JPS631072A - Thin-film field-effect transistor - Google Patents

Thin-film field-effect transistor

Info

Publication number
JPS631072A
JPS631072A JP14270186A JP14270186A JPS631072A JP S631072 A JPS631072 A JP S631072A JP 14270186 A JP14270186 A JP 14270186A JP 14270186 A JP14270186 A JP 14270186A JP S631072 A JPS631072 A JP S631072A
Authority
JP
Japan
Prior art keywords
insulating film
gate insulating
effect transistor
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14270186A
Other languages
Japanese (ja)
Inventor
Hiroshi Ito
宏 伊東
Mitsushi Ikeda
光志 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14270186A priority Critical patent/JPS631072A/en
Publication of JPS631072A publication Critical patent/JPS631072A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Abstract

PURPOSE:To inhibit the deterioration and variation in characteristics generated by an interface level formed on the interface, and to obtain an FET having excellent electrical characteristics by constituting an interposition layer having a predetermined energy-band gap value between a semiconductor layer and a gate insulating film. CONSTITUTION:Mo is sputtered onto a glass substrate 11 to shape a gate electrode 12. SiOX 13 is deposited as a gate insulating film. An SiN film 14 is deposited onto SiOx 13. a-Si 15 and n<+> a-Si 16 are deposited. An a-Si island is formed as a Tr section, and Mo and Al are evaporated to shape source-drain electrodes 17 (17a, 17b). An<+> a-Si in a channel section is removed through chemical etching. Since the graded layer 14 (thickness of 5-100nm), an energy-band gap value of which is increased toward the insulating film 13 from the a-Si layer 15, is interposed between the gate insulating film 13 and the a-Si film 15, traps by an interface level are decreased, thus improving electrical characteristics.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は薄膜電界効果トランジスタに関する。[Detailed description of the invention] (Industrial application field) The present invention relates to thin film field effect transistors.

(従来の技術) 近年、水素を含む非晶質シリコンを半導体層とする薄膜
トランジスタ・アレイをスイッチング素子として用いた
デイスプレィパネルの研究開発が各所で行われている。
(Prior Art) In recent years, research and development of display panels using thin film transistor arrays having hydrogen-containing amorphous silicon as a semiconductor layer as switching elements has been carried out in various places.

従来の薄膜トランジスタ(第4図)においてはゲート絶
縁膜13とチャネルを構成する半導体層15とが直接接
触している構造が採用されている。この場合には第3図
に示すようにゲート電圧の印加により、キャリヤの蓄積
されるチャネル部がこの界面近傍に集中して形成される
ために、このチャネル部を走行するキャリヤはこの界面
での界面準位や、ゲート絶縁膜中の捕獲準位にトラップ
される。特に非晶質半導体を用いた場合、これらの準位
の密度が大きく、薄膜トラレジスタの特性変動や特性の
バラツキの原因となっていた。
A conventional thin film transistor (FIG. 4) employs a structure in which a gate insulating film 13 and a semiconductor layer 15 constituting a channel are in direct contact. In this case, as shown in FIG. 3, by applying a gate voltage, a channel region in which carriers are accumulated is formed in a concentrated manner near this interface. It is trapped in the interface level or the trap level in the gate insulating film. In particular, when an amorphous semiconductor is used, the density of these levels is high, causing variations in the characteristics of the thin film resistor and variations in the characteristics.

(発明が解決しようとする問題点) 結晶Siを用いたMO8型電界効果トランジスタicお
いては、ゲート絶縁膜とチャネル部とを分離する工夫が
試みられており、たとえばrMOsデバイスJ(徳山a
著:工業調査会: 1973/8/20発行) P19
3に「チャネルドープJなる方法が紹介されている。こ
ればゲート絶#l膜側より、ホウ素(B)、リン(P)
等の元素をイオン、インプランチーシランすることによ
り、チャネル部のキャリヤ分布、従ってポテンシャル分
布を変化させるものであって、キャリヤの走行するチャ
ネル部を絶縁膜との界面より分離したものである。しか
るに非晶質半導体を用いた電界効果トランジスタに対し
ては、イオン・インプランテーシ曹ン後の活性化プロセ
ス(熱アニール)が適用できないため、この方法は不適
切であった。
(Problems to be Solved by the Invention) In an MO8 field effect transistor IC using crystalline Si, attempts have been made to separate the gate insulating film and the channel part.
Author: Industrial Research Association: Published August 20, 1973) P19
3 introduces a method called channel doping.This method involves doping boron (B) and phosphorus (P) from the gate isolation film side.
By ionizing or implanting silane elements such as, the carrier distribution and therefore the potential distribution in the channel portion are changed, and the channel portion in which carriers travel is separated from the interface with the insulating film. However, this method was inappropriate for field effect transistors using amorphous semiconductors because the activation process (thermal annealing) after ion implantation cannot be applied.

また、特開昭59−117265号には、非晶質半導体
層として非晶質・シリコンを用いた電界効果トランジス
タにおいて、ゲート絶縁膜を上記非晶質半導体層との間
に介在層を設ける技術が開示されている。しかし、この
技術は非晶質Si層より水素原子がゲート絶縁膜へ入り
こまない介在層を形成した技術であり、界面準位を低下
させる上でのメリットは少なかったっ 本発明は、非晶質半導体、特に非晶質シリコン゛ を用
いた電界効果トランジスタ1こおいて、キャリヤの走行
するチャネル部とゲート絶縁膜の間を実質的に分離し、
従来技術においてこの界面において形成された界面準位
により生じていた特性の劣悪さ、変動を抑制し、良好な
電気特性を有する電界効果トランジスタを提供するもの
である。
Furthermore, Japanese Patent Laid-Open No. 59-117265 discloses a technique in which an intervening layer is provided between the gate insulating film and the amorphous semiconductor layer in a field effect transistor using amorphous silicon as the amorphous semiconductor layer. is disclosed. However, this technology forms an intervening layer that prevents hydrogen atoms from entering the gate insulating film rather than an amorphous Si layer, and has little merit in lowering the interface state. In a field effect transistor 1 using a semiconductor, especially amorphous silicon, a channel portion in which carriers travel and a gate insulating film are substantially separated,
The object of the present invention is to suppress the deterioration and fluctuation of characteristics caused by the interface states formed at this interface in the prior art, and to provide a field effect transistor having good electrical characteristics.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、チャネル部を構成する非晶質半導体と、ゲー
ト絶縁膜の間に、該非晶質半導体の禁制帯幅より大きい
禁制帯幅を有する介在層を連続的に形成し、かつ該非晶
質半導体端部より該絶縁膜端部に対して、この介在層の
禁制帯幅の値が増加するように構成することを特徴とす
る電界効果トランジスタである。
(Means for Solving the Problems) The present invention provides an intervening layer having a forbidden band width larger than the forbidden band width of the amorphous semiconductor between the amorphous semiconductor constituting the channel portion and the gate insulating film. A field effect transistor characterized in that the intervening layer is formed continuously and configured such that the value of the forbidden band width of the intervening layer increases from the end of the amorphous semiconductor to the end of the insulating film.

(作 用) 上記した構造の電界効果トランジスタにおいては、キャ
リヤの走行するチャネル部がゲート絶縁膜との界面より
分離されて形成されるため、界面準位の影響を受け(こ
くくなる。またゲート絶縁膜中の捕獲準位によるキャリ
ヤの捕獲も、介在層により減少させることが可能となる
。この結果、vthの変動及びvthの不均一性などが
著しく改善される。
(Function) In a field effect transistor having the above structure, the channel portion in which carriers travel is formed separated from the interface with the gate insulating film, so it is affected by the interface state (becomes difficult). The intervening layer can also reduce carrier capture by trap levels in the insulating film.As a result, variations in vth and non-uniformity in vth are significantly improved.

(実施例) 第1図1こ本発明の一実施例を示す。ガラス基板1’ 
1上lこMo 100OAをスパッターし、ゲートg衡
12を形成する。次IこプラズマCVDにより、ゲート
絶縁膜としてS iOx 13をl1120 Oram
堆積する。次にSiH,20SCCM、H,200SC
CMを一定としNH,を20 SCCMからo SCC
Mまで連続的に減少させ膜厚が3 Q nmのSiN膜
14を堆積させた。
(Embodiment) FIG. 1 shows an embodiment of the present invention. Glass substrate 1'
Sputter 100 OA of Mo on top of 1 to form a gate 12. Next, SiOx 13 was deposited as a gate insulating film by plasma CVD.
accumulate. Next, SiH, 20SCCM, H, 200SC
With CM constant, NH, from 20 SCCM to o SCC
A SiN film 14 having a film thickness of 3 Q nm was deposited by decreasing the thickness continuously to M.

引き続きこの膜の上に連続的にa−8i15を2500
^、 n+a −8i 15を50OA堆積させた。ト
ランジスタ部としてa−8iの島を形成した後に、Mo
 500AとA11/inを蒸着しソース・ドレイン電
極17を形成する。チャネル部のn+a−8iをケミカ
ルドライエツチングにより除去する。
Subsequently, 2500 g of a-8i15 was continuously applied on this film.
^, n+a -8i 15 was deposited at 50OA. After forming an a-8i island as a transistor part, Mo
Source/drain electrodes 17 are formed by evaporating 500A and A11/in. The n+a-8i in the channel portion is removed by chemical dry etching.

第2図に、本発明によるトランジスターのエネルギー図
を示す。第3図1こ従来例によるトランジスターのエネ
ルギー図を示す。第3図においてゲートに正電圧を印加
することにより、a−8iとゲート絶縁膜との間に電子
が電界効果により誘起されチャンネルが形成される。し
かし、ゲート絶縁膜とa−8iの界面には、ゲート絶縁
膜用の原料ガスによる残留不純物、格子不整合による欠
陥等によるトラップが多数存在している。このため界面
付近においては電子の移動度が小さくなり、又、電子が
トラップに捕獲されることによるvth変動が生じやす
いという欠点がある。
FIG. 2 shows an energy diagram of a transistor according to the invention. FIG. 3 shows an energy diagram of a conventional transistor. In FIG. 3, by applying a positive voltage to the gate, electrons are induced between a-8i and the gate insulating film due to the electric field effect, and a channel is formed. However, at the interface between the gate insulating film and a-8i, there are many traps due to residual impurities due to the source gas for the gate insulating film, defects due to lattice mismatch, and the like. For this reason, there is a drawback that the mobility of electrons decreases near the interface, and vth fluctuations are likely to occur due to electrons being captured by traps.

これに対して、第2図の本発明のバンド図においては、
バンドの極小がゲート絶縁膜との界面から離れているた
めlこ、チャンネル部付近では界面準位によるトラップ
が少なく、欠陥も少ない。このため、電子の散乱が減る
ため移動度が大きくなり、又vth変動が減少し、TP
T%性が向上した。
On the other hand, in the band diagram of the present invention shown in FIG.
Since the minimum of the band is far from the interface with the gate insulating film, there are fewer traps due to interface states near the channel portion and fewer defects. For this reason, electron scattering is reduced, resulting in increased mobility, and vth fluctuations are reduced, resulting in TP
T% property improved.

更に本発明では、a−8iNとa−8iを連続的に形成
しているため、チャンネル領域のa−8iはプラズマC
VDの放電の起動時における欠陥の多い膜でなく、バル
クと同様なa−8iがチャンネル部になるため、特性の
向上が著しかった。
Furthermore, in the present invention, since a-8iN and a-8i are formed continuously, a-8i in the channel region is exposed to plasma C.
The characteristics were significantly improved because the channel portion was made of a-8i, which is similar to the bulk, instead of a film with many defects at the time of starting VD discharge.

なお、本実施例ではゲート絶RMをSiOとしたが、S
iOに限らず、SiN、Aち08等でも良い。又、形成
方法はプラズマCVDによらずスパッター等、他の形成
方法でも良い。又、界面のグレーデツド層はSiNとa
−8i  の組み合わせに限らず、グレーデツド層が半
導体より大きいパッドギャップをもてばどのような組み
合わせでも効果がある。例えば、SiCとa−8i、S
iN又はSiCとS i Ge 、GeSn等の組み合
わせでも良い。
In this example, the gate disconnection RM was made of SiO, but S
It is not limited to iO, but may also be SiN, Achi08, etc. Further, the forming method may be other forming methods such as sputtering instead of plasma CVD. In addition, the graded layer at the interface is made of SiN and a
Not limited to the -8i combination, any combination is effective as long as the graded layer has a larger pad gap than the semiconductor. For example, SiC and a-8i, S
A combination of iN or SiC and SiGe, GeSn, etc. may also be used.

なお、TPTの構造は本発明のようなスタガー型に限ら
ず、コプラナー型でも同様の効果が得られる。
Note that the TPT structure is not limited to a staggered type as in the present invention, but a coplanar type can also provide similar effects.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、非晶質半導体を用いた電界効果トラン
ジスタにおいて、良好な電気特性を有する電界効果トラ
ンジスタを得ることができる。
According to the present invention, in a field effect transistor using an amorphous semiconductor, a field effect transistor having good electrical characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、第2図は本発明に
よるTPTのエネルギーバンド図、第3図及び第4図は
従来例を示す図である。 11・・・ガラス基板、12・・・ゲート’に極、13
・・・ゲート絶縁膜、14・・・グレーデツド層、15
・・・半導体、16・・・n%導体、17・・・ソース
拳ドレイン。
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is an energy band diagram of a TPT according to the present invention, and FIGS. 3 and 4 are diagrams showing a conventional example. 11... Glass substrate, 12... Pole on gate', 13
...Gate insulating film, 14...Graded layer, 15
...Semiconductor, 16...n% conductor, 17...source fist drain.

Claims (3)

【特許請求の範囲】[Claims] (1)非晶質シリコン半導体膜を用いた薄膜電界効トラ
ンジスタにおいて、チャネルを形成する前記半導体層と
、ゲート絶縁膜との間に、そのエネルギ、バンドギャッ
プ値が、上記半導体層より上記ゲート絶縁膜に向って増
加するような介在層を構成することを特徴とする薄膜電
界効果トランジスタ。
(1) In a thin film field effect transistor using an amorphous silicon semiconductor film, the energy and bandgap value between the semiconductor layer forming a channel and the gate insulating film are lower than that of the semiconductor layer. A thin film field effect transistor comprising an intervening layer that increases toward the film.
(2)前記介在層がシリコンを構成元素として含み、少
くとも炭素、窒素あるいは酸素のうちの1元素を含む非
晶質材料であることを特徴とする特許請求の範囲第1項
記載の薄膜電界効果トランジスタ。
(2) The thin film electric field according to claim 1, wherein the intervening layer contains silicon as a constituent element and is an amorphous material containing at least one element of carbon, nitrogen, or oxygen. effect transistor.
(3)前記介在層の厚さが5〜100nmであることを
特徴とする特許請求の範囲第1項記載の薄膜電界効果ト
ランジスタ。
(3) The thin film field effect transistor according to claim 1, wherein the thickness of the intervening layer is 5 to 100 nm.
JP14270186A 1986-06-20 1986-06-20 Thin-film field-effect transistor Pending JPS631072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14270186A JPS631072A (en) 1986-06-20 1986-06-20 Thin-film field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14270186A JPS631072A (en) 1986-06-20 1986-06-20 Thin-film field-effect transistor

Publications (1)

Publication Number Publication Date
JPS631072A true JPS631072A (en) 1988-01-06

Family

ID=15321546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14270186A Pending JPS631072A (en) 1986-06-20 1986-06-20 Thin-film field-effect transistor

Country Status (1)

Country Link
JP (1) JPS631072A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218166A (en) * 1989-02-17 1990-08-30 Toshiba Corp Thin film transistor
US5034340A (en) * 1988-02-26 1991-07-23 Seikosha Co., Ltd. Amorphous silicon thin film transistor array substrate and method for producing the same
US5041888A (en) * 1989-09-18 1991-08-20 General Electric Company Insulator structure for amorphous silicon thin-film transistors
US5148248A (en) * 1987-10-06 1992-09-15 General Electric Company Dual dielectric field effect transistors for protected gate structures for improved yield and performance in thin film transistor matrix addressed liquid crystal displays
US5196912A (en) * 1988-10-28 1993-03-23 Casio Computer Co., Ltd. Thin film transistor having memory function and method for using thin film transistor as memory element
US5272361A (en) * 1989-06-30 1993-12-21 Semiconductor Energy Laboratory Co., Ltd. Field effect semiconductor device with immunity to hot carrier effects
US6050827A (en) * 1982-12-29 2000-04-18 Sharp Kabushiki Kaishi Method of manufacturing a thin-film transistor with reinforced drain and source electrodes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6050827A (en) * 1982-12-29 2000-04-18 Sharp Kabushiki Kaishi Method of manufacturing a thin-film transistor with reinforced drain and source electrodes
US5148248A (en) * 1987-10-06 1992-09-15 General Electric Company Dual dielectric field effect transistors for protected gate structures for improved yield and performance in thin film transistor matrix addressed liquid crystal displays
US5034340A (en) * 1988-02-26 1991-07-23 Seikosha Co., Ltd. Amorphous silicon thin film transistor array substrate and method for producing the same
US5065202A (en) * 1988-02-26 1991-11-12 Seikosha Co., Ltd. Amorphous silicon thin film transistor array substrate and method for producing the same
US5196912A (en) * 1988-10-28 1993-03-23 Casio Computer Co., Ltd. Thin film transistor having memory function and method for using thin film transistor as memory element
JPH02218166A (en) * 1989-02-17 1990-08-30 Toshiba Corp Thin film transistor
US5272361A (en) * 1989-06-30 1993-12-21 Semiconductor Energy Laboratory Co., Ltd. Field effect semiconductor device with immunity to hot carrier effects
US5041888A (en) * 1989-09-18 1991-08-20 General Electric Company Insulator structure for amorphous silicon thin-film transistors

Similar Documents

Publication Publication Date Title
JP3144032B2 (en) Thin film transistor and method of manufacturing the same
US8110453B2 (en) Low temperature thin film transistor process, device property, and device stability improvement
US20080079107A1 (en) Field effect transistor having source and/or drain forming Schottky or Schottky-like contact with strained semiconductor substrate
US6639273B1 (en) Silicon carbide n channel MOS semiconductor device and method for manufacturing the same
CA2054498C (en) Mis transistor
US5693977A (en) N-channel field effect transistor including a thin-film fullerene
JPH0449788B2 (en)
TW201820423A (en) Oxide semiconductor device and method for manufacturing same
JPWO2021024502A1 (en) Semiconductor devices and their manufacturing methods
JP3117563B2 (en) Diamond thin film field effect transistor
JPS631072A (en) Thin-film field-effect transistor
JPS58158967A (en) Silicon thin film transistor
Ibaraki et al. The effect of interface states on amorphous-silicon transistors
JPH11121762A (en) Thin-film transistor for liquid crystal display element and manufacture thereof
JPH02228042A (en) Manufacture of thin film semiconductor device
JP2629995B2 (en) Thin film transistor
JPH0564862B2 (en)
JPH0423834B2 (en)
JPH0691103B2 (en) Method for manufacturing insulating gate type transistor
Kim et al. Amorphous silicon thin‐film transistors with two‐layer gate insulator
JPS60105275A (en) Mis type thin-film transistor
Kang et al. Novel offset-gated bottom gate poly-Si TFTs with a combination structure of ultrathin channel and raised source/drain
Murthy et al. Effect of NH 3/SiH 4 gas ratios of top nitride layer on stability and leakage in a-Si: H thin film transistors
JP2925007B2 (en) Method for manufacturing thin film transistor
JP3325664B2 (en) Thin film transistor and method of manufacturing the same