JPS583272A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS583272A
JPS583272A JP10187981A JP10187981A JPS583272A JP S583272 A JPS583272 A JP S583272A JP 10187981 A JP10187981 A JP 10187981A JP 10187981 A JP10187981 A JP 10187981A JP S583272 A JPS583272 A JP S583272A
Authority
JP
Japan
Prior art keywords
single crystal
film
layer
substrate
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10187981A
Other languages
Japanese (ja)
Other versions
JPH0152908B2 (en
Inventor
Seiichiro Kawamura
河村 誠一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10187981A priority Critical patent/JPS583272A/en
Publication of JPS583272A publication Critical patent/JPS583272A/en
Publication of JPH0152908B2 publication Critical patent/JPH0152908B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body

Abstract

PURPOSE:To form a semiconductor device of SOIS structure in a high performance by forming an insulating film on the bottom of a recess region formed on a semiconductor substrate, covering the overall surface of the substrate with a polycrystalline Si film, scanning and melting it with a laser beam and single crystallizing the Si film. CONSTITUTION:A nitrided Si film is formed on a single crystal Si substrate 11, and is etched to form a recess region 14 and a raised region 15. An SiO2 film 16 is formed by selectively thermal oxidation to be lower than the upper surface of the region 15 on the region 15. An Si3N4 film 12 is dissolved and removed on the region 15, and a P type polycrystaline Si layer 18 is deposited on the overall surface including the film 16. A laser beam 19 is scanned to sequentially melt and quench the layer 18, thereby single crytallizing to the bottom and forming a single crystal Si layer 21, and an MOSFET 25 is formed thereat. In this manner, the performance and the yield of the semiconductor device of SOIS structure can be improved.

Description

【発明の詳細な説明】 本発明は5OIL(Silicon On Insul
ating8ubstrate )構造の半導体装置の
製造方法に係り、特に絶縁膜上に単結晶シリコン層を形
成する方法に関する。
[Detailed description of the invention] The present invention is based on 5OIL (Silicon On Insul).
The present invention relates to a method of manufacturing a semiconductor device having a structure (ating8ubstrate), and particularly to a method of forming a single crystal silicon layer on an insulating film.

素子間の分離を完全に行い、且つ基板と素子間の畜生容
量を減少せしめることにより、素子動作の高速化及び低
消費電力化を図りた牛専体&瞳に808 (8i1ic
on (Jn 5apphire )構造の半導体装置
がある。しかし[808#s造の半導体装置には、サフ
ァイア基板の原価がシリコン基板に比べて5〜6〔倍〕
程良であるために1IIci1が非常に高価iこなると
いう間眺や、サファイア上に結晶性の優れた単結晶シリ
コン層が形成できないために、半導体素子のキャリア易
動度が小さく史にリークtflLも大きいので、タイナ
・ミック形のメモリ素子崎を形成するのに適しないとい
うような問題がめった。
By completely separating the elements and reducing the capacitance between the substrate and the elements, the 808 (8i1ic) achieves faster element operation and lower power consumption.
There is a semiconductor device having an on (Jn 5apphire) structure. However, the cost of the sapphire substrate for the 808#s semiconductor device is 5 to 6 times that of the silicon substrate.
It is thought that 1IIci1 is very expensive due to its moderate quality, and because a single crystal silicon layer with excellent crystallinity cannot be formed on sapphire, the carrier mobility of semiconductor devices is small and leakage occurs. Because of the large size, problems often arise in that it is not suitable for forming a dynamic type memory element.

そこで上記のようなSO8構造の間臆点を解Y内するた
めに提供されたのが、シリコン基板上に設けられた絶縁
膜(特に二酸化シリコン膜)上に単結晶シリコン層を成
長せしめ、該単結晶シリコン層に半導体装置を形成する
80IS@造の半導体装置である。
Therefore, in order to solve the problems in the SO8 structure as described above, a method has been proposed in which a single crystal silicon layer is grown on an insulating film (particularly a silicon dioxide film) provided on a silicon substrate, and the This is a semiconductor device manufactured by 80IS@ in which a semiconductor device is formed on a single crystal silicon layer.

然し従来の80I S構造の半導体装置の製造方法に於
ては、第1図(a)に示すように、島状に突出形成され
た絶縁膜例えば二酸化シリコン(8l O,)膜1を有
する単結晶シリコン(Si)基板2上に堆積形成した多
結晶84層3を、エネルギー線例えばレーザ拳ビーム4
により走査して(矢印5は走査方向)、Sin、膜1上
の多結晶Si層3め単結晶化が行われていたために、そ
の上置位置が8i0.膜lの上面位置より低い位置にあ
る単結晶Si基板2に直かに接する領域の多結晶Si層
3から、高い位置にある8i0.[1上の多結晶St層
3に向って、単結晶81基板2と同一結晶方位を有する
単結晶化が進行していた。従って第1図(b)に示すよ
うに8i0.膜lのレーザ・ビーム走査方向5に対向す
る縁部上に、単結晶Si層6の欠除部7が形成され勝ち
で、各島状Sin、HXl上に一様に結晶方位のそろっ
た単結晶Si層を形成することがむずかしく、半導体装
置の性能や製造歩留まりが低下するという問題があった
However, in the conventional manufacturing method of a semiconductor device having an 80IS structure, as shown in FIG. A polycrystalline 84 layer 3 deposited on a crystalline silicon (Si) substrate 2 is exposed to an energy beam, for example, a laser fist beam 4.
(arrow 5 is the scanning direction), since the polycrystalline Si layer 3 on the Si film 1 had been single-crystallized, its upper position was 8i0. From the polycrystalline Si layer 3 in the region directly in contact with the single crystal Si substrate 2, which is located lower than the top surface of the film l, to 8i0, which is located at a higher position. [Single crystallization of the single crystal 81 having the same crystal orientation as the substrate 2 was progressing toward the polycrystalline St layer 3 on top of the polycrystalline St layer 3. Therefore, as shown in FIG. 1(b), 8i0. A cutout part 7 of the single crystal Si layer 6 is likely to be formed on the edge of the film l facing the laser beam scanning direction 5, and a single crystal with uniform crystal orientation is formed on each island of Sin and HXl. There is a problem in that it is difficult to form a crystalline Si layer, and the performance and manufacturing yield of semiconductor devices are reduced.

本発明は絶縁層上に結晶性が優れ且つ欠除部のない単結
晶シリコン層を形成する方法を提供し、上記問題点を除
去することを目的とする。
An object of the present invention is to provide a method for forming a single crystal silicon layer with excellent crystallinity and no defects on an insulating layer, and to eliminate the above-mentioned problems.

即ち本発明は下層単結晶シリコン基体上に、絶縁膜を介
して島状に単結ムシリコン層が積層さ化該単結晶シリコ
ン層に半導体素子が形成される5OI8構造の半導体装
置の製造方法に於て、前記単結晶シリコン層を形成する
に際して、単結晶シリコン基体面に凹部領域と凸部領域
を形成し、駄単結晶シリコ゛ン基14−@の凹部領域上
に、上面が前記凸部領域上面より低い絶縁膜を選択的に
形成し、該単結晶シリコン基体面にその凸部領域及び前
記絶縁編上を嶺う多結晶シリコン層を形成し、該多結晶
シリコン層をエネルギー線で走査溶融し、該多結晶シリ
コン層を単結晶シリコン基体の凸部領域上から絶縁層上
に向って単結晶化する工程を有することを特像とする。
That is, the present invention provides a method for manufacturing a semiconductor device having a 5OI8 structure, in which a single silicon layer is laminated in an island shape on a lower single crystal silicon substrate with an insulating film interposed therebetween, and a semiconductor element is formed on the single crystal silicon layer. When forming the single crystal silicon layer, a concave region and a convex region are formed on the surface of the single crystal silicon substrate, and the upper surface is higher than the upper surface of the convex region on the concave region of the single crystal silicon base 14-@. selectively forming a low insulating film, forming a polycrystalline silicon layer covering the convex region and the insulating layer on the surface of the single crystal silicon substrate, scanning and melting the polycrystalline silicon layer with an energy beam, The method is characterized in that it includes a step of monocrystallizing the polycrystalline silicon layer from above the convex region of the single-crystal silicon substrate toward the insulating layer.

以下本発明を一央INIP+1について、謔2図(a)
乃至0)に示す工程動向図を用いて詳細に成用する。
The present invention will be described below with reference to INIP+1, Figure 2 (a).
The process trend chart shown in (0) to (0) is used to complete the process in detail.

本発明の方法により80I8構造の半導体装置を形成す
るには、第2図(M)に示すように単結晶シリコン(S
))基板11上に、通常の化学気相成長(OVD) 法
icより1000(X) 程&の厚!Fの窒化シリコン
(8hN4)膜12′を形成した後、第り図か)に示す
ように前記8輸’%M12’上に島状に、所望形状を有
する複数の7オト・レジスト−パターン13を通常のフ
ォト・プロセスを用いて形成し、次いで骸フォト・レジ
スト・パターy13をマスクとしてりん酸(HsP04
%を用いるウェット・エツチング法婚により81s N
4 Ml 2’を選択エツチングし、次いで二塩化二弗
化炭素(001゜Fm) 尋によるリアクティブ・イオ
ン・エツチング勢のエツチング方法により、jli帖晶
Si基板11゜を選択エツチングして、第2図(C)に
示すように単結晶Sk基板11’ilに例えば1〔μm
〕程度の深さを有する凹部領域14を形成する。な3図
に於て8i、N、パターン12下部の単結晶84基板1
1に於ける台状部を凸部領域15を称する。父上記単結
晶8i基板11のエツチングはウェット−エツチング法
成るいはグッズマ・エツチング法でも良いが、後工程に
於て前記凹部領域14内のみに絶縁膜を形成せしめる際
、凸部領域15側面に形成される絶縁膜をできるだけ薄
くするためには、上記リアクティブ・イオン0エツチン
グが最も好ましい。次いでフォト・レジスト・ノくター
ン13を竺去した稜、第21g(d)に示すように8i
、N、ノくターン12をマスクにし、加fllIII素
(0,)中に於て1000(II’)程度の温度で単結
晶81基板11面を選択的に熱酸化して、該基板の凹部
領域14の上面に厚さ6000〜7000(X)程度の
二酸化シリコン(8五〇、)膜16を形成する。なおこ
の際#810s展16の上面は、堆結晶S1基板11の
凸部領域15の上面より3000〜4000(人〕程度
低くなり、又単結晶81基板11の凸部領域1511面
にも2000〜5ooo(X)程度の薄い8i0@[1
6’が形成される。次いでりん酸(HI P Oa )
咎を用いて単結晶81基板11凸部領域15上の84、
N、パターン12を溶解除去し、更にふつ敏(HF)系
のエツチング液を用いて舶記凸部領域15側面の薄いS
10ヨ[l!16’を溶解除去して、第2図(C)に示
すように単結晶8i基板11凹部領域14上に選択的に
StO,膜16を残留せしめる。なお上記ふつ酸(HF
)系の液による処理に際して、凹部領域14上の8i0
.膜16も2000〜3000〔l〕程度エツチングさ
れるので、Sin、膜16の厚さは4000 (A)程
度となり該S i O,膜16上面と基板の凸部領域1
5上面との段差は5000〜7000 (A)程度とな
る。又該エツチング処理により8 l O,膜16には
丸味を持った角部17が形成されるので、後工程に於て
該S i O,膜16上に多結晶Si層を成長させる際
、該角部17上に異常成長を生ずることがない。次いで
モノシラン(84H4)+ジボラン(t3tL)の熱分
解による通常の化学気相成長(OVD)法により、第2
図(f)に示すように該単結晶St基板11上にその凸
部領域15の表面及び凹部領域14上の8i0.膜16
我面を覆う厚さ3000〜5000 (X)程度のP−
型単結晶Si層18を堆積形成する。次いで該単結晶8
i基板11を例えば500〜700 (C)程度に加熱
した状態で、前記P−fi多結晶Si層18面に例えば
溶−領域径50(μmφ〕出力10〜1a(W)li度
の0W−Arレーザ・ビーム19を10〔l弔〕程度の
速度で走査しく矢印20は走査方向を示す)、該P−型
多結晶Si層1Bをビームの移動に伴って順次溶融→急
冷を行って底部まで単結晶化し、第2図憧)に示すよう
に前記凸部領域15及びS10゜膜16上に3000〜
5000 (X)程度の厚さのP−型単結晶Si層21
を形成する。なお骸単結晶化は単結晶8i1に:t&i
11の凸部領域15を核として8i0.jlli16上
番こ進んで行くので、形成されたP−槃単結晶84層2
1は単結晶84基板11と同一面方位を持った良質な単
結晶層となり、父上記のように単結晶化が、高位置にあ
る単結晶81基板】1の凸部領域15上の多結晶81層
から低位置にある8 i 0.換16上の多結晶S1層
に向りて進んで行(ので、8i0.膜16のレーザ・ビ
ーム走査方向に対向する縁部上に単結晶Si層の欠除部
を生じるととがな(,8i0.、@16上の全域にわた
って結晶方位のそろった良質なP−fi単結晶81層2
1が形成される。次いで通常の素子形成方法を用いて第
2図の)に示すように、Sin、膜16上のP−型単結
晶84層21の表面にゲート酸化膜22、ゲート電極2
3、N型ソース−ドレイ/領域24を有するNチャネル
MO8)ランンスタ25を形成し、次いで#E2図(i
)に示すようにNチャネルM08トランジスタ25上を
フォト・レジスト族26で覆って、通常の方法により単
結晶Si層21及び単結晶84基板11凸部領域15の
選択エツチングを行って分離#127を形成し、第2図
0)に示すようにP−型単結晶Si層21.ゲート酸化
111[22、ゲート電11i23、N型ソース・ドレ
イン領域24からなるNチャネルMoaトtンジスタ2
5かSin、j1115を介して単結晶8盪基1[11
上に島状に複数個分離配設された80ISll造の半導
体素子を形成する。そして図示しないがこれら半導体素
子か所望の配線により接続されて80I8構造の半導体
装置が提供さnる・なお上記実施例に於ては半導体素子
と本結晶84基板との間に介在せしめる絶縁膜に熱酸化
にょる8 i 0.膜を用いたが、皺840□膜はOV
D法により形成しても良く、父上配に限らす0VD−8
4,N4膜、0VD−アルミナ(A’*Qa)膜勢でも
さしつかえない。
In order to form a semiconductor device with an 80I8 structure by the method of the present invention, as shown in FIG.
)) On the substrate 11, a thickness of about 1000 (X) from the conventional chemical vapor deposition (OVD) IC! After forming the F silicon nitride (8hN4) film 12', a plurality of 7-hole resist patterns 13 having a desired shape are formed in island shapes on the 8-molecular weight 12', as shown in FIG. is formed using a normal photo process, and then phosphoric acid (HsP04
81s N by wet etching method using %
4 Ml 2' was selectively etched, and then the JLI crystalline Si substrate 11° was selectively etched using a reactive ion etching type etching method using carbon dichloride difluoride (001°Fm). As shown in Figure (C), for example, 1 [μm
) is formed. In Figure 3, 8i, N, single crystal 84 substrate 1 under pattern 12
1 is referred to as a convex region 15. The single-crystal 8i substrate 11 may be etched by a wet etching method or a goodsma etching method, but when forming an insulating film only in the concave region 14 in a later step, the etching process may be performed on the sides of the convex region 15. In order to make the formed insulating film as thin as possible, the above-mentioned reactive ion zero etching is most preferable. Then, the edge where the photoresist notch 13 is removed is 8i as shown in No. 21g(d).
, N, using the turn 12 as a mask, the single crystal 81 substrate 11 surface is selectively thermally oxidized at a temperature of about 1000 (II') in a full III element (0,) to form a recessed portion of the substrate. A silicon dioxide (850) film 16 having a thickness of approximately 6000 to 7000 (X) is formed on the upper surface of the region 14 . At this time, the top surface of the #810s expansion 16 is approximately 3000 to 4000 (people) lower than the top surface of the convex region 15 of the deposited crystal S1 substrate 11, and the surface of the convex region 1511 of the single crystal 81 substrate 11 is also 2000 to 4000. Thin 8i0@[1
6' is formed. Then phosphoric acid (HI P Oa )
84 on the single crystal 81 substrate 11 convex region 15 using a
N, the pattern 12 is dissolved and removed, and a thin S on the side surface of the convex region 15 is etched using a high-temperature (HF) etching solution.
10yo [l! 16' is dissolved and removed to selectively leave the StO film 16 on the concave region 14 of the single crystal 8i substrate 11, as shown in FIG. 2(C). In addition, the above-mentioned hydrofluoric acid (HF
) system, the 8i0 on the recessed area 14
.. Since the film 16 is also etched by about 2,000 to 3,000 [l], the thickness of the Si film 16 is about 4,000 (A), and the upper surface of the SiO film 16 and the convex region 1 of the substrate are
5. The difference in level from the top surface is about 5,000 to 7,000 (A). In addition, since the etching process forms rounded corners 17 on the SiO film 16, when growing a polycrystalline Si layer on the SiO film 16 in a later step, Abnormal growth does not occur on the corner 17. Next, a second layer was formed by a conventional chemical vapor deposition (OVD) method using thermal decomposition of monosilane (84H4) + diborane (t3tL).
As shown in Figure (f), 8i0. membrane 16
P- with a thickness of about 3000 to 5000 (X) that covers the face
A type single crystal Si layer 18 is deposited. Then the single crystal 8
With the i-substrate 11 heated to, for example, about 500 to 700 (C), a 0W-coil with a melting area diameter of 50 (μmφ) and an output of 10 to 1a (W) degrees is applied to the surface of the P-fi polycrystalline Si layer 18. The Ar laser beam 19 is scanned at a speed of about 10 liters (arrow 20 indicates the scanning direction), and the P-type polycrystalline Si layer 1B is sequentially melted and then rapidly cooled as the beam moves to form the bottom part. As shown in FIG.
P-type single crystal Si layer 21 with a thickness of about 5000 (X)
form. Furthermore, Mukuro single crystallization is made into single crystal 8i1: t&i
8i0.11 with the convex region 15 as the core. jlli16 As the upper row progresses, the formed P-Kan single crystal 84 layer 2
1 becomes a high-quality single crystal layer having the same plane orientation as the single crystal 84 substrate 11, and the polycrystalline layer on the convex region 15 of 1 becomes a single crystal 81 substrate where the single crystallization is at a high position as described above. 8 i 0. located at a low position from the 81st layer. The 8i0. , 8i0., @16 High quality P-fi single crystal 81 layer 2 with uniform crystal orientation over the entire area
1 is formed. Next, as shown in FIG. 2) using a normal device forming method, a gate oxide film 22 and a gate electrode 2 are formed on the surface of the P-type single crystal 84 layer 21 on the Sin film 16.
3. Form N-channel MO8) run star 25 with N-type source-dray/region 24, then #E2 diagram (i
), the N-channel M08 transistor 25 is covered with a photoresist group 26, and the single-crystal Si layer 21 and the convex region 15 of the single-crystal 84 substrate 11 are selectively etched by a conventional method to form isolation #127. A P-type single crystal Si layer 21. is formed as shown in FIG. N-channel Moa transistor 2 consisting of gate oxide 111[22, gate electrode 11i23, and N-type source/drain region 24]
5 or Sin, j1115 via single crystal 8-group 1[11
A plurality of semiconductor elements of 80ISll structure are formed on the substrate, separated and arranged in an island shape. Although not shown, these semiconductor elements are connected by desired wiring to provide a semiconductor device with an 80I8 structure.In the above embodiment, the insulating film interposed between the semiconductor element and the crystal 84 substrate is Thermal oxidation 8 i 0. The wrinkle 840□ film was OV.
0VD-8 may be formed by the D method and is limited to fathers.
4.N4 film or 0VD-alumina (A'*Qa) film may also be used.

又多結晶8鳳層を単結晶化する際には電子ビーム勢レー
ザービーム以外のエネルギー線を用いても良い。
Further, when converting the polycrystalline 8-layer into a single crystal, energy beams other than electron beams or laser beams may be used.

爽に又本発明の方法で二層以上の多層に半導体素子が絶
縁Sを介して積層される構造の80I 8型牛導体装*
を形成することも可能で、この場合単結晶81層上に凸
部領域を堆積形成して後、上記実施例に準じて工程を進
める。
Refreshingly, there is also an 80I 8-type conductor package* with a structure in which semiconductor elements are laminated in two or more layers with insulation S interposed therebetween by the method of the present invention.
It is also possible to form a convex region on the single crystal 81 layer, and then proceed with the process according to the above embodiment.

以上説明したように本発明によれば、半導体基板上に島
状に設けられた絶縁膜上に、面方位が一定し結晶性の★
れた単結晶シリコン層を均一に形
As explained above, according to the present invention, an insulating film with a constant plane orientation and crystalline ★
Uniformly shape the single crystal silicon layer

【図面の簡単な説明】[Brief explanation of drawings]

第111!!J(a)乃至Φ)は従来の絶縁層上への単
結晶シIIコンー薮濤嘴ル(i)T沿賑面1i/+  
舘Q &/l /+I TL冨/ilは本発明の方法に
於ける一実施例の工程断面図である。 図に於て、11は単結晶シリコン基板、12′は窒化シ
リコン膜、12は窒化シリコン・ノくターン、13及び
26はフォト・レジスト・ノ(ターン、14は凹部領域
、15は凸部領域、16は二酸化シリコン膜、16′は
薄い二酸化シリコン膜、17は丸味を持りた角部、18
はP−型多結晶シリコン層、19は0W−Arv−ザ・
ビーム、20はレーザ・ビーム走査方向、21はP−朦
単結晶シリコン層、22はゲート酸化膜、2゛3はゲー
ト電極、24はN型ソース・ドレイン領域、25はMO
Sトランジスタ、27は分離溝を示す。 晃 1 図 第 2 図 % 2(21 算 2 図
111th! ! J(a) to Φ) are conventional monocrystalline silicon silicon on the insulating layer (i) T-line surface 1i/+
Tate Q &/l /+I TL filtration/il is a process sectional view of one embodiment of the method of the present invention. In the figure, 11 is a single crystal silicon substrate, 12' is a silicon nitride film, 12 is a silicon nitride turn, 13 and 26 are photoresist turns, 14 is a concave area, and 15 is a convex area. , 16 is a silicon dioxide film, 16' is a thin silicon dioxide film, 17 is a rounded corner, 18
is a P-type polycrystalline silicon layer, 19 is 0W-Arv-the
20 is a laser beam scanning direction, 21 is a P-hole single crystal silicon layer, 22 is a gate oxide film, 2 and 3 are gate electrodes, 24 is an N-type source/drain region, 25 is MO
S transistor, 27 indicates a separation trench. Akira 1 Figure 2 % 2 (21 Calculation 2 Figure

Claims (1)

【特許請求の範囲】[Claims] 下層単結晶シリコン基体上に、絶縁族を介して島状に単
結晶シリコン層が積層され、該単結晶シリコン層に半導
体素子が形成される80I8(8iHconOn In
sulating 8ubstrate)構造の半導体
装置の製造方法に於て、前記単結晶シリコン層を形成す
るに際して、単結晶シリコン基体面に凹部領域凸部領域
を形成し、該単結晶シリコン基体面の凹部領域上に、上
面が前記凸部領域上面より低い絶縁膜を選択的に形成し
、該単結晶シリコン基体面にその凸部領域及び前記絶縁
膜上を橿う多結晶シリコン層を形成し、該多結晶シリコ
ン層をエネルギー線で走査溶融し、該多結晶シリコン層
を単結晶シリコン基体の凸部領域上η)ら絶縁繰上に向
って単結晶化する工程を有することを特徴とする半導体
装置の製造方法。
80I8 (8iHconOn In) in which a single crystal silicon layer is laminated in an island shape on a lower single crystal silicon substrate via an insulating group, and a semiconductor element is formed on the single crystal silicon layer.
In the method for manufacturing a semiconductor device having a structure (sulating 8 substrate), when forming the single crystal silicon layer, a concave region and a convex region are formed on the surface of the single crystal silicon substrate, and a concave region on the surface of the single crystal silicon substrate is formed. selectively forming an insulating film whose upper surface is lower than the upper surface of the convex region, forming a polycrystalline silicon layer extending over the convex region and the insulating film on the surface of the single crystal silicon substrate; 1. A method for manufacturing a semiconductor device, comprising the steps of: scanning and melting a layer with an energy beam; and single-crystallizing the polycrystalline silicon layer from a convex region η) of a single-crystal silicon substrate toward an insulation stage.
JP10187981A 1981-06-30 1981-06-30 Manufacture of semiconductor device Granted JPS583272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10187981A JPS583272A (en) 1981-06-30 1981-06-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10187981A JPS583272A (en) 1981-06-30 1981-06-30 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS583272A true JPS583272A (en) 1983-01-10
JPH0152908B2 JPH0152908B2 (en) 1989-11-10

Family

ID=14312229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10187981A Granted JPS583272A (en) 1981-06-30 1981-06-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS583272A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284509A (en) * 1985-10-08 1987-04-18 Fujitsu Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284509A (en) * 1985-10-08 1987-04-18 Fujitsu Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH0152908B2 (en) 1989-11-10

Similar Documents

Publication Publication Date Title
JPH0521338A (en) Semiconductor member and manufacture thereof
JP3176072B2 (en) Method of forming semiconductor substrate
JPH05206422A (en) Semiconductor device and its manufacture
JPH06163532A (en) Method for isolation of semiconductor element
JPH02246267A (en) Manufacture of semiconductor device
JPS583272A (en) Manufacture of semiconductor device
JPS6240716A (en) Manufacture of semiconductor device
JPS60193324A (en) Manufacture of semiconductor substrate
JPS58175844A (en) Manufacture of semiconductor device
JPS62202559A (en) Semiconductor device and its manufacture
JPS61154121A (en) Manufacture of semiconductor device
JPH0669430A (en) Manufacture of semiconductor device
JPS61166074A (en) Insulated gate type transistor and manufacture thereof
JP2981777B2 (en) Semiconductor substrate manufacturing method
JPS61117821A (en) Manufacture of semiconductor device
JPH09121039A (en) Semiconductor member
JPH05218316A (en) Semiconductor device and manufacture thereof
JPS6022493B2 (en) Manufacturing method of semiconductor device
JPH0793259B2 (en) Method for manufacturing semiconductor thin film crystal layer
JPS5852816A (en) Manufacture of semiconductor device
JPS59215741A (en) Manufacture of semiconductor integrated circuit device
JPS62124753A (en) Manufacture of dielectric isolation substrate
JPH08139181A (en) Soi structure and its manufacture
JPS6118348B2 (en)
JPS6284551A (en) Manufacture of semiconductor device