JPS5811591A - Preparation of high calorie gas from coal gas as raw material - Google Patents

Preparation of high calorie gas from coal gas as raw material

Info

Publication number
JPS5811591A
JPS5811591A JP11015781A JP11015781A JPS5811591A JP S5811591 A JPS5811591 A JP S5811591A JP 11015781 A JP11015781 A JP 11015781A JP 11015781 A JP11015781 A JP 11015781A JP S5811591 A JPS5811591 A JP S5811591A
Authority
JP
Japan
Prior art keywords
gas
lpg
coal gas
raw material
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11015781A
Other languages
Japanese (ja)
Other versions
JPS608273B2 (en
Inventor
Fuyuki Noguchi
冬樹 野口
Yoshikiyo Asaoka
浅岡 善清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP56110157A priority Critical patent/JPS608273B2/en
Publication of JPS5811591A publication Critical patent/JPS5811591A/en
Publication of JPS608273B2 publication Critical patent/JPS608273B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Industrial Gases (AREA)

Abstract

PURPOSE:To obtain a natural gas substitute having high calorie, by desulfurizing or deoxidizing a blend of coal gas, naphtha, and LPG, followed by making it into methane in the presence of steam at a specific high temperature. CONSTITUTION:A blend of coal gas and naphtha and/or LPG is subjected to pretreatment such as desulfurization, deoxidation, etc., and made into methane in the presence of steam as gasifying agent and a cooling medium in an amount to make S/C=0.5-2.0 at 300-550 deg.C, to give the desired gas. The blend consists of preferably 1mol coal gas and 0.01-0.1mol naphtha and/or LPG.

Description

【発明の詳細な説明】 本発明は、石炭ガス(以下COGという)を原料とする
高発熱量のいわゆる代替天然ガス(以下5INGという
)の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high calorific value alternative natural gas (hereinafter referred to as 5ING) using coal gas (hereinafter referred to as COG) as a raw material.

近年都市ガス原料中に占める液化天然ガス(以下LNG
という)の割合は、急速に増大しつつあり、今後と4い
わゆる天然ガス転換は更に促進される傾向にある。とζ
ろで、LNGは、そのam、貯蔵、気化等に一定の好適
条件下に操業される大規模な設備を要するので、季節、
景気変動等に起因する**変動に必ずしも適切に対応し
得ない場合がある。更に又、LNGに対する過度の依存
は、原料の安定供給の点で若干の問題を生ずる場合も有
)得ると考えられる。従って、需要変動の吸収及び原料
の多様化によ、9LNG を主II!!原料とする天然
ガス転換のメリットを最大限に活用すべ(、LN(1に
依存しない8NGの新しい製造方法の開発が切望されて
いる。
In recent years, liquefied natural gas (hereinafter referred to as LNG) has occupied a large share in city gas raw materials.
) is rapidly increasing, and the so-called natural gas conversion is likely to be further promoted in the future. and ζ
LNG requires large-scale facilities that are operated under certain suitable conditions for its amperage, storage, vaporization, etc., so it depends on the season.
It may not always be possible to respond appropriately to changes caused by economic fluctuations, etc. Furthermore, excessive dependence on LNG is thought to cause some problems in terms of stable supply of raw materials. Therefore, by absorbing demand fluctuations and diversifying raw materials, 9LNG will become the main source of electricity! ! There is an urgent need to develop a new production method for 8NG that does not depend on LN (1) to maximize the benefits of converting natural gas as a raw material.

00Gから高発熱量のガスを製造する方法として唸、以
下の如きいくつかの方法突可能であると考えられる。例
えば、先ずCOGを加圧下忙モレキュ2−シープの如き
吸着剤中を通して、吸着剤に吸着される嶌分子の炭化水
素ガスと吸着されない低分子の水素ガスとに分離し、次
いで減圧下に炭化水素ガスを吸着剤から脱着させて、高
発熱量のガスとする方法が考えら′れる。この場合、吸
着装置を複数制設けておけば、吸着と脱着とを交互に行
なうむとによ〕高発熱量ガスを連続的に得ることが可能
である。しかしながら、この方法は、吸着剤の機*が0
00中の不純物により阻害され中すい為、タール、ペン
ゾール、す7タレ/等ヲ塞質上金量というべき程度まで
除去しておく必要かぁ〉、大規模な*S設備が必要とな
る。更に。
As a method for producing gas with a high calorific value from 00G, several methods are considered to be possible, such as the following. For example, COG is first passed through an adsorbent such as Molecule 2-Sheep under pressure to separate it into hydrocarbon gas with small molecules adsorbed by the adsorbent and low molecular hydrogen gas which is not adsorbed, and then the hydrocarbon gas is passed under reduced pressure. One possible method is to desorb the gas from the adsorbent to produce a gas with a high calorific value. In this case, if a plurality of adsorption devices are provided, it is possible to continuously obtain a high calorific value gas by alternately performing adsorption and desorption. However, in this method, the mechanism of the adsorbent is 0.
Since it is inhibited by impurities in 00, it is necessary to remove tar, penzol, tar, etc. to the extent that it can be said to be an obstructive amount of gold, and large-scale *S equipment is required. Furthermore.

00Gをいわゆる乾式メタネーションによp高角方法に
おいては、COO中の水素が炭素に対して411なる為
、生成ガスの発熱量は所望の値よりも紘るかに低いもの
4CIまるという離点がある。
In the high-angle method, hydrogen in COO is 411 compared to carbon, so the calorific value of the generated gas is much lower than the desired value. be.

本発明者は、上記に鑑みて槓々研究を重ねた結果、CO
Oに炭素源としてナフサ及び/又はLPGを加JL九膚
金物を通常の脱硫、脱酸素等の前処理に供し良後、ガス
化剤及び冷却剤としての水蒸気の存在下にメタン化処理
することKよシ、上記の雌点を解消し得るとともKll
述の如き種々の利点を停り&#NGの新しい114方#
:が得られることを見出し、本発明を完成するKjll
り′え。即ち、本発明は、石炭ガスヘヘ寓に対し炭素源
としてす7す及び/又はLPGを加ええ混合物に脱硫9
m酸素等の前処理を施し友後、これを810−0.ト4
゜となる量のガス化剤及び冷却剤としてのスチームの存
在下に30G−!i50℃でメタン化するととを特徴と
する石炭ガスを原料とする高発熱量ガスの製造方法に係
るものである。
In view of the above, as a result of extensive research, the inventor has discovered that CO
Adding naphtha and/or LPG as a carbon source to O and subjecting JL Kusaka Metals to normal pre-treatments such as desulfurization and deoxidation, and then subjecting them to methanation treatment in the presence of steam as a gasification agent and coolant. K, I hope you can solve the above problem.
114 new ways to stop &#NG with various advantages as mentioned above#
Kjll completed the present invention by discovering that:
Ri'e. That is, the present invention involves adding soot and/or LPG as a carbon source to a coal-gas mixture and desulfurizing the mixture.
After pretreatment with oxygen, etc., this was heated to 810-0. G4
30G-! in the presence of steam as a gasifying agent and coolant in an amount of ! This invention relates to a method for producing a high calorific value gas using coal gas as a raw material, which is characterized in that it is methanated at 50°C.

本発明方法の原料は、C00Kナフナ及び/又はLPG
を加え九混合物である0COGK対するす7す及び/又
はLPOの添加割合は特に限定され慶いが、天然ガスを
直接供給する都市ガス(13ム)との燃焼互換性を考慮
すれば、COG 1モルに対しナフサ及び/又はLPG
 O,01−0,1モ〃程度とすることが好ましいoO
,1そ〃を上回る場合には、CO8の増加によ)a炭酸
も必要となる場合がある0本発明においては上記混合物
を先ず常法に従って脱酸素及び脱硫等の前処理に供する
。脱酸素反応用触媒としては、脱硫触媒としての作用を
も併せ有するへNi−Mo系、Co−Mo系、N1B系
等の触1媒が例示される。これ等の触媒を使用する場合
には、C0G中の水素による水添によシ%混合物の脱酸
素及び親有機硫黄が行なわれる。これ等の脱酸素及び脱
硫処理は、常法に従って行なえば良く、例えば反応器出
口温度意O・〜sso”ciii度1反応器内圧力6〜
5Gk#/cdG程度、反応器出口温度36・〜43G
℃43G条件下に行なえは良い。
The raw material for the method of the present invention is C00K napna and/or LPG.
Although the addition ratio of soot and/or LPO to COGK, which is a mixture of COG9 and COGK, is particularly limited, if combustion compatibility with city gas (13M), which is a direct supply of natural gas, is considered, COG1 Naphtha and/or LPG per mole
oO is preferably about O,01-0,1 mo.
, 1, carbonic acid may also be required due to the increase in CO8. In the present invention, the above mixture is first subjected to pretreatment such as deoxidation and desulfurization according to a conventional method. Examples of the deoxidizing reaction catalyst include Ni-Mo, Co-Mo, and N1B catalysts, which also function as desulfurization catalysts. When these catalysts are used, deoxygenation and organophilic sulfurization of the % mixture is accomplished by hydrogenation with hydrogen in the C0G. These deoxidation and desulfurization treatments may be carried out according to conventional methods, for example, the temperature at the outlet of the reactor is O.
Approximately 5Gk#/cdG, reactor outlet temperature 36-43G
It is best to do it under 43G conditions.

次いで、混合物は吸着脱硫11に送られ、通常のZn0
Kよる吸着脱硫が行なわれる0ζζで混合物中の酸素濃
度は実質上零、全硫黄濃度は1 pPJI Jji上下
とされる。上述の脱硫反応線いずれも発熱反応であるの
で、必要に応じ混合物から廃熱ダイツー等によ〉熱回収
を行なり九後、混合物はメタン化工程Fcj!られる。
Then, the mixture is sent to adsorption desulfurization 11, and the normal Zn0
At 0ζζ when adsorption desulfurization by K is performed, the oxygen concentration in the mixture is substantially zero, and the total sulfur concentration is approximately 1 pPJI Jji. Since all of the desulfurization reaction lines mentioned above are exothermic reactions, if necessary, heat is recovered from the mixture using a waste heat generator or the like. It will be done.

メタン化工程は1白金族金属系触媒、 Ni系触媒等の
触媒存在下に、8/C(炭化水素中の炭素原子1個当プ
の水蒸気中の酸素原子数)が0.6〜2.0程度となる
量の水蒸気を混合物に加えた状態で行なう。メタン化工
程における反応器入口温度は260〜300″′C程度
、反応器内圧力は6〜10に9/cilG程度、反応器
出口温度は300 N560℃程度とするのが好ましい
。メタン化反応を終えた生成ガスの発熱量q、LPGの
混合比、メタン化反応条件等によシ異なるが、 COO
の当初発熱量5000〜5300km/Nff1”に比
して7000〜85001o1/Nll’程度となる。
The methanation step is carried out in the presence of a catalyst such as a platinum group metal catalyst or a Ni catalyst, so that 8/C (the number of oxygen atoms in water vapor per carbon atom in the hydrocarbon) is 0.6 to 2. This is carried out in a state where water vapor is added to the mixture in an amount of about 0. In the methanation step, the reactor inlet temperature is preferably about 260 to 300''C, the reactor internal pressure is about 6 to 10 to 9/cilG, and the reactor outlet temperature is preferably about 300N560C. Although it varies depending on the calorific value q of the finished product gas, the mixing ratio of LPG, the methanation reaction conditions, etc., COO
The initial calorific value of 5000 to 5300 km/Nff1'' is approximately 7000 to 85001 o1/Nll'.

この生成ガスは、このtま使用し得ることFi、言う會
でもないが、必要ならば更KLPGを加えて増熱し、8
NGとして使用することが出来る0 本発明方法においては、常法に従ってピッチ。
This produced gas can be used for a while, but if necessary, it can be heated by adding more KLPG to 8
0 that can be used as NG In the method of the present invention, the pitch is determined according to the conventional method.

アンモニア、シアン、ナフタリン、ペンゾール等を除い
たC0JCLPGを加え、得られた混合物を脱酸素、脱
硫及びメタン化工程に供することが必須である。かくし
て(1)cooとLPGとが脱酸素及び脱硫処理時に均
一に混合されるので、メタン化反応が良好に進行し、燃
焼性に優れた^発l@量ガスが得られる。(1) L 
P Gに含有されている硫黄分の脱硫をも同時に行ない
得るので、メタン化反応触媒の寿命が長くなる。ii9
 L P Gの添加によシ脱酸素及び脱硫処理時の温度
変動を有効に抑制し得る等の顕著な効果が奏されるので
ある。事実、先ずCOGのみを脱酸素及び脱硫処理し友
後、これにLPGを加え、M混合物をメタン化反応に供
し九ところ、LPGに由来する硫黄分によシ触媒が被毒
し、全体としてメタン化反応が著しく阻害されることが
判明した0 本発明方法は、上述の効果に加えて%LNGの導入に伴
って、使用量が相対的に低下しているCOGの用途を拡
大する点においても極めて有用であるolpち、各種用
途を有するコークス製造時の副産物として大量に発生す
るCOGとそれに対する需要の減少が問題となっていた
のであるが、本発明によれば、この間A11g1FiC
OGの8NGへの転換によ)見金に解決されたのである
It is essential to add COJCLPG without ammonia, cyanide, naphthalene, penzole, etc., and to subject the resulting mixture to deoxygenation, desulfurization and methanation steps. In this way, (1) coo and LPG are uniformly mixed during the deoxidation and desulfurization treatment, so the methanation reaction progresses favorably and a gas with excellent combustibility is obtained. (1) L
Since the sulfur contained in PG can be desulfurized at the same time, the life of the methanation reaction catalyst is extended. ii9
The addition of LPG produces remarkable effects such as being able to effectively suppress temperature fluctuations during deoxidation and desulfurization treatments. In fact, first, COG alone was deoxidized and desulfurized, then LPG was added to it, and the M mixture was subjected to a methanation reaction. However, the sulfur content derived from LPG poisoned the catalyst, resulting in methane as a whole. In addition to the above-mentioned effects, the method of the present invention is also effective in expanding the use of COG, whose usage amount has been relatively reduced due to the introduction of LNG. Although COG is extremely useful, COG is generated in large quantities as a by-product during the production of coke, which has various uses, and the decline in demand for COG has been a problem.According to the present invention, during this period, COG
The issue was resolved by converting OG to 8NG).

実施例! 下C#It表に示す組成の0OG100ONIrコ/h
に下If!jig 1111に示fm成(D LPG 
16 oky/ hを加え、原料とするO 第  1  表 H,66,OvoigII N、     a、o ’ QQ     6.0 # C0,2,0’ OHa    N13 ” C,〜0.   8.5 ’ Q、     O,i! # 有機硫黄化合物    sgpp膳 第露表 C,Hll、Q vol 4s 1−04H,。      210# n−C4M1.       T7.0#次いで上記原
料混合物をN1−MOx系触媒を充填し九脱酸素及び脱
硫反応alKj1輪し、反応器入口温度約!!60℃1
反応器内圧カフゆ/−G1反応器出口温度約400℃の
条件下に処理する。次いで混合物をZnO系触媒を充填
した吸着脱硫反応器に送シ、処理する。かくして、混合
物中の酸素含有量は実質1零、全硫黄含有量はtppm
以下となる0 次いで、白金族金属系触媒を充填するメタン化反応器に
上記の精製され九原料混合物を供給し、810=Q、$
1となる水蒸気の存在下にメタン化反応を行なう。メタ
ン化反応器の入口温度は約260℃、出口温度は約35
0℃9反応器内圧力は約6ゆ/ ca Gである。
Example! 0OG100ONIr/h with the composition shown in the C#It table below
If below! jig 1111 shows the fm configuration (D LPG
16 oky/h and use it as raw material O Table 1 H, 66, Ovoig II N, a, o' QQ 6.0 #C0,2,0' OHa N13 '' C, ~ 0.8.5' Q, O, i! #Organic sulfur compound sgpp table 1st exposure table C, Hll, Q vol 4s 1-04H,. 210# n-C4M1. Oxygen and desulfurization reaction alKj 1 ring, reactor inlet temperature approx. 60℃ 1
The treatment is carried out under conditions of reactor internal pressure cuff/-G1 reactor outlet temperature of about 400°C. The mixture is then sent to an adsorption desulfurization reactor filled with a ZnO-based catalyst for treatment. Thus, the oxygen content in the mixture is essentially 1 zero, and the total sulfur content is tppm.
0 Then, the above purified mixture of nine raw materials is fed to a methanation reactor filled with a platinum group metal catalyst, and 810=Q, $
The methanation reaction is carried out in the presence of water vapor. The inlet temperature of the methanation reactor is approximately 260℃, and the outlet temperature is approximately 35℃.
The pressure inside the reactor at 0° C. is approximately 6 Yu/ca G.

メタン化反応によ〉得られるガス8 m! ONm”/
hの繊成及び発熱量は、下記ms表に示す通夛である0 第  3  表 Co、    gvol嘔 O− H,1Qvol− CjH484〃 町   4# 発熱量    8300kall/N11l’メタン化
反応によシ得られ友ガスは、燃料としてそのit使用す
ることも可能であるが、腋ガスIN鳳56cLPG0.
33に#を混合することk・よp発熱mttoo・Io
L/Nが、比重0.711の8NGが得られる0 (以 上)
8 m of gas obtained by methanation reaction! ONm”/
The fiber formation and calorific value of h are as shown in the following ms table. Armpit gas can also be used as fuel, but underarm gas IN 56cLPG0.
Mixing # with 33 k・yop fever mttoo・Io
L/N is 0 (or more) that yields 8NG with a specific gravity of 0.711.

Claims (1)

【特許請求の範囲】[Claims] ■ 石炭ガス〜S★に対し炭素源としてナフサ及び/又
はLPGを加えた混合物に脱硫、脱酸素等の前処理を施
した後1.これを810−0.6〜2.0となる量のガ
ス化剤及び冷却剤としてのスチームノ存在下に300−
5IN)℃でメタン化することを特徴とする石炭ガスを
原料とする高発熱量ガスの製造方法。
■ After performing pretreatment such as desulfurization and deoxidation on a mixture of coal gas ~ S★ with naphtha and/or LPG added as a carbon source, 1. 810-0.6 to 2.0 in the presence of steam as a gasifying agent and coolant.
A method for producing a high calorific value gas using coal gas as a raw material, which is characterized by being methanized at 5IN)°C.
JP56110157A 1981-07-14 1981-07-14 Method for producing high calorific value gas using coal gas as raw material Expired JPS608273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56110157A JPS608273B2 (en) 1981-07-14 1981-07-14 Method for producing high calorific value gas using coal gas as raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56110157A JPS608273B2 (en) 1981-07-14 1981-07-14 Method for producing high calorific value gas using coal gas as raw material

Publications (2)

Publication Number Publication Date
JPS5811591A true JPS5811591A (en) 1983-01-22
JPS608273B2 JPS608273B2 (en) 1985-03-01

Family

ID=14528491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56110157A Expired JPS608273B2 (en) 1981-07-14 1981-07-14 Method for producing high calorific value gas using coal gas as raw material

Country Status (1)

Country Link
JP (1) JPS608273B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455496A (en) * 1990-06-25 1992-02-24 Jgc Corp Production of substitute for natural gas
CN101921642A (en) * 2010-08-18 2010-12-22 煤炭科学研究总院 Method for deoxidizing coal bed gas and separating methane by concentration
CN108977237A (en) * 2018-07-25 2018-12-11 戴乐亭 A kind of method of converter and/or blast furnace gas deoxygenation fine de-sulfur
CN111732976A (en) * 2020-05-19 2020-10-02 福州大学 Blast furnace gas desulfurization method and system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PROCESSES FOR THE MANUFACTURE OF NATURAL-GAS SUBSTITUTES=1968 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455496A (en) * 1990-06-25 1992-02-24 Jgc Corp Production of substitute for natural gas
CN101921642A (en) * 2010-08-18 2010-12-22 煤炭科学研究总院 Method for deoxidizing coal bed gas and separating methane by concentration
CN108977237A (en) * 2018-07-25 2018-12-11 戴乐亭 A kind of method of converter and/or blast furnace gas deoxygenation fine de-sulfur
CN108977237B (en) * 2018-07-25 2020-06-09 戴乐亭 Converter and/or blast furnace gas oxygen-removing fine desulfurization method
CN111732976A (en) * 2020-05-19 2020-10-02 福州大学 Blast furnace gas desulfurization method and system
CN111732976B (en) * 2020-05-19 2021-06-29 福州大学 Blast furnace gas desulfurization method and system

Also Published As

Publication number Publication date
JPS608273B2 (en) 1985-03-01

Similar Documents

Publication Publication Date Title
JP5677659B2 (en) Integrated gas purifier
JP4580310B2 (en) Generation method of high calorific gas
US3625664A (en) Process for the production of rich fuel to replace natural gas by means of catalytic hydrogasification under pressure of fluid hydrocarbons
JPS6324035B2 (en)
CN105883851A (en) Novel gasification and pyrolysis coupling gas poly-generation process
JP4030846B2 (en) Methanol production method and apparatus
JP2015117312A (en) Method for producing gas turbine fuel
JPS5811591A (en) Preparation of high calorie gas from coal gas as raw material
CN105001899A (en) Method for preparing clean coal-based synthetic wax
US3954424A (en) Process for producing a methane-containing gas and arrangement therefor
AU2014259567A1 (en) Treatment of synthesis gases from a gasification facility
GB830960A (en) Improvements in the gasification of hydrocarbon-containing oils
JPS62153102A (en) Production of hydrogen gas using coke oven gas as raw material
US2349438A (en) Process of producing a gas suitable for the synthesis of hydrocarbons
JPS6020436B2 (en) Synthesis gas production method
JPH06248275A (en) Apparatus for producing substitute natural gas
GB2183670A (en) Process for self-hydrogenation
JP2013505342A (en) Operation method of coke oven equipment
WO2020054088A1 (en) Synthetic gas production system for low-carbon ft synthetic oil production
JPH04159393A (en) Manufacture of city gas of high calorific value
JPS62209197A (en) Production of substitute natural gas
JPS58157897A (en) Method for increasing calorific power of gas generated from iron manufacturing plant
JPS58217591A (en) Preparation of methane-rich gas utilizing byproduct gas
USRE14277E (en) Utilization op sttlpttr dioxid
JPWO2020054088A1 (en) Syngas production system for low carbon FT synthetic oil production