JPS58124273A - Thin film silicon transistor - Google Patents

Thin film silicon transistor

Info

Publication number
JPS58124273A
JPS58124273A JP610582A JP610582A JPS58124273A JP S58124273 A JPS58124273 A JP S58124273A JP 610582 A JP610582 A JP 610582A JP 610582 A JP610582 A JP 610582A JP S58124273 A JPS58124273 A JP S58124273A
Authority
JP
Japan
Prior art keywords
thin film
zns
insulating substrate
silicon
amorphous insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP610582A
Other languages
Japanese (ja)
Inventor
Takashi Umigami
海上 隆
Bunjiro Tsujiyama
辻山 文治郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP610582A priority Critical patent/JPS58124273A/en
Publication of JPS58124273A publication Critical patent/JPS58124273A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To reduce a threshold voltage and a leak current between a source and a drain and to obtain high mutual conductance due to the increase in carrier mobility, by providing a thin film of ZnS between a thin film of silicon and an amorphous insulating substrate. CONSTITUTION:When the ZnS thin film 6 is provided between the silicon thin film 13 and the amorphous insulating substrate 5, an interface level due to lattice misalignment of the silicon thin film 13 and the ZnS thin film 6 becomes very small, and the effect of instability due to movable cation and the like can be eliminated. Meanwhile the interface level is present at the interface between the ZnS thin film 6 and the amorphous insulating substrate 5, but even though the charges are induced in the ZnS thin film due to the interface elevel, the mobility of said charges is very small and the movable charges are not obtained. Therefore, the back channel effect can be eliminated and the threshold voltage and the leak current between the source and the drain can be reduced.

Description

【発明の詳細な説明】 本発明は低閾値電圧および高相互コンダクタン゛ スを
有する高性能のシリコン薄膜トランジスタに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to high performance silicon thin film transistors with low threshold voltage and high transconductance.

従来、非晶質絶縁基板上のシリコン薄膜トランジスタは
非晶質絶縁基板上に直接アモルファス状あるいは多結晶
状のシリコン薄膜を堆積し、このアモルファス状あるい
け多結晶状のシリコン薄膜を用いて製造されていた。ま
た、1979年にグラフオエピタキシーと呼ばれる非晶
質絶縁基板上にシリコン単結晶薄膜を成長できる方法が
開発されたが、この方法についてもシリコン薄膜が直接
、下地の非晶質絶縁基板に堆積されている。シリコン薄
膜と非晶質絶縁基板とが直接接触している構造における
エネルギーバンド図を第1図に示す。
Conventionally, silicon thin film transistors on an amorphous insulating substrate have been manufactured by depositing an amorphous or polycrystalline silicon thin film directly on the amorphous insulating substrate and using this amorphous or polycrystalline silicon thin film. Ta. Additionally, in 1979, a method called graphoepitaxy that could grow silicon single crystal thin films on amorphous insulating substrates was developed, but this method also involves depositing silicon thin films directly onto the underlying amorphous insulating substrates. ing. FIG. 1 shows an energy band diagram in a structure in which a silicon thin film and an amorphous insulating substrate are in direct contact.

ここで、1はゲート電極領域、2はゲート絶縁膜、3は
シリコン薄膜領域、4は非晶質絶縁基板である。この場
合、シリコン薄膜3と核基板4の界面での界面単位が数
多く存在し、シリコン薄膜領域3と基板4の界面におい
てシリコン薄膜領域のバンドが界面単位の影智を受けて
まがシ、可動電子が誘起される現象、いわゆるバックチ
ャンネル効果によって薄膜トランジスタの閾値電圧が大
きくなるとともにソース・ドレイン間のリーク電流が増
加する。また、シリコンfi1m−基板間の界面特性の
劣化に起因して薄膜トランジスタの素子耐圧が低下する
。さらに、非晶質絶縁基板上のアモルファスシリコンあ
るいは多結晶シリコンにおいては、結晶性が悪いことに
よるキャリア移動度の低下が見られ、薄膜トランジスタ
の相互コンダクタンスが高くならないという欠点がある
。一方、グラフオエピタキシー法においては、非晶質絶
縁基板の表面に周期的な溝が存在することが必要であリ
、それらの溝に対応した凹凸がシリコン薄膜上に現われ
ることと、レーザーアニール後の表面凸凹やキ裂の発生
により薄膜トランジスタ特性の悪化や歩貿りの低下をき
たすという欠点があった。
Here, 1 is a gate electrode region, 2 is a gate insulating film, 3 is a silicon thin film region, and 4 is an amorphous insulating substrate. In this case, there are many interface units at the interface between the silicon thin film 3 and the core substrate 4, and the bands of the silicon thin film region at the interface between the silicon thin film region 3 and the substrate 4 are influenced by the interface units and move. Due to a phenomenon in which electrons are induced, the so-called back channel effect, the threshold voltage of a thin film transistor increases and the leakage current between the source and drain increases. Further, due to the deterioration of the interface characteristics between the silicon fi1m and the substrate, the device breakdown voltage of the thin film transistor decreases. Furthermore, in amorphous silicon or polycrystalline silicon on an amorphous insulating substrate, a decrease in carrier mobility is observed due to poor crystallinity, and there is a drawback that the mutual conductance of a thin film transistor cannot be increased. On the other hand, in the graph-o-epitaxy method, it is necessary to have periodic grooves on the surface of the amorphous insulating substrate. The drawback is that the surface irregularities and cracks that occur in the thin film transistor cause deterioration in thin film transistor characteristics and decrease in yield.

本発明は、これらの欠点を除去するためシリコン薄膜と
非晶質絶縁基板との間にZnS薄膜を介在させることに
より高性能のシリコン薄膜トランジスタを実現できる様
にしたものである。
In order to eliminate these drawbacks, the present invention makes it possible to realize a high-performance silicon thin film transistor by interposing a ZnS thin film between a silicon thin film and an amorphous insulating substrate.

前記の目的を達成するため、本発明はシリコン薄膜と非
晶質絶縁基板との間にZnS薄膜を介在させたことを特
徴とするシリコン薄膜トランジスタを発明の要旨とする
ものである。
In order to achieve the above object, the present invention provides a silicon thin film transistor characterized in that a ZnS thin film is interposed between a silicon thin film and an amorphous insulating substrate.

次に本発明の実施例を添附図面について説明する。なお
実施例は一つの例示であって、本発明の精神を逸脱しな
い範囲内で、種々の変更あるいは改良を行いうろことは
云う壕でもない。
Next, embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments are merely illustrative, and various changes and improvements may be made without departing from the spirit of the invention.

第2凶は本発明の一実施例を示す。図において5は非晶
質絶縁基板、6はZnS薄膜、7はソース領域、8はゲ
ート絶縁膜、9はドレイン領域、10はソース電極、1
1はゲート電極、12はドレイン電極である。この構成
によるエネルギーバンド図をを第3図に示す。ここで、
1−3はシリコン薄膜領域である。シリコン細膜1−3
と非晶質絶縁基板5との間にZnS薄膜6を設けること
により、非晶質絶縁基板側のシリコン薄膜領域13にお
いてバンドの1かりは第3図のように、エネルギーの尚
い方へ傾き電子の誘起が抑制される。これは、シリコン
とZnSの電子親和力がそれぞれ4.01eV。
The second example shows an embodiment of the present invention. In the figure, 5 is an amorphous insulating substrate, 6 is a ZnS thin film, 7 is a source region, 8 is a gate insulating film, 9 is a drain region, 10 is a source electrode, 1
1 is a gate electrode, and 12 is a drain electrode. An energy band diagram with this configuration is shown in FIG. here,
1-3 is a silicon thin film region. Silicon thin film 1-3
By providing the ZnS thin film 6 between the amorphous insulating substrate 5 and the amorphous insulating substrate 5, one of the bands in the silicon thin film region 13 on the amorphous insulating substrate side is tilted toward the side with lower energy as shown in FIG. Electron induction is suppressed. This means that the electron affinities of silicon and ZnS are each 4.01 eV.

3.9eVであることと、シリコンとZnSのバンドギ
ャップがそれぞれ1.1 eV 、 3.54 eVで
あることの関係から求められる。さらに、シリコン結晶
とZnS薄膜の格子定数はそれぞれ5.409 Aと5
.42Aであり、格子定数のずれは約0.2%程度であ
シ、シリコン薄膜とZnS薄膜との格子不整合による界
面準位が非常に小さくなる。また、非晶質絶縁膜で問題
となる司動陽イオンによる不安定性などの影響も除去で
きる。
It is determined from the relationship between 3.9 eV and the band gaps of silicon and ZnS being 1.1 eV and 3.54 eV, respectively. Furthermore, the lattice constants of silicon crystal and ZnS thin film are 5.409 A and 5, respectively.
.. 42A, the lattice constant deviation is about 0.2%, and the interface state due to the lattice mismatch between the silicon thin film and the ZnS thin film becomes very small. Furthermore, the influence of instability caused by motive cations, which is a problem with amorphous insulating films, can be eliminated.

一方、ZnS 薄膜と非晶質絶縁基板との界面において
は界面準位が存在するが、この界面準位によりZnS 
薄膜中に電荷が誘起されてもZnS薄膜内での電荷の移
動度は非常に小さく可動電荷とはならない。すなわち、
ZnS薄膜の存在により、シリコン薄膜と非晶質絶縁基
板間で問題となるノくツクチャンネル効果を除去でき、
閾値電圧およびソース・ドレイン間のリーク電流を小さ
くすることが可能である。ここで、ZnS薄膜のバンド
ギャップは、3.54eVと大きいことと、キャリア移
動度が極めて小さいことから、シリコン薄膜トランジス
タに対しては絶縁層と見なせる。
On the other hand, there is an interface state at the interface between the ZnS thin film and the amorphous insulating substrate;
Even if charges are induced in the thin film, the mobility of the charges within the ZnS thin film is very small and does not become a mobile charge. That is,
The presence of the ZnS thin film eliminates the cross-channel effect that occurs between the silicon thin film and the amorphous insulating substrate.
It is possible to reduce the threshold voltage and source-drain leakage current. Here, since the band gap of the ZnS thin film is as large as 3.54 eV and the carrier mobility is extremely low, it can be regarded as an insulating layer with respect to a silicon thin film transistor.

さらに、ZnS薄膜は非晶質絶縁基板上においても< 
Ill >方向に配向し、かつシリコン結晶と格子定数
が一致することから、ZnS薄膜上に通常の分子線エピ
タキシャル法やOVD法により単結晶シリコン薄膜の成
長が可能であり、キャリア移動度が高く薄膜トランジス
として高相互コンダクタンスとなる。また、シリコン薄
膜とZnEl薄膜りの界面特性の向上にともなって、薄
膜トランジスタの素子耐圧を増大させることができる。
Furthermore, the ZnS thin film also has <
Since it is oriented in the Ill > direction and has a lattice constant that matches that of silicon crystal, it is possible to grow single-crystal silicon thin films on ZnS thin films by ordinary molecular beam epitaxial method or OVD method, and it is possible to grow thin films with high carrier mobility. It has high mutual conductance as a transistor. Further, as the interface characteristics between the silicon thin film and the ZnEl thin film are improved, the device breakdown voltage of the thin film transistor can be increased.

尚第2図の実施例の構造を多層化できることは云うまで
もない。この場合は1層目の構成と2層(5) 目の構成との間に絶縁層を介在せしめるものである。
It goes without saying that the structure of the embodiment shown in FIG. 2 can be multilayered. In this case, an insulating layer is interposed between the first layer structure and the second (5) layer structure.

以上説明したように、シリコン薄膜と非晶質絶縁基板の
間にZnS薄膜を介在させることにより、シリコン薄膜
トランジスタの閾値電圧およびソース・ドレイン間のリ
ーク電流を小さくできる。捷だ、シリコン薄膜を単結晶
化することが可能で、キャリア移動度の増大による高相
互コンダクタンスのシリコン薄膜トランジスタを実現す
ることができる。
As explained above, by interposing the ZnS thin film between the silicon thin film and the amorphous insulating substrate, the threshold voltage and source-drain leakage current of the silicon thin film transistor can be reduced. Fortunately, it is possible to make a silicon thin film into a single crystal, and by increasing carrier mobility, it is possible to realize a silicon thin film transistor with high mutual conductance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のシリコン薄膜と非晶質絶縁基板とが直接
接触している構造におけるエネルギーバンド図、第2図
は本発明の一実施例の断面図、第3図は本発明の構成に
よるエネルギーバンド図を示す。 1・・・ゲート電極領域、2・・・ゲート絶縁膜、3・
・・シリコン薄膜領域、4・・・非晶質絶縁基板、5・
・・非晶質絶縁基板、6・・・Zn8薄膜、7・・・ソ
ース領域、8・・ゲート絶縁膜、9・・・ドレイン領域
、10・・・ソ(r、’+ −スミ極、11・・ゲート電極、12・・ドレイン電極
、1ノ・・・シリコン薄膜領域 特許出願人 (7) 第1図 第2図 第3図 手続補正書(自発) 昭和57年3月2.15日 特許庁長官 島 1)春 樹 殿 1、事件の表示            (、−/′ 昭和57年特許願第6105号 2、発明の名称 シリコン薄膜トランジスタ 3、補正をする者 事件との関係   特許出願人 名 称  (422)日本電信電話公社4、代理人 住 所 〒160東京都新宿区西新宿7丁目5番1o号
「(その厚さは0.1〜1 pmが好ましい)」を挿入
する。
Fig. 1 is an energy band diagram of a conventional structure in which a silicon thin film and an amorphous insulating substrate are in direct contact, Fig. 2 is a cross-sectional view of an embodiment of the present invention, and Fig. 3 is a structure according to the present invention. An energy band diagram is shown. DESCRIPTION OF SYMBOLS 1... Gate electrode region, 2... Gate insulating film, 3...
...Silicon thin film region, 4...Amorphous insulating substrate, 5.
...Amorphous insulating substrate, 6...Zn8 thin film, 7...source region, 8...gate insulating film, 9...drain region, 10...so(r, '+ - sumi pole, 11... Gate electrode, 12... Drain electrode, 1... Silicon thin film area patent applicant (7) Figure 1 Figure 2 Figure 3 Procedural amendment (voluntary) March 2, 15, 1980 Commissioner of the Japan Patent Office Shima 1) Haruki Tono1, Indication of the case (,-/' 1981 Patent Application No. 61052, Title of the invention Silicon thin film transistor 3, Relationship with the amended person case Patent applicant name (422) ) Nippon Telegraph and Telephone Public Corporation 4, agent address: 7-5-1o Nishi-Shinjuku, Shinjuku-ku, Tokyo 160 Japan (The thickness is preferably 0.1 to 1 pm).

Claims (1)

【特許請求の範囲】[Claims] シリコン薄膜と非晶質絶縁基板との間にZnS薄膜を介
在させたことを特徴とするシリコン薄膜トランジスタ。
A silicon thin film transistor characterized in that a ZnS thin film is interposed between a silicon thin film and an amorphous insulating substrate.
JP610582A 1982-01-20 1982-01-20 Thin film silicon transistor Pending JPS58124273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP610582A JPS58124273A (en) 1982-01-20 1982-01-20 Thin film silicon transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP610582A JPS58124273A (en) 1982-01-20 1982-01-20 Thin film silicon transistor

Publications (1)

Publication Number Publication Date
JPS58124273A true JPS58124273A (en) 1983-07-23

Family

ID=11629216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP610582A Pending JPS58124273A (en) 1982-01-20 1982-01-20 Thin film silicon transistor

Country Status (1)

Country Link
JP (1) JPS58124273A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289030A (en) * 1991-03-06 1994-02-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide layer
US5568288A (en) * 1991-03-26 1996-10-22 Semiconductor Energy Laboratory Co., Ltd. Method for forming thin film transistors with anodic oxide on sides of gate line
US5572047A (en) * 1990-12-10 1996-11-05 Semiconductor Energy Laboratory Co., Ltd. Electro-Optic device having pairs of complementary transistors
US5913112A (en) * 1991-03-06 1999-06-15 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing an insulated gate field effect semiconductor device having an offset region and/or lightly doped region
US5917225A (en) * 1992-03-05 1999-06-29 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect transistor having specific dielectric structures
US5956105A (en) * 1991-06-14 1999-09-21 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
USRE36314E (en) * 1991-03-06 1999-09-28 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices having a LDD region and an anodic oxide film of a gate electrode
US6028333A (en) * 1991-02-16 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US6624450B1 (en) 1992-03-27 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6778231B1 (en) 1991-06-14 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Electro-optical display device
US6975296B1 (en) 1991-06-14 2005-12-13 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572047A (en) * 1990-12-10 1996-11-05 Semiconductor Energy Laboratory Co., Ltd. Electro-Optic device having pairs of complementary transistors
US6028333A (en) * 1991-02-16 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
USRE36314E (en) * 1991-03-06 1999-09-28 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices having a LDD region and an anodic oxide film of a gate electrode
US5913112A (en) * 1991-03-06 1999-06-15 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing an insulated gate field effect semiconductor device having an offset region and/or lightly doped region
US5474945A (en) * 1991-03-06 1995-12-12 Semiconductor Energy Laboratory Co., Ltd. Method for forming semiconductor device comprising metal oxide
US5289030A (en) * 1991-03-06 1994-02-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide layer
US5963278A (en) * 1991-03-26 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for driving the same
US5568288A (en) * 1991-03-26 1996-10-22 Semiconductor Energy Laboratory Co., Ltd. Method for forming thin film transistors with anodic oxide on sides of gate line
US5933205A (en) * 1991-03-26 1999-08-03 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for driving the same
US6975296B1 (en) 1991-06-14 2005-12-13 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US5956105A (en) * 1991-06-14 1999-09-21 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US6778231B1 (en) 1991-06-14 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Electro-optical display device
US7928946B2 (en) 1991-06-14 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US6331723B1 (en) 1991-08-26 2001-12-18 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device having at least two transistors having LDD region in one pixel
US6803600B2 (en) 1991-08-26 2004-10-12 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices and method of manufacturing the same
US7456427B2 (en) 1991-08-26 2008-11-25 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices and method of manufacturing the same
US7821011B2 (en) 1991-08-26 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices and method of manufacturing the same
US5917225A (en) * 1992-03-05 1999-06-29 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect transistor having specific dielectric structures
US6624450B1 (en) 1992-03-27 2003-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same

Similar Documents

Publication Publication Date Title
US6787883B1 (en) Silicon-germanium devices for CMOS formed by ion implantation and solid phase epitaxial regrowth
US5221631A (en) Method of fabricating a thin film transistor having a silicon carbide buffer layer
US20070013006A1 (en) Apparatus and method of manufacture for integrated circuit and CMOS device including epitaxially grown dielectric on silicon carbide
US20010005030A1 (en) Semiconductor device and fabrication method
JPH0590586A (en) Thin film transistor
JPS58124273A (en) Thin film silicon transistor
JPS62113474A (en) Manufacture of semiconductor integrated circuit
JPS58158967A (en) Silicon thin film transistor
JPS5915388B2 (en) semiconductor equipment
JPS62271475A (en) Semiconductor device
JPS63261880A (en) Manufacture of thin film transistor
JP3221901B2 (en) Semiconductor device
JPS631072A (en) Thin-film field-effect transistor
JPH03291972A (en) Mos thin-film transistor
JPS63244779A (en) Field effect transistor
JP2847745B2 (en) Thin film transistor
JPH04162477A (en) Thin film transistor
JPH05275453A (en) Junction fet and manufacture thereof
JPH05129600A (en) Semiconductor device
JPS58139471A (en) Mis field effect transistor
JPH0346369A (en) Insulated gate type field effect transistor
JPH04146627A (en) Field-effect type semiconductor device and manufacture thereof
JPH01292861A (en) Semiconductor device and manufacture thereof
JPH01241171A (en) Semiconductor device
JPS6189672A (en) Thin film transistor