JPH0346369A - Insulated gate type field effect transistor - Google Patents

Insulated gate type field effect transistor

Info

Publication number
JPH0346369A
JPH0346369A JP18200689A JP18200689A JPH0346369A JP H0346369 A JPH0346369 A JP H0346369A JP 18200689 A JP18200689 A JP 18200689A JP 18200689 A JP18200689 A JP 18200689A JP H0346369 A JPH0346369 A JP H0346369A
Authority
JP
Japan
Prior art keywords
effect transistor
field effect
insulated gate
silicon substrate
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18200689A
Other languages
Japanese (ja)
Inventor
Masashige Ishizaka
政茂 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18200689A priority Critical patent/JPH0346369A/en
Publication of JPH0346369A publication Critical patent/JPH0346369A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accelerate operation of a transistor by forming a semiconductor layer having permittivity larger than that of a silicon substrate in a region including a channel region of an insulated gate type field effect transistor. CONSTITUTION:A silicon oxide film 2 as a gate insulating film is formed on the surface of a P-type silicon substrate 1, and a gate electrode 3 is formed thereon. An N-type layer 4 as source. drain is formed on the substrate 1 through the electrode 3. A semiconductor layer having permittivity larger than that of the substrate is formed in a region including a channel region of an insulated gate type field effect transistor formed on the substrate 1. In this case, the permittivity of the semiconductor layer formed in the channel region is large. Thus, an electric field which operates in a direction perpendicular to the channel is alleviated to suppress surface dispersion of carrier, thereby improving its mobility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁ゲート型電界効果トランジスタに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an insulated gate field effect transistor.

〔従来の技術〕[Conventional technology]

従来の絶縁ゲート型電界効果トランジスタは、第3図の
ように、例えばP型の単一シリコン基板1の上に絶縁膜
としてシリコン酸化膜2を形成し、この上にゲート電極
3を形成している。そして、このゲート電極3を挟むよ
うにシリコン基板1にソース・ドレインとしてのN型層
4を形成している。
In a conventional insulated gate field effect transistor, as shown in FIG. 3, a silicon oxide film 2 is formed as an insulating film on, for example, a P-type single silicon substrate 1, and a gate electrode 3 is formed on this. There is. Then, an N-type layer 4 as a source/drain is formed on the silicon substrate 1 so as to sandwich the gate electrode 3 therebetween.

〔発明が解決しようとする課題] 上述した従来の絶縁ゲート型電界効果トランジスタは、
シリコン基板1とゲート電極3との間に電圧を印加する
ことによりシリコン基板1の表面のエネルギバンドを曲
げ(バンドベンディング)、チャネルを形成してトラン
ジスタを動作させている。このため、チャネル内のキャ
リアはバンドベンディングに対して垂直方向の電場によ
りシリコン−酸化膜界面に引き寄せられ、そこで散乱さ
れて移動度が低下され、トランジスタの動作速度が低下
されるという問題がある。
[Problem to be solved by the invention] The conventional insulated gate field effect transistor described above has the following problems:
By applying a voltage between the silicon substrate 1 and the gate electrode 3, the energy band on the surface of the silicon substrate 1 is bent (band bending), a channel is formed, and the transistor is operated. Therefore, carriers within the channel are attracted to the silicon-oxide film interface by an electric field perpendicular to the band bending, and are scattered there, resulting in a reduction in mobility and a problem in that the operating speed of the transistor is reduced.

本発明は動作速度の向上を図ったトランジスタを提供す
ることを目的とする。
An object of the present invention is to provide a transistor with improved operating speed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のトランジスタは、シリコン基板に形成した絶縁
ゲート型電界効果トランジスタのチャネル領域を含む領
域に、シリコン基板よりも誘電率の大きな半導体層を形
成している。
In the transistor of the present invention, a semiconductor layer having a higher dielectric constant than the silicon substrate is formed in a region including the channel region of an insulated gate field effect transistor formed on a silicon substrate.

[作用] この構成では、チャネル領域に形成された半導体層の誘
電率が大きいことから、チャネルに対して垂直方向に作
用する電界を緩和し、キャリアの表面散乱を抑制してそ
の移動度を向上する。
[Effect] In this configuration, since the semiconductor layer formed in the channel region has a large dielectric constant, the electric field acting perpendicularly to the channel is relaxed, suppressing surface scattering of carriers and improving their mobility. do.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1実施例の縦断面図であり、Nチャ
ネル絶縁ゲート型電界効果トランジスタに適用した例を
示している。図において、P型シリコン基板1の表面に
ゲート絶縁膜としてのシリコン酸化膜2を形成し、この
上にゲート電極3を形成している。また、このゲート電
極3を挟むシリコン基板lにはソース・ドレインとして
のN型層4を形成している。更に、これらN型層4で挟
まれるチャネル領域には、シリコン基板1の表面部位に
Ge(ゲルマニウム)をイオン注入して高誘電率のGe
注入N5を形成している。
FIG. 1 is a longitudinal sectional view of a first embodiment of the present invention, showing an example applied to an N-channel insulated gate field effect transistor. In the figure, a silicon oxide film 2 as a gate insulating film is formed on the surface of a P-type silicon substrate 1, and a gate electrode 3 is formed thereon. Further, an N-type layer 4 as a source/drain is formed on the silicon substrate 1 sandwiching the gate electrode 3. Furthermore, in the channel region sandwiched between these N-type layers 4, Ge (germanium) ions are implanted into the surface portion of the silicon substrate 1 to form a high dielectric constant Ge.
Forming the implant N5.

なお、このGe注入層5は、ゲート電極3やN型層4を
形成する前に選択的に形成しておく。
Note that this Ge injection layer 5 is selectively formed before forming the gate electrode 3 and the N-type layer 4.

この構成によれば、シリコン基板lとゲート電極3とに
かかる電圧により、シリコン−シリコン酸化膜近傍にチ
ャネルが形成される。一方、チャネルに対し、垂直方向
の電場Eは、チャネルに現れる表面電荷密度をQ、Ge
注入層5の誘電率をεとすると、ガウスの定理により、
E=Q/εで表わされるので、高誘電率のGe注入層5
を挟むことにより、電界Eを低く抑えることができる。
According to this configuration, a channel is formed in the vicinity of the silicon-silicon oxide film due to the voltage applied to the silicon substrate 1 and the gate electrode 3. On the other hand, the electric field E perpendicular to the channel changes the surface charge density appearing in the channel by Q, Ge
If the dielectric constant of the injection layer 5 is ε, then according to Gauss's theorem,
Since E=Q/ε, the high dielectric constant Ge injection layer 5
By sandwiching them, the electric field E can be kept low.

因に、GeO比誘電率は16.0であり、シリコンの比
誘電率11.9の約1.3倍であるため、約74%程度
まで電界Eを抑制することができる。この結果、この構
造ではキャリアの表面散乱が少なくなり、高い移動度を
維持してトランジスタ動作の高速化を実現することが可
能となる。
Incidentally, the relative permittivity of GeO is 16.0, which is about 1.3 times the relative permittivity of silicon, which is 11.9, so the electric field E can be suppressed to about 74%. As a result, this structure reduces surface scattering of carriers, maintains high mobility, and achieves high-speed transistor operation.

第2図は本発明の第2実施例の縦断面図である。FIG. 2 is a longitudinal sectional view of a second embodiment of the invention.

P型シリコン基板の全面に分子線エピタキシー等の方法
でGe等の高誘電率の半導体層6を形成し、その上でシ
リコン酸化膜2.ゲート電極3.及びソース・ドレイン
としてのN型層4を形成してNチャネル絶縁ゲート型電
界効果トランジスタを構成している。
A high dielectric constant semiconductor layer 6 such as Ge is formed on the entire surface of a P-type silicon substrate by a method such as molecular beam epitaxy, and a silicon oxide film 2. Gate electrode 3. Then, an N-type layer 4 as a source and drain is formed to constitute an N-channel insulated gate field effect transistor.

この実施例では、エピタキシャル成長により異なった半
導体層6を形成しているため、この半導体層6の厚さを
正確に制御することができ、この部分における誘電率を
所望の値に高精度に構成できる。これにより、キャリア
の表面散乱を低減して高い移動度を確保し、・トランジ
スタ動作の高速化を可能にすることは第1実施例と同じ
である。
In this example, since different semiconductor layers 6 are formed by epitaxial growth, the thickness of this semiconductor layer 6 can be accurately controlled, and the dielectric constant in this portion can be configured to a desired value with high precision. . As in the first embodiment, this reduces surface scattering of carriers, ensures high mobility, and enables high-speed transistor operation.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、絶縁ゲート型電界効果ト
ランジスタのチャネル領域を含む領域に、シリコン基板
よりも誘電率の大きな半導体層を形成しているので、こ
の半導体層によってチャネルに対して垂直方向に作用す
る電界を緩和でき、キャリアの表面散乱を抑制してその
移動度を向上し、トランジスタの高速化を実現できる効
果がある。
As explained above, in the present invention, a semiconductor layer having a higher dielectric constant than a silicon substrate is formed in a region including the channel region of an insulated gate field effect transistor, so that the semiconductor layer is used in a direction perpendicular to the channel. This has the effect of reducing the electric field acting on the surface, suppressing surface scattering of carriers, improving their mobility, and increasing the speed of transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の縦断面図、第2図は本発
明の第2実施例の縦断面図、第3図は従来の絶縁ゲート
型電界効果トランジスタの縦断面図である。 1・・・P型シリコン基板、2・・・シリコン酸化膜、
3・・・ゲート電極、4・・・N型層、5・・・Ge注
入層、6・・・Ge半導体装置
FIG. 1 is a vertical cross-sectional view of a first embodiment of the present invention, FIG. 2 is a vertical cross-sectional view of a second embodiment of the present invention, and FIG. 3 is a vertical cross-sectional view of a conventional insulated gate field effect transistor. . 1... P-type silicon substrate, 2... silicon oxide film,
3... Gate electrode, 4... N-type layer, 5... Ge injection layer, 6... Ge semiconductor device

Claims (1)

【特許請求の範囲】[Claims] 1、シリコン基板の主面にゲート絶縁膜とゲート電極を
形成し、かつこのゲート電極を挟むシリコン基板にソー
ス・ドレインを形成してなる絶縁ゲート型電界効果トラ
ンジスタにおいて、そのチャネル領域を含む領域に、前
記シリコン基板よりも誘電率の大きな半導体層を形成し
たことを特徴とする絶縁ゲート型電界効果トランジスタ
1. In an insulated gate field effect transistor in which a gate insulating film and a gate electrode are formed on the main surface of a silicon substrate, and a source and drain are formed on the silicon substrates sandwiching this gate electrode, the region including the channel region is . An insulated gate field effect transistor comprising a semiconductor layer having a higher dielectric constant than the silicon substrate.
JP18200689A 1989-07-14 1989-07-14 Insulated gate type field effect transistor Pending JPH0346369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18200689A JPH0346369A (en) 1989-07-14 1989-07-14 Insulated gate type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18200689A JPH0346369A (en) 1989-07-14 1989-07-14 Insulated gate type field effect transistor

Publications (1)

Publication Number Publication Date
JPH0346369A true JPH0346369A (en) 1991-02-27

Family

ID=16110677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18200689A Pending JPH0346369A (en) 1989-07-14 1989-07-14 Insulated gate type field effect transistor

Country Status (1)

Country Link
JP (1) JPH0346369A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049431A (en) * 1982-09-09 1991-09-17 Firma Carl Freudenberg Multi-colored floor covering and method of manufacturing it
JP2006352162A (en) * 2006-09-01 2006-12-28 Toshiba Corp Method of manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049431A (en) * 1982-09-09 1991-09-17 Firma Carl Freudenberg Multi-colored floor covering and method of manufacturing it
JP2006352162A (en) * 2006-09-01 2006-12-28 Toshiba Corp Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US6680224B2 (en) Methods of forming and operating field effect transistors having gate and sub-gate electrodes
US5296727A (en) Double gate FET and process for manufacturing same
JPH02210871A (en) Semiconductor device
JPH0346369A (en) Insulated gate type field effect transistor
US4087902A (en) Field effect transistor and method of construction thereof
US5107314A (en) Gallium antimonide field-effect transistor
JPH04346272A (en) Semiconductor device and manufacture thereof
JPS63124467A (en) Semiconductor device
JPH02159070A (en) Semiconductor device and manufacture thereof
TW371355B (en) High voltage metal insulator semiconductor field effect transistor and semiconductor integrated circuit device
JPH051083Y2 (en)
JPH03196572A (en) Semiconductor device
JP2005012110A (en) Microfine mosfet
JPS6146990B2 (en)
JP2001044425A (en) Semiconductor device
JPS63205961A (en) Multigate thin film transistor
JPH05129600A (en) Semiconductor device
JPH0350743A (en) Semiconductor device
CN115579322A (en) Method for manufacturing semiconductor device and semiconductor device
KR20000065949A (en) Method for fabricating the sub-50 nm-channel MOSFET
JPS61294873A (en) Field effect type transistor
JPS59175161A (en) Insulated gate semiconductor device and manufacture thereof
JPH0330475A (en) Semiconductor device
JPS63302574A (en) Manufacture of schottky barrier gate field effect transistor
JPH02234462A (en) Semiconductor device