JPS58121620A - Method of producing laminated ceramic condenser - Google Patents

Method of producing laminated ceramic condenser

Info

Publication number
JPS58121620A
JPS58121620A JP383582A JP383582A JPS58121620A JP S58121620 A JPS58121620 A JP S58121620A JP 383582 A JP383582 A JP 383582A JP 383582 A JP383582 A JP 383582A JP S58121620 A JPS58121620 A JP S58121620A
Authority
JP
Japan
Prior art keywords
terminal electrode
electrode
multilayer ceramic
manufacturing
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP383582A
Other languages
Japanese (ja)
Inventor
信吉 清水
山田 成一
松崎 壽夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP383582A priority Critical patent/JPS58121620A/en
Publication of JPS58121620A publication Critical patent/JPS58121620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は積層セラミックコンデンサの製造方法、特に従
来品と比べて同等のはんだぬれ性を具え低価格化を実現
する端子電極の製造に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method for manufacturing a multilayer ceramic capacitor, and particularly to a method for manufacturing a terminal electrode that has equivalent solderability and lower cost than conventional products.

(bl  従来技術と問題点 小形,大容量で信頼性が高く高周波特性に優れる積層セ
ラミックコンデンサは、誘電体層を介して積層ざれた内
部電極を具えたコンデンサ素子の対向端部に、端子電極
を焼成して作成ζれる0第1図は積層セラミックコンデ
ンサの儒断面図であり、コンデ791ijコンデンサ素
子2と1対の端子電極3及び4で構成ざれている〇一般
にグリーンシート積層法又はグリーンシート印刷法で作
成されたコンデンサ素子2if,誘電体層5の中に一方
の内部電極6とそれに対向する他方の内部電極7が形成
言れてなり、内部電極6の一端が端子電極3に接続され
る反面、内部電極7の一端は端子電極4に接続されてい
る。そして端子電極3及ひ4は、貴金属粉末(例えば銀
とパラジウムの混合粉末)にガラス質粉末を適量だけ混
合した電極用ペーストをディラグしたのち焼成してなる
が、コンデンサ1會混成集積回路基板等に搭載する念め
のはんたぬれ性を具える必要がある。
(bl) Prior Art and Problems Multilayer ceramic capacitors, which are small, large-capacity, highly reliable, and have excellent high-frequency characteristics, have terminal electrodes at opposite ends of the capacitor element, which has internal electrodes laminated through a dielectric layer. Figure 1 is a cross-sectional view of a multilayer ceramic capacitor, which is made by firing and is composed of a capacitor element 2 and a pair of terminal electrodes 3 and 4.Generally, green sheet lamination method or green sheet printing is used. In the capacitor element 2if produced by the method, one internal electrode 6 and the other internal electrode 7 opposing it are formed in the dielectric layer 5, and one end of the internal electrode 6 is connected to the terminal electrode 3. On the other hand, one end of the internal electrode 7 is connected to a terminal electrode 4.The terminal electrodes 3 and 4 are made of an electrode paste made by mixing an appropriate amount of glassy powder with noble metal powder (for example, a mixed powder of silver and palladium). Although it is made by di-raging and then firing, it is necessary to have solder wettability for mounting on a single-capacitor hybrid integrated circuit board, etc.

そのため、従来の端子電極用ペーストは貴金属粉末に対
して10〜15重量優のガラス質粉末を加え、でらに適
量の有機バインダと溶剤を加えて混練したものを用い、
焼成した端子電極を溶融はんだ槽に浸漬したとき、全電
極面積の915s又は75チ以上にはんだが被着する規
格を満すようKしている。従って、従来方法になる積層
セラミックコンデンサにあって電極用ペーストの貴金属
量を減らし、より安価に作成すること及び端子電極とコ
ンデンサ素子との接着力を増加きせることに、はんだぬ
れ性が損うため実施し得なかつ念。
Therefore, the conventional paste for terminal electrodes is made by adding 10 to 15 parts by weight of glassy powder to precious metal powder, and then kneading the mixture with an appropriate amount of organic binder and solvent.
K is set so that when the fired terminal electrode is immersed in a molten solder bath, the solder adheres to at least 915 seconds or 75 inches of the total electrode area. Therefore, in conventional multilayer ceramic capacitors, it is desirable to reduce the amount of precious metal in the electrode paste, make it cheaper, and increase the adhesive strength between the terminal electrode and the capacitor element, since the solderability is impaired. Just in case it can't be implemented.

(c)発明の目的 本発明の目的は上記問題点を解決することであり、この
ことはガラス質成分を増量したく貴金属量を減らした)
ペーストを用いて焼成された端子電極において、電極表
面にその内部より多くのガラス質が析出して膜状(DM
t形成するため、扛んだぬれ性が低下されることに着目
してなされたものである。
(c) Purpose of the Invention The purpose of the present invention is to solve the above-mentioned problems, which is achieved by increasing the amount of glassy component and reducing the amount of precious metal.
In terminal electrodes fired using paste, more glass is precipitated on the electrode surface than in the inside, forming a film (DM).
This was done with the focus on the fact that the wettability of the coated layer is reduced due to the formation of a t-formed layer.

(a  発明の構成 上記目的は、焼成され九端子電極に砥粒を用いた研摩加
工を施してなることf%微とした積層セラミックコンデ
ンサの製造方法を提供して達成される。
(a) Structure of the Invention The above object is achieved by providing a method for manufacturing a multilayer ceramic capacitor with a fine f% of firing and polishing a nine-terminal electrode using abrasive grains.

(s)  発明の実施例 以下、本発明方法の実施例に関わる実測データを用いて
本発明を説明する。
(s) Examples of the Invention The present invention will be explained below using actual measurement data related to Examples of the method of the present invention.

第2ri!Jは本発明方法の一実験列に関わり2.0×
4.5X1.O−の外形寸法を有する積層セラミックコ
ンデンサ素子の対向端部に端子電極を焼成し、そのはん
だぬれ性及びはんだ食われ性を画定し危データであり、
横軸は端子電極をバレル研摩し要時間、縦軸ははんだぬ
れ性及びはんだ食われ発生個数である。ただし、同種条
件の試料(積層セラミックコンデンサ)数に20個であ
り、銀3饅を含む230℃の溶融はんだに試料1に5′
秒間浸漬し九のち顕微鏡で調べ九はんだ食われ性は、バ
レル研摩によって薄くなった端子電極の一部(IPIi
にコーナ部)が溶融はんだに溶され、詳しくは電極中の
銀が溶融はんだ中に溶は比してはんだディップされない
現象である。
2nd ri! J relates to one experimental series of the method of the present invention and is 2.0×
4.5X1. Terminal electrodes are fired at opposite ends of a multilayer ceramic capacitor element having external dimensions of O-, and its solder wettability and solder erodibility are defined and are dangerous data,
The horizontal axis represents the time required for barrel polishing the terminal electrode, and the vertical axis represents the solder wettability and the number of solder eroded pieces. However, the number of samples (multilayer ceramic capacitors) under the same conditions was 20, and sample 1 had 5'
The solder erodibility was determined by immersion in a part of the terminal electrode (IPIi) that had been thinned by barrel polishing.
In detail, this is a phenomenon in which the silver in the electrode is not dipped into the molten solder, compared to when the silver in the electrode is dipped into the molten solder.

なお、使用しまた蜘子電極用ペーストは銀80部とパラ
ジウム20部とでなる貴金属粉に1硼珪酸鉛ガラスを主
成分とするガラス質成分の粉末(以下ガラス粉とする)
を混ぜ、ざらに適量の高沸点溶剤を含む有機バインダを
前記貴金属粉とガラス粉との総量に対して25重量−及
び適量の混線用溶剤を加えて混練したのち、混線用溶剤
をすべて蒸発源せてペースト状にしたものである。次た
し、ガラス粉の混入量は貴金属粉の20重量%、25重
量%、30重量−の3水準とし、それぞれの適否を検べ
た。また、前記各種端子電極用ペーストの粘fは約60
00ボイズであり、試料の所定部にディッピングし九の
ち約850℃で5分間加熱して焼成した端子電極の厚さ
は、かかる方法で均−形成場れる上限に近い3005m
程度である。
The spider electrode paste used is a noble metal powder consisting of 80 parts of silver and 20 parts of palladium, and a powder of a vitreous component whose main component is lead borosilicate glass (hereinafter referred to as glass powder).
After mixing, add an organic binder containing an appropriate amount of high-boiling point solvent to a colander and knead the mixture by adding 25% by weight and an appropriate amount of cross-mixing solvent to the total amount of the noble metal powder and glass powder, and then remove all the cross-mixing solvent from the evaporation source. It is made into a paste. Next, the amount of glass powder mixed was set at three levels: 20% by weight, 25% by weight, and 30% by weight of the noble metal powder, and the suitability of each was examined. In addition, the viscosity f of the various terminal electrode pastes is approximately 60.
The thickness of the terminal electrode, which was dipped onto a predetermined part of the sample and then heated and fired at approximately 850°C for 5 minutes, was 3005 m, which is close to the upper limit of uniform formation using this method.
That's about it.

一方、バレル研摩灯複数個の同種試験試料と、直径が約
1箇の硬球(アルミナボール)を約300fと、ナ20
00のアルミナ研摩剤を約502と、適量の純水を25
0m4のポリエチレンポットに入れて回転させたもので
あp1前記アルミナポールの直径とアルミナ研摩剤のメ
ッシ&は、後述するバレル研摩実験から最適と思われる
条件を採用したO 第2WJにおいて、9欄定値(20個の平均値)全点線
で連結した特性はガラス粉を20重量−含む端子電極用
ペース)t11!用した端子電極のはんだぬれ性(−)
、測定値を1点鎖線で連結した特性はガラス粉を25重
量−含む端子電極用ペーストを使用した端子電極のはん
だぬれ性(−)、測定値を2点鎖線で連結した特性はガ
ラス粉を30重量−含む端子電極用ペーストを使用した
端子電極のはんだぬれ性(チ)であり、測定点を集線で
連結した特性は前1e3種類の端子電極用ペーストを使
用した端子電極にほぼ共通するはんだ食われ性を示す0
そして、図かち明らかなよ′うにガラス粉の混入量が増
すと、所定のはんだぬれ性(例えば9ト1を得る九めの
バレル時間は長時間を必要とするようになる0しかし、
はんだ食われが発失しない領域はバレル時間が40分以
下であるため、95チ以上のはんだぬれ性とはんだ食わ
れ性の相方に対して保証されるバレル時間領域は、ガラ
ス粉20重量Sを含む端子電極用ペーストにあつて30
〜40分であるOK対し、ガラス粉を25重量−含む端
子電極用ペーストは35〜40分であり、ガラス粉20
重量−含む端子電極用ベース)Kilt存在しないこと
Kなる。一方、はんだぬれ性が75チ以上でよいとき、
ガラス粉の混入量が20重量−925重量−230重量
−とした端子電極用ペーストは、良品保証のバレル領域
がそれぞれ10〜40分、17〜40分、26〜40分
となる。なお、はんだぬれ性が751以上でよいときに
は、ガラス粉t30粉量3桧 極用ペーストも使用可能であるが、端子電極厚さ及びバ
レル研摩量のばらつきを考慮した場合非実用的である。
On the other hand, several test samples of the same type with a barrel polishing lamp, a hard ball (alumina ball) with a diameter of about 300 f, and a diameter of about 20
Approximately 502 parts of 00 alumina abrasive and 25 parts of pure water
The diameter of the alumina pole and the mesh of the alumina abrasive are the constant values in column 9 in the 2nd WJ, using the conditions considered optimal from the barrel polishing experiment described later. (Average value of 20 items) The characteristics connected by all dotted lines are (terminal electrode paste containing 20% glass powder by weight) t11! Solderability of the terminal electrode used (-)
, the characteristics where the measured values are connected by the dashed line indicate the solderability of the terminal electrode using the paste for terminal electrodes containing 25% glass powder by weight (-), and the characteristics where the measured values are connected by the dashed dotted line indicate the solderability (-) of the terminal electrode using the paste for terminal electrodes containing 25% glass powder by weight. 30 Weight - This is the solderability of terminal electrodes using terminal electrode paste containing 0 indicating edibleness
As is clear from the figure, as the amount of glass powder mixed in increases, the ninth barrel time to obtain a desired solder wettability (for example, 9 to 1) requires a long time.
Since the range in which solder erosion does not occur is within 40 minutes of barrel time, the guaranteed barrel time range for the combination of solderability and solderability of 95 cm or more is when glass powder of 20 weight S is used. 30 for terminal electrode paste containing
OK, which takes ~40 minutes, whereas the terminal electrode paste containing 25 weight of glass powder takes 35 to 40 minutes;
Weight - base for terminal electrodes) Kilt does not exist. On the other hand, when the solder wettability is 75 inches or more,
For terminal electrode pastes in which the amount of glass powder mixed was 20 weight - 925 weight - 230 weight - the barrel ranges of quality guarantee were 10 to 40 minutes, 17 to 40 minutes, and 26 to 40 minutes, respectively. Note that if the solder wettability is 751 or higher, a glass powder T30 powder amount 3 pin electrode paste can also be used, but this is impractical when considering variations in the terminal electrode thickness and the amount of barrel polishing.

第3図は前記バレル研摩の条件全設定するための実験デ
ータ例であり、アルミナボールり直径(4水準)とアル
ミナ研摩剤のメツシュ(3水]11k)を変動要因とし
、バレル研摩した試料の端子電極にはんだをディップし
たとき、はんだぬれ性が95−ではんだ食われの生じな
い研摩時間域を求めたものである。ただし、各条件下に
おける試料数は20個であり、はんだ食われの生じた試
料は不適格条件としてそのことのみt記入した。
Figure 3 shows an example of experimental data for setting all the conditions for the barrel polishing, with the alumina ball diameter (4 levels) and the alumina abrasive mesh (3 water] 11k) as variable factors, and the barrel polished sample. When solder is dipped into the terminal electrode, the polishing time range in which the solder wettability is 95- and no solder erosion occurs is determined. However, the number of samples under each condition was 20, and samples with solder erosion were noted as disqualifying conditions.

第3図において、アルミナボールが小きい程及びアルミ
ナ研摩剤に微細化する程バレル研摩時間が長くなり、か
つ、時間域が広くなる傾向であり、直径5■のアルミボ
ールを用いた全種並びに直径2−のアルミナボール及び
φ1000のアルミナ研摩剤を用い九ときは、はんだ食
われが生じる念め不適格である。そして、本発明方法を
貴意プロセスとし九と1は、不良品を作らないこと、加
工時間が短いこと、条件管理が容易であること、研摩剤
の耐用回数が長いこと勢を考慮し、直径が0.5〜2■
のアルミナボールとφ2000〜す4000のアルミナ
研摩剤を用いて行なうことが望ましい。
In Figure 3, the smaller the alumina balls and the finer the alumina abrasive, the longer the barrel polishing time and the broader the time range. Using an alumina ball with a diameter of 2 mm and an alumina abrasive with a diameter of 1000 mm is unsuitable due to the possibility of solder erosion. The method of the present invention is considered to be an important process, and 9. and 1. 0.5~2■
It is desirable to use alumina balls with a diameter of 2,000 to 4,000 diameter and an alumina abrasive with a diameter of 2,000 to 4,000 diameter.

なお、第3図に示し九バレル研摩において研摩剤にアル
ミナChtt Os )を用いたが、他種研摩剤(例え
ばシリコンカーバイト等)を用いても同様結果であるこ
とを付記する。
It should be noted that although alumina (ChttOs) was used as the abrasive in the nine-barrel polishing shown in FIG. 3, the same results could be obtained even if other types of abrasives (for example, silicon carbide, etc.) were used.

(0 発明の詳細 な説明した如く本発明方法によれば、ガラス質成分を従
来より多く含む電極用ペーストを用いて、積層セラミッ
クコンデンサの端子電極を焼成したのち該端子電極を研
摩仕上げすることにより、そのはんだぬれ性が従来の電
極用ペーストを用いてなる端子電極のそれと同勢に活性
化されるため使用ペーストは安価となル、かつ、コンデ
ンサ素子と端子電極との接着強度が増大した効果は大き
い0
(0) According to the method of the present invention, as described in detail, the terminal electrodes of a multilayer ceramic capacitor are baked using an electrode paste containing a larger amount of glassy components than conventional ones, and then the terminal electrodes are polished and finished. , the solderability is activated to the same extent as that of terminal electrodes made using conventional electrode paste, so the paste used is inexpensive, and the adhesive strength between the capacitor element and the terminal electrode is increased. is a big 0

【図面の簡単な説明】[Brief explanation of drawings]

第1図は積層セラミックコンデンサの清新面図、第2図
は本発明方法の一実験例に関わり3種類の端子電極用ペ
ーストをそれぞれ用いて焼成し)(レル研摩し九端子電
極のはんだぬれ性とはんだ食われ性をバレル研摩時間に
対応させてプロットし九測定データ、第3図はセラミッ
クボールの直径とセラミック研摩剤のメツシュを変動要
因とし前記バレル研摩の最適条件を求めるための測定デ
ータ例である。 なお、図中において1は積層セラミックコンテy?、2
+2コンデンサ素子、3.4は端子電極を示す〇 隼1m 1 第2図 1マルノV別漕]奇関 第3閃
Figure 1 is a fresh surface view of a multilayer ceramic capacitor, and Figure 2 is an experimental example of the method of the present invention, in which three types of terminal electrode pastes were used and fired, respectively. Figure 3 shows an example of measured data for determining the optimum conditions for barrel polishing, with the diameter of the ceramic ball and the mesh of the ceramic abrasive agent as variable factors. In addition, in the figure, 1 is a laminated ceramic container, 2 is
+2 capacitor element, 3.4 indicates terminal electrode 〇Hayabusa 1m 1 Figure 2 1 Maruno V separate row] Kiseki 3rd flash

Claims (1)

【特許請求の範囲】 (1)  コンデンサ素子の端部にガラス質バインダを
含む端子電極を焼成してなる積層セラミックコンデンサ
の製造において、前記端子電極は焼成し九のち砥粒を用
いて研摩加工したことを特徴とする積層セラミックコン
デンサの製造方法〇(2)上記端子電極を形成する電極
ペーストは、貴金属粉の30重量−以下のガラス質成分
を含むこと1特徴とし几上記特許請求の範11#i(]
)項に記載した積層セラミックコンデンサの製造方法。 (3)上記研摩仕上げは直径0.5〜2.0−の硬球と
、粒度がφ2000〜す4000の研摩剤を用いたバレ
ル加工であることを特徴とする特許 囲第(1)項に記載した積層上ラミツクコンデンサの製
造方法0
[Claims] (1) In manufacturing a multilayer ceramic capacitor in which a terminal electrode containing a glassy binder is fired at the end of a capacitor element, the terminal electrode is fired and then polished using abrasive grains. A method for manufacturing a multilayer ceramic capacitor characterized in that (2) the electrode paste forming the terminal electrode contains a vitreous component of 30% by weight or less of noble metal powder; i(]
) The manufacturing method of the multilayer ceramic capacitor described in section 2. (3) The above-mentioned polishing finish is barrel processing using a hard ball with a diameter of 0.5 to 2.0 mm and an abrasive with a particle size of φ2,000 to φ4,000 as described in item (1) of the patent encirclement. Manufacturing method for multilayer capacitors 0
JP383582A 1982-01-13 1982-01-13 Method of producing laminated ceramic condenser Pending JPS58121620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP383582A JPS58121620A (en) 1982-01-13 1982-01-13 Method of producing laminated ceramic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP383582A JPS58121620A (en) 1982-01-13 1982-01-13 Method of producing laminated ceramic condenser

Publications (1)

Publication Number Publication Date
JPS58121620A true JPS58121620A (en) 1983-07-20

Family

ID=11568239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP383582A Pending JPS58121620A (en) 1982-01-13 1982-01-13 Method of producing laminated ceramic condenser

Country Status (1)

Country Link
JP (1) JPS58121620A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477915A (en) * 1987-09-18 1989-03-23 Matsushita Electric Ind Co Ltd Manufacture of film capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477915A (en) * 1987-09-18 1989-03-23 Matsushita Electric Ind Co Ltd Manufacture of film capacitor

Similar Documents

Publication Publication Date Title
JPH097877A (en) Multilayered ceramic chip capacitor and manufacture thereof
US7285232B2 (en) Conductive paste and ceramic electronic component
JP2001307947A (en) Laminated chip component and its manufacturing method
JP2943380B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JPH10223409A (en) Multilayer chip varistor and production thereof
KR880001344B1 (en) A method of forming electrodes ceramic bodies to provide electronic compounds
JPH04171912A (en) Ceramic capacitor
JP6968524B2 (en) Manufacturing method of thick film conductive paste and ceramic multilayer laminated electronic components
JP4111340B2 (en) Chip-type electronic components
JPS58121620A (en) Method of producing laminated ceramic condenser
JP3019703B2 (en) Manufacturing method of ceramic electronic components
JPH0896623A (en) Conductive paste
JPH0543921A (en) Production of nickel fine powder
JP2005216987A (en) Conductive paste for ceramic electronic component and ceramic electronic component
JPH0428110A (en) Conductive paste for forming terminal electrode of stacked capacitor and stacked capacitor
JP2018055767A (en) Lead-free conductive paste
JP4672381B2 (en) Conductive paste for ceramic capacitor external electrode and ceramic capacitor
JP2618019B2 (en) Conductive paint for plating base and plating method using the same
JPS6127003A (en) Conductive paste composition
JPH0878279A (en) Formation of outer electrode on electronic chip device
JPS5879837A (en) Electrically conductive paste composition
JP2006190491A (en) Conductive paste for ceramic electronic components and ceramic electronic components
JPS6340326B2 (en)
JP3182890B2 (en) Method for forming electrodes of dielectric resonator
JP2001028207A (en) Conductive paste and ceramic electronic component