JPS58121677A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58121677A
JPS58121677A JP15565382A JP15565382A JPS58121677A JP S58121677 A JPS58121677 A JP S58121677A JP 15565382 A JP15565382 A JP 15565382A JP 15565382 A JP15565382 A JP 15565382A JP S58121677 A JPS58121677 A JP S58121677A
Authority
JP
Japan
Prior art keywords
silicon
glass layer
oxide film
silicon oxide
oxidized film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15565382A
Other languages
Japanese (ja)
Inventor
Taiichi Inoue
井上 泰一
Yoshiharu Fujimoto
藤本 祥治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP15565382A priority Critical patent/JPS58121677A/en
Publication of JPS58121677A publication Critical patent/JPS58121677A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To improve the yield of a semiconductor device by converting a thin silicon oxidized film into a glass layer without removing the thin silicon oxidized film and forming a diffused region in a semiconductor substrate through the glass layer, thereby preventing the improper part from occurring due to an underetching part. CONSTITUTION:After silicon wirings 4 and an electrode 5 are formed, an impurity is immediately diffused at a high temperature without removing the thin silicon oxidized film 5. A thin silicon oxidized film 3 is converted into a glass layer 11 by setting the temperature of diffusing the impurity to a temperature higher than 900 deg.C, the impurity is diffused through the layer 11 into a silicon semiconductor substrate 1, and a source region 6 and a drain region 7 are formed with the silicon gate 5 as a mask. A silicon oxidized film 8 is then formed, as shown in Fig. 2B, by thermally oxidized or vapor phase growing method on the overall surface without removing the layer 11, a contacting hole is further opened, and aluminum wirings 9 are then performed, thereby forming a transistor.

Description

【発明の詳細な説明】 仁の発明はトランジスタなど拡散領域を含む素子を有す
る半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Jin's invention relates to a semiconductor device having an element including a diffusion region, such as a transistor.

シリコン半導体にて構成された半導体装置の製造方法に
おいて従来の拡散技術では熱拡散工程の前に、その前の
工程で形成されている薄いシリコン酸化膜を全て除去す
るか、高濃度不純物ガラス層を利用して拡散するかのい
ずれかが行なわれていた。後者は前者に比べ気相成長技
術を伴なうので技術的困難さが大きい。そこで一般には
前者が用いられている。しかし多結晶シリコンを配線と
して使用する最近の技術、例えばシリコンゲートの絶縁
ゲート型電界効果トランジスタにおいて多結晶シリコン
ゲートを予め形成した後にソース、ドレイン領域をそれ
ぞれ拡散形成すればシリコンゲートをマスクすることが
でき、マスク合せの工程が省略でき、高密度に素子を形
成できる。しかしそのソース、ドレイン拡散の前に行な
う、酸化膜除去の際に形成した多結晶シリコンの周縁部
の下側が、いわへるアンダーエツチングを受け、これが
重要な藺題になっている。このことを第1図について説
明すると、第1図Aに示すようにシリコン半導体基板l
上に厚いシリコン酸化膜2が設けられ、その一部は選択
的に除去され、その除去された部分に薄いシリコン酸化
M3が形成される。更に全面に結晶シリコン層を成長さ
せ、その一部を選択的に残して配線4及び電極5とする
。この後に第1図Bに示すように多結晶シリコン層5を
マスクとして薄い酸化膜3を除去するように酸化膜エツ
チングを行なってソース領域6及びドレイン領域7のた
めの開口を形成する。この際ゲート電極50周縁の下も
エツチングされてアンダーエツチング領域10が形成さ
れ、また厚い酸化膜2も薄くエツチングされて配線4の
下の一部にアンダーエツチング領域10が生じる。次に
不純物拡散を行なってソース領域6、ドレイン領域7が
形成され、同時に不純物の拡散が行なわれた多結晶シリ
コン配線4及び電極5が形成される。その後不純物ガラ
ス層を除去して第1図Cに示すように気相成長シリコン
酸化膜8を成長させ、これに対してコンタクト孔を開口
した後、アルミニウムを蒸着して配線9を形成して完成
する。このような製造方法ではソース、ドレインの拡散
にシリコンゲート5をマスクとするため、そのゲート5
と、ソース領域6及びドレイン領域7との相互位置が正
確に設計通9になる利益がある。しかしアンダーエツチ
ング部lOはシリコン酸化膜が存在しないため多結晶シ
リコン5と、ソース領域6及びドレイン領域7との電気
的短絡が生じやすくなる。
In the conventional diffusion technology for manufacturing semiconductor devices made of silicon semiconductors, before the thermal diffusion process, either all the thin silicon oxide film formed in the previous process is removed or a highly concentrated impurity glass layer is removed. They were either using it and spreading it. The latter method is technically more difficult than the former method because it involves vapor phase growth technology. Therefore, the former is generally used. However, with recent technology that uses polycrystalline silicon as wiring, for example in silicon gate insulated gate field effect transistors, it is possible to mask the silicon gate by forming the polycrystalline silicon gate in advance and then diffusing the source and drain regions. The mask alignment process can be omitted, and elements can be formed with high density. However, the lower side of the peripheral edge of the polycrystalline silicon formed during the removal of the oxide film before the source and drain diffusion is subject to so-called underetching, which has become an important problem. To explain this with reference to FIG. 1, as shown in FIG. 1A, a silicon semiconductor substrate l
A thick silicon oxide film 2 is provided thereon, a portion of which is selectively removed, and a thin silicon oxide M3 is formed in the removed portion. Furthermore, a crystalline silicon layer is grown over the entire surface, and a portion of it is selectively left to serve as wiring 4 and electrode 5. Thereafter, as shown in FIG. 1B, oxide film etching is performed to remove thin oxide film 3 using polycrystalline silicon layer 5 as a mask to form openings for source region 6 and drain region 7. At this time, the area below the periphery of the gate electrode 50 is also etched to form an under-etched region 10, and the thick oxide film 2 is also etched thinly to form an under-etched region 10 in a portion under the wiring 4. Next, impurity diffusion is performed to form a source region 6 and a drain region 7, and at the same time, polycrystalline silicon interconnection 4 and electrode 5, which have undergone impurity diffusion, are formed. Thereafter, the impurity glass layer is removed and a vapor phase grown silicon oxide film 8 is grown as shown in FIG. do. In this manufacturing method, the silicon gate 5 is used as a mask for source and drain diffusion.
This has the advantage that the mutual positions of the source region 6 and the drain region 7 can be exactly as designed. However, since no silicon oxide film is present in the under-etched portion IO, electrical short circuits between the polycrystalline silicon 5 and the source region 6 and drain region 7 are likely to occur.

この発明は上述の点に鑑み、半導体基板上KK影形成れ
た薄いシリコン酸化膜を除去することなくその薄いシリ
コン酸化膜をガラス層に変換し、そのガラス層を通して
半導体基板に拡散領域を形成する。このようKして上記
薄いシリコン酸化膜上にシリコン電極と配紛層が形成さ
れている場合に、これをマスクとして不純物拡散を行な
うことができ、しかも薄いシリコン酸化膜を除去しない
ため、アンダーエツチング部分による不良は発生するこ
とがなく、歩留りが高いものになる。
In view of the above points, the present invention converts the thin silicon oxide film formed on the semiconductor substrate into a glass layer without removing the thin silicon oxide film, and forms a diffusion region on the semiconductor substrate through the glass layer. . When a silicon electrode and a dosing layer are formed on the thin silicon oxide film in this way, impurity diffusion can be performed using this as a mask, and since the thin silicon oxide film is not removed, under-etching is avoided. There are no defects caused by parts, and the yield is high.

次に第2図を参照してこの発明による半導体装置の一例
を、第1図に示した従来のものと対応するものに適用し
た場合につき説明する。
Next, referring to FIG. 2, an example of a semiconductor device according to the present invention will be described in the case where it is applied to a device corresponding to the conventional device shown in FIG.

第1図AKついて説明したシリコン配線4、電極5の形
成までは従来と同様である。このシリコン配線、電極の
形成後、この発明においては薄いシリコン酸化膜5を除
去することなく、直ちに高温で不純物拡散を行なう。な
おソース領域及びドレイン領域の抵抗を小さくするため
には薄いシリコン酸化膜3の膜厚は2000Å以下が好
ましい。
The steps up to the formation of the silicon wiring 4 and electrodes 5 described with reference to FIG. 1AK are the same as in the conventional method. After forming the silicon wiring and electrodes, in the present invention, impurity diffusion is immediately performed at high temperature without removing the thin silicon oxide film 5. Note that in order to reduce the resistance of the source and drain regions, the thickness of the thin silicon oxide film 3 is preferably 2000 Å or less.

上記不純物拡散の温度を900℃以上にすることにより
、第2図Aに示すように薄いシリコン酸化膜3は2時間
以内にガラス層11に変換され、そのガラス層11を通
って不純物祉シリコン半導体基板1へ拡散され、ソース
領域6、ドレイン領域7がシリコンゲート5をマスクと
して形成される。この時にできる不純物ガラス層11を
除去せず次に熱酸化又は気相成長法でシリコン酸化膜8
を第2図Bに示すように全面に形成し、更にコンタクト
孔を開口し、次にアルミ配線9を行なってトランジスタ
が構成される。
By setting the impurity diffusion temperature to 900° C. or higher, the thin silicon oxide film 3 is converted into a glass layer 11 within two hours as shown in FIG. It is diffused into the substrate 1, and a source region 6 and a drain region 7 are formed using the silicon gate 5 as a mask. Without removing the impurity glass layer 11 formed at this time, the silicon oxide film 8 is then thermally oxidized or vapor-phase grown.
is formed over the entire surface as shown in FIG. 2B, contact holes are further opened, and then aluminum wiring 9 is formed to form a transistor.

上述の本発明によれば、薄いシリコン酸化膜3をエツチ
ングしないためアンダーエツチング部分10は全く生じ
ないばか口か密なガラス層11にゲート電極5およびシ
リコン配線4が囲まれ、ビンプ水−ルなどによる配線や
ソース、ドレイン領域との電気的短絡は全く生じない、
よって歩留りのよいものとなる。上述においては薄いシ
リコン酸化IM!3をガラス質へ変換する工程と、その
ガラス質を通して不純物拡散を行なう工程は連続してい
るがそれぞれの工程を明確に分離してもよい。
According to the present invention described above, since the thin silicon oxide film 3 is not etched, no under-etched portion 10 is generated.In addition, the gate electrode 5 and the silicon wiring 4 are surrounded by the dense glass layer 11, and the bottle water etc. There is no electrical short circuit with wiring or source/drain regions.
Therefore, the yield is good. In the above, thin silicon oxide IM! Although the step of converting 3 into glass and the step of diffusing impurities through the glass are continuous, each step may be clearly separated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置の製造方法の一例を示す断面図、第
2図はこの発明による半導体装置をその製造方法の一例
に従って示す断面図である。 1:シリコン半導体基板、3:薄いシリコン酸化膜、6
,7:拡散領域としてのソース、ドレイン領域、1に不
純物ガラス層。 図1++1ノ)i;’、’:’l’!7+に哀史なし)
第 1 回 第2 已 6    /      l 58.2.24 特許庁長官 殿 1、事件の表示   昭和57年 轡 許 願第i、t
ziu号2、発明の名称   半導体装置 3、補正をする者 事件との関係       出 願 人東京都港区芝五
丁目33番1号 (423)   日本電気株式会社 代表者 関本忠弘 4、代理人 1 補正命令の日付    昭和58年1月25日(発
送日)明細書および図面 7、 補正の内容 明細書および図面の浄書
FIG. 1 is a sectional view showing an example of a conventional device manufacturing method, and FIG. 2 is a sectional view showing a semiconductor device according to the present invention according to an example of the manufacturing method. 1: Silicon semiconductor substrate, 3: Thin silicon oxide film, 6
, 7: Source and drain regions as diffusion regions, 1 impurity glass layer. Figure 1++1ノ)i;',':'l'! 7+ has no sad history)
1st No. 2 6/1 58.2.24 Director General of the Patent Office 1, Indication of the Case 1981 轡认语 No. i, t
ziu No. 2, Title of the invention: Semiconductor device 3, Relationship with the person making the amendment: Applicant: 5-33-1 Shiba, Minato-ku, Tokyo (423) NEC Corporation Representative: Tadahiro Sekimoto 4, Agent: 1 Amendment Date of order: January 25, 1981 (shipment date) Specification and drawing 7, Description of amendments and engraving of drawings

Claims (1)

【特許請求の範囲】[Claims] 半導体領域の一生面に設けられた厚いシリコン酸化膜と
、この厚いシリコン酸化MKa接するシリコンゲート型
電界効果トランジスタとを有する半導体装置において、
前記厚いシリコン酸化膜の上には多結晶シリコンの配線
層が設けられ、この配線層の表面および前記トランジス
タのシリコンゲート、ソース領域およびドレイン領域の
表面ならびに前記厚いシリコン酸化膜の表面はガラス層
で覆われ、このガラス層上にはこれより厚い絶縁膜が設
けられていることを特徴とする半導体装置。
In a semiconductor device having a thick silicon oxide film provided on the whole surface of a semiconductor region and a silicon gate type field effect transistor in contact with the thick silicon oxide MKa,
A polycrystalline silicon wiring layer is provided on the thick silicon oxide film, and the surface of this wiring layer, the silicon gate, source region, and drain region of the transistor, and the surface of the thick silicon oxide film are covered with a glass layer. A semiconductor device characterized in that the glass layer is covered with a glass layer and an insulating film that is thicker than the glass layer is provided on the glass layer.
JP15565382A 1982-09-06 1982-09-06 Semiconductor device Pending JPS58121677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15565382A JPS58121677A (en) 1982-09-06 1982-09-06 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15565382A JPS58121677A (en) 1982-09-06 1982-09-06 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP49042538A Division JPS6118348B2 (en) 1974-04-15 1974-04-15

Publications (1)

Publication Number Publication Date
JPS58121677A true JPS58121677A (en) 1983-07-20

Family

ID=15610664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15565382A Pending JPS58121677A (en) 1982-09-06 1982-09-06 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58121677A (en)

Similar Documents

Publication Publication Date Title
JPS6281764A (en) Manufacture of silicon carbide device
US3986896A (en) Method of manufacturing semiconductor devices
JPS6252963A (en) Manufacture of bipolar transistor
JPH06163532A (en) Method for isolation of semiconductor element
JPS58121677A (en) Semiconductor device
JP2689710B2 (en) Method for manufacturing semiconductor device
JPS6118348B2 (en)
JPS6230494B2 (en)
JPH0420266B2 (en)
JPS6068656A (en) Manufacture of semiconductor device
JPH0216019B2 (en)
JPH0117256B2 (en)
KR950013791B1 (en) Making method of gate electrode on the buried contact
JPS6115579B2 (en)
JP2778606B2 (en) Manufacturing method of capacitive element
JPS5885529A (en) Manufacture of semiconductor device
JPS5943832B2 (en) Manufacturing method of semiconductor device
JPS5858814B2 (en) Manufacturing method of insulated gate semiconductor device
JPS6120154B2 (en)
JPS6118350B2 (en)
JPS60785B2 (en) Manufacturing method of MOS type semiconductor device
JPS583272A (en) Manufacture of semiconductor device
JPH0750274A (en) Formation of pattern selective tungsten growth
JPS58170012A (en) Manufacture of semiconductor device
JPH05129427A (en) Semiconductor device