分を減少させる方法は、電体基板1
の比抵抗が大音〈なシ、ブルーiングなどO撮am質劣
化の原因となp効果は薄い。
However, in implementing the above-mentioned measures according to the prior art, there are the following problems. I have a Fi@ degree. However, the method of reducing the junction capacitance component other than thinning the substrate concentration is to reduce the electrical substrate 1.
The resistivity of the photoresist is a cause of the deterioration of the OAM quality such as loud noises and blueing, and the P effect is weak.

垂直信号着口が接触する11+拡散層2は素子分離用酸
化膜・で8オれた構造となっているが、この素子分離用
酸化膜6の下部には、素子分離O効果を上げる丸めイオ
ン打込みKより高*zop領域9が形成されている。こ
のp@域9の形成方法を第2図で説明する。
The 11+diffusion layer 2 with which the vertical signal ports come in contact has an 8-layer structure with an oxide film for element isolation. Below the oxide film 6 for element isolation, there are rounded ions that increase the element isolation O effect. A higher*zop region 9 than the implantation K is formed. The method for forming this p@ region 9 will be explained with reference to FIG.

第2図(a)はl形基板1上にナイトライド膜10を形
成し良状態を示す。第29伽)はナイトライド膜100
部分10mをエツチング除去した状態を示す。鮪2図(
c)はナイトライド膜10をマスクにしてイオン打込み
を行なった状態を示す。第2図(d)は素子分離用酸化
膜6を形成すると同時にイオン打込み不純物の拡散を行
なってP領域8を形成した状態を示す。従って第1図に
示すように 、+拡散層2は素子分離用酸化膜@Kli
まれると同時に高濃度のP領域口とJ[囲を接触するこ
とになる。
FIG. 2(a) shows the nitride film 10 formed on the L-shaped substrate 1 in good condition. No. 29) is nitride film 100
The state is shown after a portion of 10 m has been etched away. Tuna figure 2 (
c) shows a state in which ions were implanted using the nitride film 10 as a mask. FIG. 2(d) shows a state in which a P region 8 is formed by ion implantation and diffusion of impurities at the same time as the element isolation oxide film 6 is formed. Therefore, as shown in FIG.
At the same time as the high-concentration P region enters, the J [surroundings] come into contact with the high-concentration P region mouth.

p −n接合容量は簡単なモデルでは次式として表わせ
る。
In a simple model, the p-n junction capacitance can be expressed as the following equation.

ここで、ムは接合面積、qは電子の電荷量。Here, mu is the junction area and q is the amount of electron charge.

#1はsi  の比饅電亭、りは真空の誘電率、Nムは
P領域の不純物濃度、 NDはn領域の不純物濃度、V
はp−m接合に印加された逆バイアス電圧。
#1 is the dielectric constant of si, ri is the permittivity of vacuum, N is the impurity concentration in the P region, ND is the impurity concentration in the n region, and V
is the reverse bias voltage applied to the p-m junction.

φは拡散電位である0通常N11lはNムよシはるかに
高濃度に形成するので、CマはほぼNムの2乗根に比例
する。
φ is the diffusion potential. Since N11l is normally formed at a much higher concentration than N, C is approximately proportional to the square root of N.

前述のように、h 拡散層2は低#kfの1形基板1と
高濃度のP領域8(チャネルストッパ)と接触すること
になるが、単位面積当)0容量は高置f01’領域3と
OII触部の方が大きい。面積的には低濃度のa形基板
1との接触部分が大であるが、集積度を上げるためm+
拡拡散層2面ものを小宴くすると、周囲の高#度の?領
域9との接触面積も無視できない屯のとな9、この部分
がp−4合容量のかな〕の部分をしめるようになる。従
って、前述したように単に基板一度を薄くしただけでは
垂直信号線魯の容量を減少させることはできない。
As mentioned above, the h diffusion layer 2 comes into contact with the low #kf type 1 substrate 1 and the high concentration P region 8 (channel stopper), but the 0 capacitance (per unit area) is due to the high f01' region 3. The OII contact part is larger. In terms of area, the contact area with the low concentration A-type substrate 1 is large, but in order to increase the degree of integration, m+
If you make a small party with two diffusion layers, will the surrounding high # degree be? The area of contact with the region 9 cannot be ignored either, and this area becomes part of the p-4 combined capacity. Therefore, as described above, it is not possible to reduce the capacitance of the vertical signal lines simply by making the substrate thinner.

次KCCD方式には次のような問題点がある。すなわち
、CCD形固体操俸素子でも、チャネルストッパあるい
は!感度向上の目的で素子分離酸化膜プロセスを用いる
ことがある。この場合、チャネルストッパとなる高#I
!IILのP領域に起因する暗電流が発生し画質の劣化
となる。
The following KCCD method has the following problems. In other words, even a CCD type solid-state wrist device can be used as a channel stopper or! An element isolation oxide film process is sometimes used to improve sensitivity. In this case, the high #I which becomes the channel stopper
! A dark current is generated due to the P region of the IIL, resulting in deterioration of image quality.

本褪明祉、前記問題点を解決する丸めになされた4ので
、MOB形園体撮gI嵩子のランダム雑音の億滅および
CCD形固体操俸素子の暗電流の低減を目的とするもの
である。
This modification has been made to solve the above-mentioned problems, and is aimed at eliminating the random noise of the MOB type sensor and reducing the dark current of the CCD type solid-state optical element. be.

第3alは本発明に係る固体撮像索子を製造するための
各工程における素子の断面図である。
3al is a cross-sectional view of the element at each step for manufacturing the solid-state imaging cord according to the present invention.

飢3図(為)は1形基板1上にナイトライド膜10を形
成した状態を示す。第39伽)はナイトライド膜10の
部分10mをエツチング除去し良状態を示す。第3図(
・)はナイトライド膜10をマスクにしてイオン打込み
を行なう状態を示す。第3図−)はナイトライド膜10
の部分10kをさらにエツチング除去した状態を示す。
Figure 3 shows a state in which a nitride film 10 is formed on a type 1 substrate 1. No. 39) shows that a portion 10m of the nitride film 10 has been etched away and is in good condition. Figure 3 (
.) shows a state in which ion implantation is performed using the nitride film 10 as a mask. Figure 3-) shows the nitride film 10
This shows the state in which the portion 10k of is further removed by etching.

菖3図(・)は素子分離用酸化膜6を形成すると同19
に打込み不純物の拡散を行なってP領域9a を形成し
た状態を示す。
Diagram 3 (・) shows the same result when the element isolation oxide film 6 is formed.
This figure shows the state in which P region 9a is formed by implanting impurities and diffusing them.

以上の工程によシ高濃度の?領域■aは素子分離用酸化
膜6の下の部分だけに限定されその端までのびなくする
ことができる.このように従来のプロセスに第3図(d
)の工程を追加するだけで本発明の固体撮像索子を作る
ことができる。ナイト2イト膜02tのエツチング社、
マスクを用いてもよいし、あるいはグッズマエッチング
のオーバーi門ム7二)F1”;y;7ft’ij;7
ニフツ、量□え。
Does the above process require high concentration? Region (a) is limited to only the portion below the element isolation oxide film 6, and can be prevented from extending to its edges. In this way, the conventional process is
) The solid-state imaging probe of the present invention can be made by simply adding the steps (). Etching Co., Ltd. of Knight 2 Knight Film 02t,
A mask may be used, or over-etching of the goods may be performed.
Nifts, quantity□eh.

方法もあゐ。There is also a method.

第4図はこのようにして製造した本発明の固体撮像素子
の一実施例の一画素の断面図である・図において、第1
図と同一部分には同符号を付しである。n 拡散層2と
高濃度のチャネルストッパとしてのP領域1m との接
触を避けることがてきる。これKよシ、−直信号線8の
容量が減少して2ンダム雑音が低減し、またCCD方式
方式合は暗電流が低減する。そして、容量減少によって
回路スピードの高速化がはかれる。さらに、マスク使用
によって亀+拡散層O容量を回路部所によって変えるこ
とにより設計範囲の拡大がでmゐ。
FIG. 4 is a cross-sectional view of one pixel of an embodiment of the solid-state image sensor of the present invention manufactured in this manner.
The same parts as in the figures are given the same reference numerals. Contact between the n diffusion layer 2 and the highly doped P region 1m serving as a channel stopper can be avoided. As a result, the capacitance of the -direct signal line 8 is reduced, resulting in a reduction in second-order noise, and in the case of the CCD method, dark current is reduced. By reducing the capacitance, the circuit speed can be increased. Furthermore, by using a mask, the design range can be expanded by changing the capacitance + diffusion layer O capacitance depending on the circuit part.

鮪5図祉他の実施例の断面図である。11はn形基板、
12FiPウエル、13は光ダイオードを形成するn+
拡散層、14は素子分離用酸化膜、15はチャネルスト
ッパのP領域である。素子分離用酸化膜下で発生した光
キャリアを再結合させることなく、また混色することな
く有効キャリアとして使用できるため感度が向上する。
It is a sectional view of another embodiment of the tuna fish. 11 is an n-type substrate;
12 FiP wells, 13 n+ forming photodiode
A diffusion layer, 14 an oxide film for element isolation, and 15 a P region of a channel stopper. Sensitivity is improved because photocarriers generated under the element isolation oxide film can be used as effective carriers without recombining or color mixing.

なお、本発明は二次元、−次元のいずれの固体撮像素子
に4適用できる。
Note that the present invention can be applied to either two-dimensional or -dimensional solid-state imaging devices.

このように1本発明によると、M08方式においてはラ
ンダム雑音を低減でき、CCD方式においては暗電流を
低減でき、固体撮像素子の峙性を著しく向上できる効果
がある。
As described above, according to the present invention, random noise can be reduced in the M08 method, dark current can be reduced in the CCD method, and the contrast characteristics of the solid-state image sensor can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の固体撮像素子の断面図、第2wJはその
各製造工程の素子断面図、第3図は本発明の固体撮像素
子の各製造工程の素子断面図、第4図は本発明の固体撮
像素子の一実施例の断面図、第5図は他の実施例の断面
図である。 1aeesp形基板、2,3e***111+拡散層、
4・・・・ゲート酸化膜、S・e・・ゲート電極、6・
・・・素子分離用酸化膜、T・・・・層間絶縁膜、8−
・−・垂直信号線、sl  ・・・・P領域。 第1図 麿1・ 慎4図 #l5II!J 1
FIG. 1 is a cross-sectional view of a conventional solid-state image sensor, 2wJ is a cross-sectional view of the device in each manufacturing process, FIG. 3 is a cross-sectional view of the solid-state image sensor of the present invention in each manufacturing process, and FIG. 4 is a cross-sectional view of the solid-state image sensor of the present invention. FIG. 5 is a cross-sectional view of one embodiment of the solid-state imaging device, and FIG. 5 is a cross-sectional view of another embodiment. 1aeesp type substrate, 2,3e***111+diffusion layer,
4...Gate oxide film, S.e.. Gate electrode, 6.
...Oxide film for element isolation, T...Interlayer insulating film, 8-
...Vertical signal line, sl...P area. Figure 1 Maro 1, Shin 4 Figure #l5II! J1

Claims (1)

【特許請求の範囲】[Claims] 第1導電形の半導体基板上に第2導電形のチャンネルス
トッパ領域を形成し、このチャンネルストッパ領域上に
素子分離用酸化膜を形成した固体撮像素子において、前
記チャンネルストッパ領域を前記素子分離用酸化膜の端
までのび表いように形成したことを特徴とする固体撮像
素子。
In a solid-state imaging device, a channel stopper region of a second conductivity type is formed on a semiconductor substrate of a first conductivity type, and an oxide film for element isolation is formed on the channel stopper region. A solid-state imaging device characterized by being formed so as to extend to the edge of the film.
JP56109347A 1981-07-15 1981-07-15 Solid-state image pickup element Pending JPS5812477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56109347A JPS5812477A (en) 1981-07-15 1981-07-15 Solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56109347A JPS5812477A (en) 1981-07-15 1981-07-15 Solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPS5812477A true JPS5812477A (en) 1983-01-24

Family

ID=14507917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56109347A Pending JPS5812477A (en) 1981-07-15 1981-07-15 Solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPS5812477A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093197A (en) * 1983-10-07 1985-05-24 エルサグ・インターナショナル・ビー・ブイ Surging control system of compressor
JPS61155697A (en) * 1984-12-28 1986-07-15 Yokogawa Electric Corp Optimum control device of compressor
JPH01273835A (en) * 1988-04-26 1989-11-01 Toyota Motor Corp Surging detector for gas turbine engine
JPH0893688A (en) * 1994-09-20 1996-04-09 Kobe Steel Ltd Capacity controller of centrifugal compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093197A (en) * 1983-10-07 1985-05-24 エルサグ・インターナショナル・ビー・ブイ Surging control system of compressor
JPH0350919B2 (en) * 1983-10-07 1991-08-05 Babcock & Wilcox Co
JPS61155697A (en) * 1984-12-28 1986-07-15 Yokogawa Electric Corp Optimum control device of compressor
JPH0324599B2 (en) * 1984-12-28 1991-04-03 Yokogawa Electric Corp
JPH01273835A (en) * 1988-04-26 1989-11-01 Toyota Motor Corp Surging detector for gas turbine engine
JPH0893688A (en) * 1994-09-20 1996-04-09 Kobe Steel Ltd Capacity controller of centrifugal compressor

Similar Documents

Publication Publication Date Title
CN100468755C (en) Image sensor having pinned floating diffusion diode
US7271430B2 (en) Image sensors for reducing dark current and methods of fabricating the same
US7595210B2 (en) Method of manufacturing complementary metal oxide semiconductor image sensor
US7632730B2 (en) CMOS image sensor and method for manufacturing the same
JP2004056156A (en) Manufacturing method of image sensor hybrid component separation structure
JP4304927B2 (en) Solid-state imaging device and manufacturing method thereof
JPH04355964A (en) Solid-state image pickup device and manufacture thereof
TW201330241A (en) Method for manufacturing a CMOS image sensor
EP0492144A2 (en) Charge-coupled device and solid-state imaging device
KR100562668B1 (en) A fabricating method of image sensor with decreased dark signal
JP2921567B1 (en) Solid-state imaging device and method of manufacturing the same
CN100428487C (en) Photodiode of cmos image sensor and method for manufacturing the same
JPS6126270B2 (en)
US6472699B1 (en) Photoelectric transducer and manufacturing method of the same
US6778213B1 (en) Active X-Y addressable type solid-state image sensor and method of operating the same
JPS5812477A (en) Solid-state image pickup element
KR100365744B1 (en) Photodiode in image sensor and method for fabricating the same
KR100494645B1 (en) Method for fabricating CMOS image sensor with spacer block mask
JPS6018957A (en) Solid-state image pickup element
KR100535911B1 (en) CMOS image sensor and its fabricating method
KR100766675B1 (en) A fabricating method of image sensor with decreased dark signal
JP2784111B2 (en) Method for manufacturing solid-state imaging device
KR20040065332A (en) CMOS image sensor with ion implantation region as isolation layer and method for fabricating thereof
KR100440775B1 (en) Image sensor and fabricating method of the same
KR0140634B1 (en) The fabrication method of solid state image sensing device