JP6968524B2 - Manufacturing method of thick film conductive paste and ceramic multilayer laminated electronic components - Google Patents

Manufacturing method of thick film conductive paste and ceramic multilayer laminated electronic components Download PDF

Info

Publication number
JP6968524B2
JP6968524B2 JP2016187441A JP2016187441A JP6968524B2 JP 6968524 B2 JP6968524 B2 JP 6968524B2 JP 2016187441 A JP2016187441 A JP 2016187441A JP 2016187441 A JP2016187441 A JP 2016187441A JP 6968524 B2 JP6968524 B2 JP 6968524B2
Authority
JP
Japan
Prior art keywords
conductive paste
metal powder
thick film
mass
film conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016187441A
Other languages
Japanese (ja)
Other versions
JP2018055819A (en
Inventor
剛 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016187441A priority Critical patent/JP6968524B2/en
Publication of JP2018055819A publication Critical patent/JP2018055819A/en
Application granted granted Critical
Publication of JP6968524B2 publication Critical patent/JP6968524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、セラミック等のグリーンシートの積層体の内部電極としてグリーンシートと同時に焼成可能な厚膜導電ペーストに関する。 The present invention relates to a thick film conductive paste that can be fired at the same time as a green sheet as an internal electrode of a laminated body of a green sheet such as ceramic.

導電ペーストを用いてセラミック基板に導体を形成する方法としては、厚膜導電ペーストを印刷などで塗布したセラミックグリーンシートを一体で焼成し、厚膜導電ペーストとセラミックグリーンシートを同時に焼成する同時焼成法と、セラミックグリーンシートの焼成後に厚膜導電ペーストを塗布して厚膜導電ペーストを焼成する後付け焼成法がある。
この同時焼成法は、後付けする分の工程を削減することが可能で生産コストを安くすることができる。また、内部電極を複数形成する多層基板の作製には後付け焼成法を用いることは出来ず、近年同時焼成法が主流になりつつある。
As a method of forming a conductor on a ceramic substrate using a conductive paste, a simultaneous firing method in which a ceramic green sheet coated with a thick film conductive paste by printing or the like is integrally fired, and the thick film conductive paste and the ceramic green sheet are fired at the same time. There is also a post-installation firing method in which the thick-film conductive paste is applied after the ceramic green sheet is fired and the thick-film conductive paste is fired.
This co-fired method can reduce the number of processes for retrofitting and reduce the production cost. Further, the post-firing method cannot be used for manufacturing a multilayer substrate on which a plurality of internal electrodes are formed, and the co-fired method is becoming mainstream in recent years.

ところで、多層基板を作製するには、まず、あらかじめセラミックなどのグリーンシート上に厚膜導電ペーストにより所望のパターンを形成した後、グリーンシートを積層して積層体とする。次に、この積層体を焼成することにより、厚膜導電ペースト及びグリーンシートを同時に焼成し、積層体内部に導電パターンが形成された多層基板を得ることができる。
このように、同時焼成によって形成される多層基板は、グリーンシートの材料が焼結する温度で内部の導電パターンも焼結させる必要があり、ガラス粉末やセラミック粉末を導電ペーストに添加することで、金属粉末の焼結開始温度をコントロールする手法が用いられてきた。
By the way, in order to produce a multilayer substrate, first, a desired pattern is formed on a green sheet such as ceramic with a thick film conductive paste, and then the green sheet is laminated to form a laminated body. Next, by firing this laminated body, the thick film conductive paste and the green sheet can be fired at the same time to obtain a multilayer substrate having a conductive pattern formed inside the laminated body.
In this way, the multilayer substrate formed by co-fired needs to be sintered at the temperature at which the green sheet material is sintered, and the internal conductive pattern must also be sintered. By adding glass powder or ceramic powder to the conductive paste, Techniques for controlling the sintering start temperature of metal powder have been used.

しかし、電子部品は小型化が進むことにより、各材料の薄型化、微細化も進み、焼結温度のコントロールだけでなく、グリーンシートの焼結による収縮挙動と導電パターンの収縮挙動の差によるクラックなどを防止する必要も生じている。
その中でも特に、ほとんど収縮を伴わないグリーンシートの場合は、軟化点の高いガラスを用いるなどして挙動をコントロールしてきたが、導電ペースト中の金属粉末の焼結が十分進まず、導電パターンの比抵抗が上がってしまう不具合が発生していた。
However, as electronic components become smaller, the thickness and miniaturization of each material also progresses, and not only the sintering temperature is controlled, but also cracks due to the difference between the shrinkage behavior of the green sheet due to sintering and the shrinkage behavior of the conductive pattern. There is also a need to prevent such things.
Among them, especially in the case of the green sheet with almost no shrinkage, the behavior has been controlled by using glass with a high softening point, but the sintering of the metal powder in the conductive paste does not proceed sufficiently, and the ratio of the conductive pattern There was a problem that the resistance increased.

特に近年、収縮率が10%以下のセラミックシートも実現されている。
一方で収縮差による構造欠陥が発生しない場合は、ガラスやセラミックなどの添加を極力抑え焼結性を向上させることもできるが、導電パターン中の空隙がそのまま残留することで、比抵抗が上がってしまう場合がある。
Particularly in recent years, ceramic sheets having a shrinkage rate of 10% or less have also been realized.
On the other hand, if structural defects due to shrinkage difference do not occur, it is possible to suppress the addition of glass or ceramic as much as possible to improve the sinterability, but the voids in the conductive pattern remain as they are, and the resistivity increases. It may end up.

この様な問題に対し、例えば特許文献1には、Rhを0.005〜0.050重量%添加した平均粒子径が1.5〜4.5μmのAg系粉末を用いて、焼成時の印刷導体の収縮挙動が、400℃から700℃に昇温するまでの収縮率が2.0〜10.5%で、かつ、400℃から900℃に昇温するまでの収縮率が10.0〜21.1%となるように設定されていることを特徴とする導体ペーストが開示されている。 To solve such a problem, for example, in Patent Document 1, printing at the time of firing is performed using an Ag-based powder having an average particle size of 1.5 to 4.5 μm to which 0.005 to 0.050% by weight of Rh is added. As for the shrinkage behavior of the conductor, the shrinkage rate from 400 ° C to 700 ° C is 2.0 to 10.5%, and the shrinkage rate from 400 ° C to 900 ° C is 10.0 to 10.5%. A conductor paste characterized by being set to 21.1% is disclosed.

また、特許文献2には、ペースト組成物中の含有率が60〜95質量%のAg粉末、Ag粉末の質量に対し0.5〜5質量%のホウケイ酸系ガラス粉末、残部が、前記Ag粉末の質量に対し、金属分換算で0.05〜5質量%のRu及び0.001〜0.1質量%のRhの2種の金属を含有する白金族金属添加剤及び有機ビヒクルであることを特徴とする導体ペーストが開示されている。 Further, Patent Document 2 describes an Ag powder having a content of 60 to 95% by mass in the paste composition, a borosilicate glass powder having a content of 0.5 to 5% by mass with respect to the mass of the Ag powder, and the balance being the Ag. A platinum group metal additive and an organic vehicle containing two types of metals, 0.05 to 5% by mass of Ru and 0.001 to 0.1% by mass of Rh in terms of metal content with respect to the mass of the powder. A conductor paste characterized by the above is disclosed.

特開2004−47856号公報Japanese Unexamined Patent Publication No. 2004-47856 WO2014/054671号公報WO2014 / 054671A

しかしながら、特許文献1に示す様な導体ペーストは、Agよりも比抵抗が高いRhを添加しているため、導体の比抵抗が高くなってしまう。また、400℃から700℃に昇温するまでの収縮率が2.0〜10.5%で、且つ、400℃から900℃に昇温するまでの収縮率が10.0〜21.1%と、400℃以上の焼成領域では収縮が大きくなってしまう。さらに、導体と基板との接着強度を高めるためガラスフリットを添加しているが、ガラスフリットを添加した導体ペーストで形成した導体は緻密性に欠けた構造体になりやすく、比抵抗も大きいという欠点がある。特許文献2に示す導体ペーストも同様にガラスフリットを添加しており、比抵抗が大きくなる欠点がある。 However, in the conductor paste as shown in Patent Document 1, since Rh having a higher resistivity than Ag is added, the specific resistance of the conductor becomes high. Further, the shrinkage rate from 400 ° C. to 700 ° C. is 2.0 to 10.5%, and the shrinkage rate from 400 ° C. to 900 ° C. is 10.0 to 21.1%. Then, the shrinkage becomes large in the firing region of 400 ° C. or higher. Furthermore, glass frit is added to increase the adhesive strength between the conductor and the substrate, but the conductor formed by the conductor paste to which the glass frit is added tends to be a structure lacking in precision and has a large resistivity. There is. The conductor paste shown in Patent Document 2 also has a glass frit added, and has a drawback that the specific resistance becomes large.

さらに、特許文献2によれば、TAP密度により緻密状態を評価しているが、金属粉末が小さくなるに従い金属粉末の表面が活性になるため、金属粉末同士が凝集しやすくなり、TAP密度で得た値と最終的に焼結して得られた導体の収縮挙動に相関が得られない場合がある。また、示されたタップ密度ではAgの充填が不十分で、比抵抗を小さくするには限界がある。 Further, according to Patent Document 2, the dense state is evaluated by the TAP density, but as the metal powder becomes smaller, the surface of the metal powder becomes active, so that the metal powders tend to aggregate with each other, and the TAP density is obtained. There may be no correlation between the value and the shrinkage behavior of the conductor finally obtained by sintering. Further, the tap density shown is insufficient for filling Ag, and there is a limit to reducing the specific resistance.

そこで、電子部品は小型化が進むことにより、各材料の薄型化、微細化も進み、焼結温度のコントロールだけでなく、グリーンシートの焼結による収縮挙動と導電パターンの収縮挙動の差によるクラックなどを防止可能なように、厚膜導電ペーストにより形成した導体の焼結前後の収縮率を小さくすることができ、かつ比抵抗も小さくすることが可能な厚膜導電ペーストを提供する。 Therefore, as the miniaturization of electronic components progresses, the thickness and miniaturization of each material also progresses, and not only the sintering temperature is controlled, but also cracks due to the difference between the shrinkage behavior due to the sintering of the green sheet and the shrinkage behavior due to the shrinkage behavior of the conductive pattern. Provided is a thick-film conductive paste capable of reducing the shrinkage rate of a conductor formed by the thick-film conductive paste before and after sintering and also reducing the specific resistance so as to prevent such problems.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、金属粉末と、有機ビヒクルを主成分とする厚膜導電ペーストにおいて、金属粉末を90質量%以上、97質量%以下含有し、かつ、その形状がフレーク状で、平均粒径が4.0〜10.0μm、比表面積が0.05〜0.30m/gで、そのタップ密度を5.0〜7.5g/cmとすることにより、厚膜導電ペーストにより形成した導体の焼結前後の収縮率を小さくすることができ、かつ比抵抗を小さくすることができることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventor contains 90% by mass or more and 97% by mass or less of the metal powder in the thick film conductive paste containing the metal powder and the organic vehicle as the main components. The shape is flaky, the average particle size is 4.0 to 10.0 μm, the specific surface area is 0.05 to 0.30 m 2 / g, and the tap density is 5.0 to 7.5 g / cm. by 3 to, found that it is possible to be able to reduce the shrinkage before and after sintering of the conductor formed by Atsumakushirubeden paste, and to reduce the specific resistance, and have completed the present invention.

本発明の第1の発明によれば、金属粉末と、バインダ樹脂及び有機溶剤を含む有機ビヒクルを含有する厚膜導電ペーストであって、前記金属粉末が、前記厚膜導電ペーストの質量に対して90質量%以上、97質量%以下の含有率を有し、前記金属粉末には、フレーク状でレーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50が4.0μm〜10μmのフレーク状金属粉末を、前記金属粉末中に50質量%以上が含まれ、前記バインダ樹脂が、厚膜導電ペーストの全質量に対して0.05質量%以上、2.0質量%以下含有され、前記有機溶剤が、厚膜導電ペーストの全質量に対して2.0質量%以上、9.9質量%以下含有され、前記厚膜導電ペーストを印刷、乾燥して得た乾燥膜の膜厚aと、前記乾燥膜を焼成して得た焼成膜の膜厚bとの比、「b/a」が、90%以上、97%以下であることを特徴とする厚膜導電ペーストである。 According to the first aspect of the present invention, the thick film conductive paste containing a metal powder and an organic vehicle containing a binder resin and an organic solvent, wherein the metal powder is based on the mass of the thick film conductive paste. The metal powder has a content of 90% by mass or more and 97% by mass or less, and the metal powder has a D50 of 4.0 μm or more based on the volume-based particle size distribution obtained by measuring the flake-like laser diffraction-scattering particle size distribution measurement method. 50% by mass or more of 10 μm flake-shaped metal powder is contained in the metal powder, and the binder resin contains 0.05% by mass or more and 2.0% by mass or less with respect to the total mass of the thick film conductive paste. The organic solvent is contained in an amount of 2.0% by mass or more and 9.9% by mass or less based on the total mass of the thick film conductive paste, and the thick film conductive paste is printed and dried to obtain a dry film. It is a thick film conductive paste characterized in that the ratio "b / a" between the thickness a and the film thickness b of the fired film obtained by firing the dry film is 90% or more and 97% or less. ..

また、本発明の第2の発明は、第1の発明における金属粉末が、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50が0.1μm以上、2.0μm以下の略球状金属粉末を含むことを特徴とする厚膜導電ペーストである。 The second aspect of the present invention, metal powder those of the first invention, a laser diffraction scattering particle size distribution measuring method measured D50 by volume-based particle size distribution obtained by the 0.1μm Thus, 2.0 .mu.m It is a thick film conductive paste characterized by containing the following substantially spherical metal powder.

また、本発明の第3の発明は、第1及び第2の発明における金属粉末が、Au、Ag、PtおよびCuの少なくとも1種類であることを特徴とする厚膜導電ペーストである。 Further, the third invention of the present invention is a thick film conductive paste characterized in that the metal powder in the first and second inventions is at least one kind of Au, Ag, Pt and Cu.

また、本発明の第4の発明は、セラミックグリーンシートに第1〜第3の発明のいずれかに記載の厚膜導電ペーストを塗布により導体パターンを形成して導体パターン形成済みセラミックグリーンシートを得るパターン形成工程と、セラミックグリーンシートに、その厚膜導電ペーストを塗布し、その塗布面に導体パターン形成済みセラミックグリーンシートの積層による積層工程と、その厚膜導電ペーストの塗布と導体パターン形成済みセラミックグリーンシートの積層による積層工程を繰り返して積層体を形成する積層体形成工程を経た後に、形成した積層体の焼成を行うことを特徴とするセラミック多層積層電子部品の製造方法である。 Further, in the fourth aspect of the present invention, a conductor pattern is formed by applying the thick film conductive paste according to any one of the first to third aspects to a ceramic green sheet to obtain a ceramic green sheet having a conductor pattern formed. The pattern forming step, the laminating step of applying the thick film conductive paste to the ceramic green sheet and laminating the ceramic green sheet with the conductor pattern formed on the coated surface, and the coating of the thick film conductive paste and the ceramic with the conductor pattern formed. This is a method for manufacturing a ceramic multilayer laminated electronic component, which comprises repeating a laminating step of laminating green sheets to form a laminated body, and then firing the formed laminated body.

本発明の厚膜導電ペーストによれば、ガラスやセラミックなどを添加する従来の技術では防ぐことが困難であった、焼成過程でほとんど収縮することがなく比抵抗が小さい導体を得ることが可能となる。 According to the thick film conductive paste of the present invention, it is possible to obtain a conductor having a small specific resistance with almost no shrinkage in the firing process, which was difficult to prevent by the conventional technique of adding glass or ceramic. Become.

本発明の厚膜導電ペーストは、金属粉末と、バインダ樹脂と有機溶剤からなる有機ビヒクルを含有する厚膜導電ペーストであって、含まれる金属粉末に特徴を有し、その金属粉末が90質量%以上、97質量%以下含まれ、且つその金属粉末にはフレーク状金属粉末が、金属粉末全体のうち50質量%以上含まれることを特徴とするものである。
以下、本発明の実施形態について詳細に説明する。
The thick film conductive paste of the present invention is a thick film conductive paste containing a metal powder, an organic vehicle composed of a binder resin and an organic solvent, and is characterized by the contained metal powder, wherein the metal powder is 90% by mass. As described above, it is characterized in that it contains 97% by mass or less, and the metal powder contains flake-shaped metal powder in an amount of 50% by mass or more of the entire metal powder.
Hereinafter, embodiments of the present invention will be described in detail.

<金属粉末>
先ず金属粉末は、ペーストの質量に対して90質量%以上、97質量%以下の含有率で含まれている。
この金属粉末の含有率が90質量%未満では、導電ペーストを乾燥して得られる膜が緻密にならず、膜の密度が小さくなってしまうため、その後の焼結における収縮量が大きくなってしまう。また、周囲の材料によって焼結時に収縮ができない環境下では、乾燥膜における空隙が焼結後にそのまま残ってしまうため、比抵抗が高くなる原因となるため好ましくない。一方、金属粉末の含有率が97質量%を超える場合は、厚膜導電ペーストの粘度が、印刷に適した値にならず好ましくない。
<Metal powder>
First, the metal powder is contained in a content of 90% by mass or more and 97% by mass or less with respect to the mass of the paste.
If the content of this metal powder is less than 90% by mass, the film obtained by drying the conductive paste does not become dense and the density of the film becomes small, so that the amount of shrinkage in the subsequent sintering becomes large. .. Further, in an environment where shrinkage cannot be performed during sintering due to the surrounding material, voids in the dried film remain as they are after sintering, which causes an increase in specific resistance, which is not preferable. On the other hand, when the content of the metal powder exceeds 97% by mass, the viscosity of the thick film conductive paste does not become a value suitable for printing, which is not preferable.

さらに、この金属粉末には、形状がフレーク状で、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50が4.0〜10.0μmのフレーク状金属粉末が、金属粉末のうち50質量%以上含まれている。
このようなフレーク状金属粉末の含有率が50質量%以上であれば、厚膜導電ペーストを印刷、乾燥して得た乾燥膜の乾燥膜厚値aと、その乾燥膜を焼成して得た焼成膜の焼成膜厚値bから求まる「b/a比」の値が90%以上を確保しやすくなる。
Further, in this metal powder, a flake-shaped metal powder having a flake-like shape and having a D50 of 4.0 to 10.0 μm according to a volume-based particle size distribution obtained by measuring by a laser diffraction / scattering type particle size distribution measurement method is a metal. It contains 50% by mass or more of the powder.
When the content of such flake-shaped metal powder is 50% by mass or more, the dry film thickness value a of the dry film obtained by printing and drying the thick film conductive paste and the dry film obtained by firing the dry film are obtained. It becomes easy to secure the value of "b / a ratio" obtained from the firing film thickness value b of the firing film of 90% or more.

さらに、このフレーク状金属粉末は、比表面積が0.05〜0.30m/g、タップ密度が5.0〜7.5g/cmであることが望ましい。また、フレーク状金属粉末におけるフレーク部の厚みが、1.0〜3.0μmであることが望ましい。なお、このフレーク状金属粉末のフレーク部の厚みは、SEM等で確認することができる。 Further, it is desirable that the flake-shaped metal powder has a specific surface area of 0.05 to 0.30 m 2 / g and a tap density of 5.0 to 7.5 g / cm 3. Further, it is desirable that the thickness of the flake portion in the flake-shaped metal powder is 1.0 to 3.0 μm. The thickness of the flake portion of the flake-shaped metal powder can be confirmed by SEM or the like.

また、本発明に係る導電ペーストでは、上記フレーク状金属粉末のうち、フレーク状銀粉末を用いても、800℃以下の温度の焼成で、比抵抗2.5μΩcmを実現できる。 Further, in the conductive paste according to the present invention, even if the flake-shaped silver powder is used among the above-mentioned flake-shaped metal powders, a specific resistance of 2.5 μΩcm can be realized by firing at a temperature of 800 ° C. or lower.

厚膜導電ペーストの金属粉末に略球状の微小なサイズの金属粉末、例えば体積基準粒度分布によるD50が2.0μm以下の球状金属粉末のみ用いる場合、金属粉末は比表面積が大きく、その表面の活性が非常に高くなり、金属粉末同士が凝集してしまい、焼成前の緻密な乾燥膜を形成しにくく、結果的に乾燥膜が緻密ではないので焼成後の導体の収縮率が高くなってしまう。また、球状金属粉末の表面の活性が非常に高くなるので、焼結開始温度も低くなり、焼成の際に、局在的に収縮してしまう。特に、多層基板の場合には局在的に収縮して島状に焼成膜が形成されることで、焼成中のグリーンシート積層体の破壊が生じることもある。 When only a substantially spherical metal powder having a minute size, for example, a spherical metal powder having a D50 of 2.0 μm or less according to a volume-based particle size distribution is used as the metal powder of the thick film conductive paste, the metal powder has a large specific surface area and its surface activity. However, the metal powders aggregate with each other, making it difficult to form a dense dry film before firing. As a result, the dry film is not dense, so that the shrinkage rate of the conductor after firing increases. Further, since the activity of the surface of the spherical metal powder becomes very high, the sintering start temperature also becomes low, and it shrinks locally at the time of firing. In particular, in the case of a multilayer substrate, the fired film is locally shrunk to form an island-shaped fired film, which may cause the green sheet laminate to be destroyed during firing.

そこで、上記範囲のフレーク状金属粉末を用いることにより、適度に金属粉末の活性状態が低減され、焼成前に緻密な導体を形成することができることを見出したもので、さらに、その平均粒径が4.0μmより小さくなると、フレーク形状でも導電粉同士の結合が生じ始めてしまい好ましくない。また、平均粒径が10.0μmより大きくなると、焼結が進みにくくなるため比抵抗が下がらないばかりか、印刷における細線化やパターン形状の維持が困難となるため好ましくない。 Therefore, it has been found that by using the flake-shaped metal powder in the above range, the active state of the metal powder can be appropriately reduced and a dense conductor can be formed before firing, and the average particle size thereof is further increased. If it is smaller than 4.0 μm, the conductive powders start to bond with each other even in the flake shape, which is not preferable. Further, when the average particle size is larger than 10.0 μm, it is not preferable because sintering does not proceed easily and the resistivity does not decrease, and it becomes difficult to make the lines thinner and maintain the pattern shape in printing.

さらに、本発明に係る金属粉末は、フレーク状金属粉末以外に、平均粒径が異なることより小粒径の略球状金属粉末を含んでもよい。この小粒径の略球状金属粉末は、レーザー回折散乱法を用いて測定された体積積算の中位径D50が0.1μm以上、2.0μm以下で、金属粉末100質量%に対し、小粒径の略球状金属粉末の質量比が0.1質量%以上、50質量%以下であることが好ましい。フレーク状金属粉末と略球状金属粉末を組み合わせることで、乾燥膜密度などの向上が期待できる。 Further, the metal powder according to the present invention may contain a substantially spherical metal powder having a small particle size because the average particle size is different, in addition to the flake-shaped metal powder. This substantially spherical metal powder having a small particle size has a medium diameter D50 of volume integration measured by a laser diffraction scattering method of 0.1 μm or more and 2.0 μm or less, and is a small particle with respect to 100% by mass of the metal powder. The mass ratio of the substantially spherical metal powder having a diameter is preferably 0.1% by mass or more and 50% by mass or less. By combining the flake-shaped metal powder and the substantially spherical metal powder, improvement in the dry film density and the like can be expected.

略球状金属粉末のD50が0.1μm未満では、焼成の際に金属粉末同士の焼結に寄与するだけでなく、導電ペーストが塗布される材料と反応し、材料内に拡散しやすくなってしまうため好ましくない。2.0μmを超えると粒子が大きすぎてしまい、フレーク状金属粉末との組み合わせの際、隙間に入って乾燥膜の密度を向上させる効果がほとんど得られないため好ましくない。
また、この略球状金属粉末は、金属粉末100質量%に対し50質量%以下であることが好ましい。50質量%を超えると、乾燥膜の密度を上げる効果が低くなるばかりか、金属粉末の比表面積が増加し、印刷に適した粘度が得られにくくなるため好ましくない。
If the D50 of the substantially spherical metal powder is less than 0.1 μm, not only does it contribute to sintering of the metal powders during firing, but it also reacts with the material to which the conductive paste is applied and easily diffuses into the material. Therefore, it is not preferable. If it exceeds 2.0 μm, the particles become too large, and when combined with the flake-like metal powder, the effect of entering the gap and improving the density of the dry film is hardly obtained, which is not preferable.
Further, the substantially spherical metal powder is preferably 50% by mass or less with respect to 100% by mass of the metal powder. If it exceeds 50% by mass, not only the effect of increasing the density of the dry film is lowered, but also the specific surface area of the metal powder is increased, and it becomes difficult to obtain a viscosity suitable for printing, which is not preferable.

本発明に用いる金属粉末の成分は、特に制限されず、一般的に厚膜導電ペーストに使用される金属粉末などを用いることができる。その中でも、Au、Ag、PtおよびCuの少なくとも1種類であることが好ましい。 The component of the metal powder used in the present invention is not particularly limited, and a metal powder or the like generally used for a thick film conductive paste can be used. Among them, at least one of Au, Ag, Pt and Cu is preferable.

ところで、本発明に係る厚膜導電ペーストは、使用する金属粉末にフレーク状金属粉末を含むことで、厚膜導電ペーストをスクリーン印刷など公知の印刷方法で塗布すると、厚膜導電ペーストの塗布膜中には、フレーク状金属粉末が、スクリーン印刷などの際のスキージ等の進行方向に配向しやすい。
含まれているフレーク状金属粉末は、塗布膜中で、ほぼ同じ方向に配向し、被印刷基材の法線方向で、それぞれのフレーク状金属粉末が重畳する形で塗布膜に含まれる。
By the way, the thick film conductive paste according to the present invention contains flake-shaped metal powder in the metal powder to be used, and when the thick film conductive paste is applied by a known printing method such as screen printing, it is contained in the coating film of the thick film conductive paste. The flake-shaped metal powder tends to be oriented in the traveling direction of the squeegee or the like during screen printing or the like.
The contained flake-shaped metal powder is oriented in substantially the same direction in the coating film, and is contained in the coating film in the form of overlapping the respective flake-shaped metal powders in the normal direction of the substrate to be printed.

したがって、本発明に係る厚膜導電ペーストの塗布膜では、フレーク状金属粉末が重畳するので、7g/cmの乾燥膜密度が実現可能であって、最終的に、乾燥膜の乾燥膜厚値aと、その乾燥膜を焼成膜の焼成膜厚値bから求まる「b/a比」の値が90%以上を確保しやすくなる。
さらに、略球状金属粉末が加わると、フレーク状金属粉末との組み合わせの際、隙間に入って乾燥膜の密度を向上させる効果が期待できる。
Therefore, in the coating film of the thick film conductive paste according to the present invention, since the flake-shaped metal powder is superimposed, a dry film density of 7 g / cm 3 can be realized, and finally, the dry film thickness value of the dry film. It becomes easy to secure a value of 90% or more of "b / a ratio" obtained from a and the fired film thickness value b of the fired film.
Further, when the substantially spherical metal powder is added, it can be expected to have an effect of entering the gap and improving the density of the dry film when combined with the flake-shaped metal powder.

<有機ビヒクル>
本発明において使用する有機ビヒクルは、バインダ樹脂と有機溶剤を含有する。
有機ビヒクルに含まれるバインダ樹脂は、厚膜導電ペーストの全質量に対して0.05質量%以上、2.0質量%以下の範囲で用いることが好ましく、0.05質量%未満では、印刷に必要な粘度特性が得られないため好ましくない。一方2.0質量%より多いと、厚膜導電ペースト中の金属粉末の割合が低下し、乾燥膜の密度を低下させ、焼成後の収縮率が大きくなってしまうため好ましくない。
また、バインダ樹脂の種類は、特に制限されず、厚膜導電ペーストで使用されるエチルセルロース、メタクリレートなどの一般的なバインダ樹脂を用いることができる。
<Organic vehicle>
The organic vehicle used in the present invention contains a binder resin and an organic solvent.
The binder resin contained in the organic vehicle is preferably used in the range of 0.05% by mass or more and 2.0% by mass or less with respect to the total mass of the thick film conductive paste, and if it is less than 0.05% by mass, it is used for printing. It is not preferable because the required viscosity characteristics cannot be obtained. On the other hand, if it is more than 2.0% by mass, the ratio of the metal powder in the thick film conductive paste is lowered, the density of the dry film is lowered, and the shrinkage rate after firing is increased, which is not preferable.
The type of binder resin is not particularly limited, and general binder resins such as ethyl cellulose and methacrylate used in thick-film conductive pastes can be used.

また、有機ビヒクルに含まれる有機溶剤は、厚膜導電ペーストの全質量に対して2.0質量%以上、9.9質量%以下の範囲で用いることが好ましく、2.0質量%未満では、導電ペーストの粘度が十分に低くできず、印刷に必要な粘度特性が得られないため好ましくない。一方、9.9質量%より多いと、導電ペースト中の金属粉末の割合が低下し、導電ペーストの粘度が下がり過ぎて印刷に必要な粘度特性が得られなかったり、乾燥時に導電性粒子の距離が緻密になりにくくなるため、乾燥膜の密度を低下させ焼成後の収縮率が大きくなったりする場合があるため好ましくない。
その有機溶剤の種類は、特に制限されず、厚膜導電ペーストで使用されているターピネオール、ブチルカルビトールなどの一般的な有機溶剤を用いることができる。
Further, the organic solvent contained in the organic vehicle is preferably used in the range of 2.0% by mass or more and 9.9% by mass or less with respect to the total mass of the thick film conductive paste, and if it is less than 2.0% by mass, it is preferable. It is not preferable because the viscosity of the conductive paste cannot be sufficiently lowered and the viscosity characteristics required for printing cannot be obtained. On the other hand, if it is more than 9.9% by mass, the proportion of the metal powder in the conductive paste decreases, the viscosity of the conductive paste decreases too much, and the viscosity characteristics required for printing cannot be obtained, or the distance of the conductive particles during drying. However, it is not preferable because the density of the dried film may be lowered and the shrinkage rate after firing may be increased.
The type of the organic solvent is not particularly limited, and general organic solvents such as tarpineol and butyl carbitol used in the thick film conductive paste can be used.

さらに、金属粉末の分散性向上や保管中の分離沈降防止などのため、必要に応じて分散剤などの添加材を使用することができる。 Further, in order to improve the dispersibility of the metal powder and prevent separation and sedimentation during storage, an additive such as a dispersant can be used as needed.

<焼成膜>
本発明の厚膜導電ペーストを用いて焼成した導体は、焼成前後の膜厚の比が、90%以上であることが好ましい。
焼成前後の膜厚比は、焼成後の膜厚bと、焼成前の膜厚aから、「b/a」で求めることができる。
<Fired film>
The conductor fired using the thick film conductive paste of the present invention preferably has a film thickness ratio of 90% or more before and after firing.
The film thickness ratio before and after firing can be obtained by "b / a" from the film thickness b after firing and the film thickness a before firing.

その焼成前後の膜厚比「b/a」が90%未満だと、同時に焼成するセラミックグリーンシートの収縮率との差が大きくなり、作製した電子部品内に空隙やクラックを生じることがあるので好ましくない。一方、収縮率の上限は特に無いが、セラミックグリーンシートよりも収縮しにくい金属粉末は見いだせておらず、現在得られている金属粉末の収縮率の上限は97%が最高値であり、97%以下が好ましい。
その結果導体の比抵抗が2.5μΩcm以下とすることができる。
If the film thickness ratio "b / a" before and after firing is less than 90%, the difference from the shrinkage rate of the ceramic green sheet to be fired at the same time becomes large, and voids and cracks may occur in the manufactured electronic components. Not preferred. On the other hand, although there is no particular upper limit on the shrinkage rate, no metal powder that shrinks more easily than the ceramic green sheet has been found, and the upper limit of the shrinkage rate of the currently obtained metal powder is 97%, which is the highest value, and 97%. The following is preferable.
As a result, the specific resistance of the conductor can be set to 2.5 μΩcm or less.

<セラミック多層積層電子部品>
本発明に係る厚膜導電ペーストを、セラミックグリーンシートにスクリーン印刷などの公知の塗布方法で塗布し、導体パターンを形成して導体パターン形成済みセラミックグリーンシートを得るパターン形成工程と、そのパターン形成工程とは別のセラミックグリーンシートに、本発明に係る厚膜導電ペーストの塗布と導体パターン形成済みセラミックグリーンシートとを積層する積層工程と、その積層工程を繰り返して積層体を得る積層体形成工程を経た後に、焼成を行うことで、セラミック多層積層電子部品を得ることができる。
<Ceramic multi-layer laminated electronic components>
A pattern forming step of applying the thick film conductive paste according to the present invention to a ceramic green sheet by a known coating method such as screen printing to form a conductor pattern to obtain a ceramic green sheet having a conductor pattern formed, and a pattern forming step thereof. A laminating step of applying the thick film conductive paste according to the present invention and laminating a ceramic green sheet having a conductor pattern formed on a ceramic green sheet different from the above, and a laminating body forming step of repeating the laminating step to obtain a laminated body. After that, the ceramic multilayer laminated electronic parts can be obtained by firing.

セラミック多層積層電子部品は、グリーンシート表面に本発明に係る厚膜導電ペーストで導体パターンを形成していることと、セラミックグリーンシートの積層が繰り返されるので、その導体パターンがセラミック多層積層電子部品の内部電極として機能する。
セラミックグリーンシートの焼成による収縮率が10%、すなわち、焼成前後で、90%以上の寸法が維持されるセラミックグリーンシートを用いる場合、本発明に係る導電性ペーストは、印刷などの塗布から、乾燥、焼成の工程での寸法変化が少ない。すなわち寸法が維持できるので、得られるセラミック多層積層電子部品のクラック等の発生を抑制できる。
In the ceramic multilayer laminated electronic component, the conductor pattern is formed on the surface of the green sheet with the thick film conductive paste according to the present invention, and the ceramic green sheet is repeatedly laminated. Therefore, the conductor pattern is that of the ceramic multilayer laminated electronic component. Functions as an internal electrode.
When a ceramic green sheet having a shrinkage rate of 10% due to firing, that is, a ceramic green sheet whose dimensions are maintained at 90% or more before and after firing is used, the conductive paste according to the present invention is dried from application such as printing. , There is little dimensional change in the firing process. That is, since the dimensions can be maintained, it is possible to suppress the occurrence of cracks and the like in the obtained ceramic multilayer laminated electronic component.

セラミック多層積層電子部品の内部電極を本発明に係る厚膜導電ペーストで形成しているので、焼成により焼結した金属粉末による緻密な導体が得られる。そして、導体である内部電極の比抵抗を2.5μΩcm以下とすることを実現できるので、多層回路はもちろん、コンデンサやインダクタ等を実現できる。 Since the internal electrodes of the ceramic multilayer laminated electronic component are formed of the thick film conductive paste according to the present invention, a dense conductor made of metal powder sintered by firing can be obtained. Since it is possible to realize that the specific resistance of the internal electrode which is a conductor is 2.5 μΩcm or less, it is possible to realize not only a multi-layer circuit but also a capacitor, an inductor and the like.

以下、本発明について実施例を用いてより詳細な説明を行うが、本発明の範囲は、この実施例により制限されることはない。この実施例および比較例では、導電性の金属粉末としてAg粉を、バインダ樹脂としてエチルセルロースを、有機溶剤としてターピネオールを用いた。
準備したフレーク状のAg粉末にエチルセルロースとターピネオールを所定量添加し、3本ロールミル(ビューラー株式会社製、SDY−300)を用いて混合し厚膜導電ペーストを作製した。
試料作製に用いたフレーク状Ag粉末のD50及び吸収量の値、バインダ樹脂の含有量、有機溶剤の含有量を表1に示す。小粒径の球状Ag粉を更に添加した場合は、それぞれのD50の値と共に、Ag粉末全体に対する小粒径の球状Ag粉末の割合を表1に示す。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited by these Examples. In this example and comparative example, Ag powder was used as the conductive metal powder, ethyl cellulose was used as the binder resin, and tarpineol was used as the organic solvent.
A predetermined amount of ethyl cellulose and tarpineol were added to the prepared flake-shaped Ag powder and mixed using a 3-roll mill (SDY-300, manufactured by Buehler Co., Ltd.) to prepare a thick film conductive paste.
Table 1 shows the values of D50 and absorption amount of the flake-shaped Ag powder used for sample preparation, the content of the binder resin, and the content of the organic solvent. When a small particle size spherical Ag powder is further added, Table 1 shows the ratio of the small particle size spherical Ag powder to the entire Ag powder together with the respective D50 values.

Figure 0006968524
Figure 0006968524

作製した導体ペーストを、96%アルミナ基板上にスクリーン印刷機を用いて所定のパターンに印刷し、ベルト式乾燥炉を用いて150℃で5分間乾燥させて乾燥膜を形成した。得られた乾燥膜の厚みを、触針式表面粗さ計(株式会社東京精密製、SURFCOM 480A)を用いて測定し、その重量を電子天秤で測定し、得られた値から乾燥膜の密度を算出した。測定した乾燥膜の膜厚と算出した乾燥膜密度を表2に示す。 The prepared conductor paste was printed on a 96% alumina substrate in a predetermined pattern using a screen printing machine, and dried at 150 ° C. for 5 minutes using a belt-type drying oven to form a dry film. The thickness of the obtained dry film was measured using a stylus type surface roughness meter (SURFCOM 480A, manufactured by Tokyo Seimitsu Co., Ltd.), the weight was measured with an electronic balance, and the density of the dry film was obtained from the obtained value. Was calculated. Table 2 shows the measured film thickness of the dry film and the calculated dry film density.

次に、焼成処理を行った。
所定のパターンを印刷した上記アルミナ基板を、ピーク温度600℃で9分間、室温からの昇温時間と室温までの降温時間を含めトータル30分となる様に温度プロファイルを設定した焼成炉で熱処理し、導体を形成した。
得られた導体の厚みは、触針式表面粗さ計(株式会社東京精密製、SURFCOM 480A)を用いて測定し、焼成前の乾燥膜の厚みに対する焼成後の導体の厚みの比率から導体の膜厚比を算出した。測定した導体の膜厚と、算出した導体の膜厚比を表2に示す。
Next, a firing process was performed.
The above alumina substrate printed with a predetermined pattern is heat-treated at a peak temperature of 600 ° C. for 9 minutes in a firing furnace having a temperature profile set so as to have a total temperature of 30 minutes including the time for raising the temperature from room temperature and the time for lowering the temperature to room temperature. , Formed a conductor.
The thickness of the obtained conductor was measured using a stylus type surface roughness meter (SURFCOM 480A, manufactured by Tokyo Precision Co., Ltd.), and the ratio of the thickness of the conductor after firing to the thickness of the dried film before firing was used to determine the thickness of the conductor. The film thickness ratio was calculated. Table 2 shows the measured film thickness of the conductor and the calculated film thickness ratio of the conductor.

また、デジタルマルチメーター(株式会社ADVANTEST製、R6871E)を用いて、幅0.5mm、長さ50mmの導体パターンの抵抗値を測定し、先に測定した膜の厚みから、導体の比抵抗を算出した。算出した導体の比抵抗を表2に示す。 Further, using a digital multimeter (manufactured by ADVANTEST Co., Ltd., R6781E), the resistance value of the conductor pattern having a width of 0.5 mm and a length of 50 mm is measured, and the resistivity of the conductor is calculated from the thickness of the film measured earlier. bottom. Table 2 shows the calculated resistivity of the conductor.

Figure 0006968524
Figure 0006968524

以上の結果から、本発明の範囲内である実施例1〜8は、導体の膜厚比が90%以上得られ、収縮が抑えられ、導体の比抵抗も2.0〜2.4μΩcmと低い良好な値が得られた。 From the above results, in Examples 1 to 8 which are within the range of the present invention, the film thickness ratio of the conductor is 90% or more, shrinkage is suppressed, and the specific resistance of the conductor is as low as 2.0 to 2.4 μΩcm. Good values were obtained.

フレーク状Ag粉末のD50が、本発明の範囲より小さい比較例1は、乾燥膜密度が低く、焼成した導体の膜厚比が85%と大きく収縮していることが分かる。粒子径が小さくなって充填性が低下したため、乾燥膜における粒子の充填が不十分となり、焼結による収縮が大きくなったため実施例よりも膜厚比が小さくなっていると考えられる。また、乾燥膜におけるAg粉末の充填性が低く空隙が多いため、焼結時に空隙が残留することで導体の比抵抗が2.8μΩcmと高い値になっていると考えられる。 It can be seen that in Comparative Example 1 in which the D50 of the flake-shaped Ag powder is smaller than the range of the present invention, the dry film density is low and the film thickness ratio of the fired conductor is as large as 85%. It is considered that the film thickness ratio is smaller than that in the examples because the particle size is reduced and the filling property is lowered, so that the filling of the particles in the dry film is insufficient and the shrinkage due to sintering is large. Further, since the filling property of Ag powder in the dry film is low and there are many voids, it is considered that the specific resistance of the conductor is as high as 2.8 μΩcm due to the voids remaining during sintering.

フレーク状Ag粉末のD50が本発明の範囲より大きい比較例2は、乾燥膜密度が高く、焼成した導体の膜厚比が98%と大きくほとんど収縮していないことが分かる。
これは、サイズが大きい粒子の割合が増えたことにより、Ag粉末の焼結が進みにくくなったことが考えられ、比抵抗が5.6μΩcmと高い値になっていると考えられる。
It can be seen that in Comparative Example 2 in which the D50 of the flake-shaped Ag powder is larger than the range of the present invention, the dry film density is high, the film thickness ratio of the fired conductor is as large as 98%, and there is almost no shrinkage.
It is considered that this is because the sintering of Ag powder has become difficult to proceed due to the increase in the proportion of particles having a large size, and the resistivity is considered to be as high as 5.6 μΩcm.

Ag粉末の含有量が本発明の範囲より低い比較例3は、乾燥膜密度が低く、焼成した導体の膜厚比が77%と低いことが分かる。これは、祖な乾燥膜が焼結によって収縮したため、圧縮比が低くなったと考えられる。一方で、焼結による収縮が不完全であったため緻密な膜を形成することができず、比抵抗が3.1μΩcmと高い値になったと考えられる。 It can be seen that in Comparative Example 3 in which the content of Ag powder is lower than the range of the present invention, the dry film density is low and the film thickness ratio of the fired conductor is as low as 77%. It is considered that this is because the original dry film shrank due to sintering, and the compression ratio became low. On the other hand, it is considered that the shrinkage due to sintering was incomplete, so that a dense film could not be formed, and the resistivity became as high as 3.1 μΩcm.

Ag粉末の含有量が本発明の範囲より高い比較例4は、導電ペーストを印刷するのに十分な粘度が得られず、印刷後の形状が歪になってしまい、各種計測をすることが困難なため評価をするのを断念した。
以上の事から、適切な吸収量の範囲で規定した金属粉末と、適切な量の有機ビヒクルとを用いることにより、収縮量の少ない良好な厚膜導電ペーストを得ることができる。
In Comparative Example 4 in which the content of Ag powder is higher than the range of the present invention, sufficient viscosity for printing the conductive paste cannot be obtained, the shape after printing becomes distorted, and it is difficult to perform various measurements. Therefore, I gave up the evaluation.
From the above, by using the metal powder specified in the range of the appropriate absorption amount and the organic vehicle in the appropriate amount, a good thick film conductive paste having a small shrinkage amount can be obtained.

Claims (4)

金属粉末と、バインダ樹脂及び有機溶剤を含む有機ビヒクルを含有する厚膜導電ペーストであって、
前記金属粉末が、前記厚膜導電ペーストの質量に対して90質量%以上、97質量%以下の含有率を有し、
前記金属粉末には、フレーク状でレーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50が4.0μm〜10μmのフレーク状金属粉末を、前記金属粉末中に50質量%以上が含まれ、
前記バインダ樹脂が、厚膜導電ペーストに対して0.05質量%以上、2.0質量%以下含有され、
前記有機溶剤が、厚膜導電ペーストに対して2.0質量%以上、9.9質量%以下含有され、
前記厚膜導電ペーストを印刷、乾燥して得た乾燥膜の膜厚aと、前記乾燥膜を焼成して得た焼成膜の膜厚bとの比、「b/a」が、90%以上、97%以下であることを特徴とする厚膜導電ペースト。
A thick-film conductive paste containing a metal powder and an organic vehicle containing a binder resin and an organic solvent.
The metal powder has a content of 90% by mass or more and 97% by mass or less with respect to the mass of the thick film conductive paste.
The metal powder contains 50% by mass of a flake-shaped metal powder having a D50 of 4.0 μm to 10 μm according to a volume-based particle size distribution obtained by measuring the flake-like particle size distribution by a laser diffraction / scattering type particle size distribution measurement method. Including the above ,
The binder resin is contained in an amount of 0.05% by mass or more and 2.0% by mass or less with respect to the thick film conductive paste.
The organic solvent is contained in an amount of 2.0% by mass or more and 9.9% by mass or less with respect to the thick film conductive paste.
The ratio of the thickness a of the dried film obtained by printing and drying the thick film conductive paste to the film thickness b of the fired film obtained by firing the dried film, "b / a" is 90% or more. , 97% or less, a thick film conductive paste.
前記金属粉末が、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50が0.1μm以上、2.0μm以下の略球状金属粉末を含むことを特徴とする請求項1に記載の厚膜導電ペースト。 Claim 1 is characterized in that the metal powder contains a substantially spherical metal powder having a D50 of 0.1 μm or more and 2.0 μm or less according to a volume-based particle size distribution obtained by measuring by a laser diffraction / scattering type particle size distribution measurement method. thick film conductive paste according to. 前記金属粉末が、Au、Ag、PtおよびCuの少なくとも1種類であることを特徴とする請求項1または2に記載の厚膜導電ペースト。 The thick film conductive paste according to claim 1 or 2 , wherein the metal powder is at least one of Au, Ag, Pt and Cu. セラミックグリーンシートに請求項1〜3に記載のいずれかの厚膜導電ペーストを塗布により導体パターンを形成して導体パターン形成済みセラミックグリーンシートを得るパターン形成工程と、
セラミックグリーンシートに、前記厚膜導電ペーストを塗布し、その塗布面に前記導体パターン形成済みセラミックグリーンシートの積層による積層工程と、
前記厚膜導電ペーストの塗布と導体パターン形成済みセラミックグリーンシートの積層による積層工程を繰り返して積層体を形成する積層体形成工程を経た後に、前記積層体の焼成を行うことを特徴とするセラミック多層積層電子部品の製造方法。
A pattern forming step of forming a conductor pattern by applying any of the thick film conductive pastes according to claims 1 to 3 to a ceramic green sheet to obtain a ceramic green sheet having a conductor pattern formed.
A laminating step of applying the thick film conductive paste to the ceramic green sheet and laminating the ceramic green sheet having the conductor pattern formed on the coated surface.
The ceramic multilayer is characterized in that the laminated body is fired after the laminated body forming step of forming the laminated body by repeating the laminating step of applying the thick film conductive paste and laminating the ceramic green sheet on which the conductor pattern is formed. Manufacturing method of laminated electronic parts.
JP2016187441A 2016-09-26 2016-09-26 Manufacturing method of thick film conductive paste and ceramic multilayer laminated electronic components Active JP6968524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016187441A JP6968524B2 (en) 2016-09-26 2016-09-26 Manufacturing method of thick film conductive paste and ceramic multilayer laminated electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016187441A JP6968524B2 (en) 2016-09-26 2016-09-26 Manufacturing method of thick film conductive paste and ceramic multilayer laminated electronic components

Publications (2)

Publication Number Publication Date
JP2018055819A JP2018055819A (en) 2018-04-05
JP6968524B2 true JP6968524B2 (en) 2021-11-17

Family

ID=61835936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016187441A Active JP6968524B2 (en) 2016-09-26 2016-09-26 Manufacturing method of thick film conductive paste and ceramic multilayer laminated electronic components

Country Status (1)

Country Link
JP (1) JP6968524B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210107067A (en) * 2018-12-26 2021-08-31 쇼에이 가가쿠 가부시키가이샤 silver paste
JP7447804B2 (en) * 2018-12-26 2024-03-12 昭栄化学工業株式会社 Silver paste for forming internal electrodes of multilayer inductors
JPWO2020137329A1 (en) * 2018-12-26 2021-11-18 昭栄化学工業株式会社 Silver paste

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5953003B2 (en) * 2011-01-17 2016-07-13 京都エレックス株式会社 Conductive paste for ceramic multilayer circuit boards
JP6243135B2 (en) * 2013-04-23 2017-12-06 京都エレックス株式会社 Heat curable conductive paste composition

Also Published As

Publication number Publication date
JP2018055819A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6645470B2 (en) Conductive paste for external electrode and method of manufacturing electronic component manufactured using conductive paste for external electrode
KR102505753B1 (en) Silver powder and silver paste and use thereof
JP4805621B2 (en) Conductive paste
KR102374901B1 (en) Silver paste and electronic device
JP2001135138A (en) Conductor paste
JP5904305B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP6968524B2 (en) Manufacturing method of thick film conductive paste and ceramic multilayer laminated electronic components
JP6113664B2 (en) Multi-layer glass ceramic substrate with built-in resistor
JP6737506B2 (en) Conductive paste, chip electronic component and manufacturing method thereof
JP2004228094A (en) Terminal electrode composition material for multi-layer ceramic capacitor
JP6428797B2 (en) Negative characteristic thermistor and manufacturing method thereof
KR102441705B1 (en) Conductive paste for forming external electrodes of multilayer ceramic electronic components
JP2002110444A (en) Conductive paste and laminated ceramic electronic part
JP2012004189A (en) Multilayer ceramic capacitor
KR20040068496A (en) Terminal Electrode Compositions for Multilayer Ceramic Capacitors
JP2004362822A (en) Conductive paste and ceramic multilayer substrate
JP7159549B2 (en) Method for making conductive paste
JP6949302B2 (en) Conductive paste and multilayer substrate formed using it
JP2005216987A (en) Conductive paste for ceramic electronic component and ceramic electronic component
JP6107394B2 (en) Conductive paste, method for producing the same, and ceramic electronic component using the same
JP4893786B2 (en) Conductive paste
JP2003297146A (en) Electrically conductive paste and layer stack ceramic electronic component using it
JP7006196B2 (en) Conductive paste and multilayer substrate formed using it
JP7508770B2 (en) Conductive paste composition for internal electrodes of multilayer ceramic capacitors, method for producing same, and conductive paste
JPH03285965A (en) Conductor paste composition for green sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200803

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200812

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200817

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200828

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200901

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210217

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210428

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210805

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210831

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210930

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211027

R150 Certificate of patent or registration of utility model

Ref document number: 6968524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150