JPS62153102A - Production of hydrogen gas using coke oven gas as raw material - Google Patents

Production of hydrogen gas using coke oven gas as raw material

Info

Publication number
JPS62153102A
JPS62153102A JP29646085A JP29646085A JPS62153102A JP S62153102 A JPS62153102 A JP S62153102A JP 29646085 A JP29646085 A JP 29646085A JP 29646085 A JP29646085 A JP 29646085A JP S62153102 A JPS62153102 A JP S62153102A
Authority
JP
Japan
Prior art keywords
gas
stage
hydrogen
coke oven
steam reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29646085A
Other languages
Japanese (ja)
Inventor
Yutaka Tsukuda
佃 豊
Shinichi Masai
正井 慎一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP29646085A priority Critical patent/JPS62153102A/en
Publication of JPS62153102A publication Critical patent/JPS62153102A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Industrial Gases (AREA)

Abstract

PURPOSE:To reduce reproduction cost of hydrogen and synthetic natural gas, by pretreating coke oven gas, subjecting a part of the pretreated gas to steam reforming process and CO conversion process, recovering produced hydrogen and methanating the remaining part of the gas. CONSTITUTION:Coke oven gas COG is sent to a pretreatment stage 5 via a compression stage 3 and subjected to various prescribed treatments. A part of the pretreated gas is successively transferred to a steam reforming stage 11, a CO-conversion stage 13 and a separation stage 15, in which hydrogen is separated and recovered by a pressure swing adsorption method. The produced off gas is used as a fuel for the steam reforming stage 11. Parallel to the above procedure, the remaining part of the gas transferred from the pretreatment stage 5 is sent to a methanation stage 7 and then to a purification stage 9 to obtain a synthetic natural gas SNG, etc. The operation cost for the production of hydrogen gas can be reduced by this process.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、コークス炉ガス(以下COGという)を原料
とする水素の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing hydrogen using coke oven gas (hereinafter referred to as COG) as a raw material.

末技術とその問題点 従来水素含有150〜60vo1%程度、のCOGから
水素を得る方法としては、プレッシャー スイング ア
トソープション法(以下PSA法という)、深冷分離法
等が実施されている。例えば、PSA法においては、通
常先ずCOGを水洗浄及び/又は油洗浄することにより
タール等の重質炭化水素を除去し、次いで脱硫を行なっ
た後、精製されたCOGを加圧下にモレキュラーシーブ
の如き吸着剤中を通して、吸着剤に吸着されない低分子
の水素とこれに吸着される高分子の炭化水素ガス、CO
2、CO等とに分離することが行なわれている。この場
合、吸着装置を複数個設けておき、高分子ガスの吸着と
脱着とを交互に行なう様にすれば、水素ガスを連続的に
製造することができる。
Techniques and Problems Conventionally, pressure swing atsorption methods (hereinafter referred to as PSA methods), cryogenic separation methods, and the like have been used to obtain hydrogen from COG containing about 150 to 60 vol% hydrogen. For example, in the PSA method, COG is usually first washed with water and/or oil to remove heavy hydrocarbons such as tar, then desulfurized, and then the purified COG is passed through molecular sieves under pressure. Low-molecular hydrogen that is not adsorbed by the adsorbent and high-molecular hydrocarbon gas and CO that are adsorbed to it pass through the adsorbent.
2, CO, etc. are being separated. In this case, hydrogen gas can be continuously produced by providing a plurality of adsorption devices and alternately adsorbing and desorbing the polymer gas.

しかしながら、この方法には、吸着剤の機能がCOG中
の不純物により阻害されやすいため、タール、ペンゾー
ル、ナフタレン等を実質上全量というべき程度まで除去
しておく必要などがあり、大規模な前処理(脱硫、脱重
質炭化水素、洗浄等)精!!A設備が必要となることや
、後処理として脱酸素処理工程も必要である等の難点が
ある。同様の問題点は、深冷分離法にも存在する。更に
PSA法においては、大量に発生するオフガスの有効利
用方法が見出されていない。
However, in this method, the function of the adsorbent is easily inhibited by impurities in COG, so it is necessary to remove virtually all of tar, penzole, naphthalene, etc., and it requires large-scale pretreatment. (Desulfurization, heavy hydrocarbon removal, cleaning, etc.) Sei! ! There are drawbacks such as the need for A equipment and the need for a deoxidizing process as a post-treatment. Similar problems exist with cryogenic separation methods. Furthermore, in the PSA method, no method has been found for effectively utilizing off-gas generated in large quantities.

問題1、を解決するための手段 本発明者は、上記の如きCOGを原料とする水素製造法
の問題点に鑑みて種々熟慮を重ねた結果、COGから合
成天然ガスく以下SNGという)を製造する際の前処理
がPSA法に先立って行なわれる前処理とほぼ同内容で
あること、及びPSA法からのオフガスがPSA法に先
立って行なわれるCOGの高温改質の熱源として利用可
能であることに着目し、更に研究を重ねて遂に本発明を
完成するにいたった。即ち、本発明は、(i)コークス
炉ガスを脱硫、脱酸素、水洗等の前処理に供した後、(
11)該コークス炉ガスの一部を水蒸気改質処理及びC
O変成処理し、次いでプレッシャー スイング アトソ
ープション法により水素を回収し、(iii >上記コ
ークス炉ガスの残部をメタン化処理及び精製して合成天
然ガスを得ることを特徴とするコークス炉ガスを原料と
する水素ガスの製造方法に係るものである。
Means for Solving Problem 1 The inventor of the present invention has repeatedly considered various problems in view of the problems of the hydrogen production method using COG as a raw material as described above, and as a result, has produced synthetic natural gas (hereinafter referred to as SNG) from COG. The pretreatment for this process is almost the same as the pretreatment that is performed prior to the PSA method, and the off-gas from the PSA method can be used as a heat source for the high temperature reforming of COG that is performed prior to the PSA method. After further research, we finally completed the present invention. That is, the present invention provides (i) after subjecting coke oven gas to pretreatment such as desulfurization, deoxidation, and water washing;
11) Part of the coke oven gas is subjected to steam reforming treatment and C
The coke oven gas is obtained by subjecting it to O conversion treatment, then recovering hydrogen by a pressure swing atsorption method, and (iii) methanating and refining the remainder of the coke oven gas to obtain synthetic natural gas. The present invention relates to a method for producing hydrogen gas.

以下、図面を参照しつつ、本発明を更に詳細に説明する
Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図において、COGは、常法に従ってCOGタンク
(1)から圧縮工程(3)に送られた後、加圧状態で前
処理工程(5)に送られる。
In FIG. 1, COG is sent from a COG tank (1) to a compression step (3) according to a conventional method, and then sent under pressure to a pretreatment step (5).

前処理工程に供されるCOGの圧力は、5〜50kcl
/cffl・G程度である。前処理工程としては、脱ナ
フタリン、脱ペンゾール、脱シアン、脱アンモニア、脱
タールミスト、脱硫、脱酸素、脱ジエン類等が包含され
るが、いずれも周知の手段なので、特に詳細な説明はし
ない。
The pressure of COG used in the pretreatment process is 5 to 50 kcl.
/cffl·G. The pretreatment process includes removal of naphthalene, removal of penzole, removal of cyanogen, removal of ammonia, removal of tar mist, desulfurization, removal of oxygen, removal of dienes, etc., but since these are all well-known means, no detailed explanation will be given. .

前処理工程(5)を出た高温のCOGの一部(なお、本
願明細書において、“’COGの一部パ或いは“COG
の残部″とは、量的な大小を意味するものではない)は
、メタン化工程(7)に送られる。メタン化工程(7)
も常法に従って行なえば良く、例えば白金族金属系触媒
、Ni系触媒等の触媒存在下に、S/C(炭化水素中の
炭素原子11I!i1当りの水蒸気中の酸素原子数)が
0.5〜1.0程度となる量の水蒸気を混合物に加え、
必要ならば、更にナフサ、LPG等の炭素源を加えた状
態で行なう。メタン化工程にあける反応器入口温度は2
50〜300’C程度、反応器内圧力は5〜10k(1
/rmG程度、反応器出口温度は300〜550’C程
度とするのが好ましい。メタン化反応を終えた生成ガス
の発熱量は、LPG等の混合比、メタン化反応条件等に
より異なるが、COGの当初発熱量5000〜5300
Kcal/Nm3に比して7000〜8000Kcal
/Nm3程度にも達する。該生成ガスは、必要に応じ生
成工程(9)を経た後、そのまま或いは必要に応じてL
PGにより増熱された後、SNGとして使用される。
A part of the high-temperature COG that has exited the pretreatment step (5) (hereinafter referred to as "a part of COG" or "COG
The remainder '' does not mean quantitatively large or small) is sent to the methanation step (7).Methanation step (7)
For example, in the presence of a catalyst such as a platinum group metal catalyst or a Ni catalyst, S/C (number of oxygen atoms in water vapor per carbon atom 11I in a hydrocarbon) is 0. Adding water vapor in an amount of about 5 to 1.0 to the mixture,
If necessary, a carbon source such as naphtha or LPG may be further added. The reactor inlet temperature for the methanation process is 2
Approximately 50-300'C, pressure inside the reactor is 5-10K (1
/rmG, and the reactor outlet temperature is preferably about 300 to 550'C. The calorific value of the generated gas after the methanation reaction varies depending on the mixing ratio of LPG, etc., methanation reaction conditions, etc., but the initial calorific value of COG is 5000 to 5300.
7000-8000Kcal compared to Kcal/Nm3
/Nm3. After passing through the generation step (9) as necessary, the generated gas may be used as it is or as required.
After being heated by PG, it is used as SNG.

一方、前処理工程(5)からの高温のCOGの残部は、
水蒸気改質工程(11)において水蒸気の存在下高温で
改質処理される。改質時の条件も特に限定されないが、
例えば、通常のNi系改質触媒或いは貴金属系触媒等の
触媒の存在下にS/Cが3.0〜3.5程度となる量の
水蒸気をCOGに加えた状態で行なう。水蒸気改質工程
(11)における反応器入口温度は、400〜450’
C程度、反応器内圧力は、5〜50’K(J/cm・G
程度、反応器出口温度は、700〜800°C程度とす
ることが好ましい。この水蒸気改質によリ、炭素数2以
上の炭素水素は、H2、C01CO2及びCHtに分解
される。
On the other hand, the remainder of the high temperature COG from the pretreatment step (5) is
In the steam reforming step (11), reforming is performed at high temperature in the presence of steam. Conditions during modification are not particularly limited, but
For example, it is carried out in the presence of a catalyst such as a normal Ni-based reforming catalyst or a noble metal-based catalyst, with water vapor added to the COG in an amount such that S/C is about 3.0 to 3.5. The reactor inlet temperature in the steam reforming step (11) is 400 to 450'
C, the pressure inside the reactor is 5 to 50'K (J/cm・G
The reactor outlet temperature is preferably about 700 to 800°C. Through this steam reforming, carbon hydrogen having two or more carbon atoms is decomposed into H2, CO1CO2 and CHt.

次いで、CO変成工程(13)において、上記で得られ
た改質生成ガス中のCOを常法に従って、例えば、Fe
系触媒を使用してCO2に変成する。
Next, in the CO transformation step (13), the CO in the reformed gas obtained above is converted to Fe, for example, in accordance with a conventional method.
It is converted into CO2 using a system catalyst.

CO変成工程(13)からのガスは、次いでPSA法に
よる分離工程(15)に送られて、吸着剤に吸着されな
い水素と吸着剤に吸着されるCo、CO2、CHa等と
に分離され、水素を回収される。
The gas from the CO conversion step (13) is then sent to a separation step (15) using the PSA method, where it is separated into hydrogen that is not adsorbed by the adsorbent and Co, CO2, CHa, etc. that are adsorbed by the adsorbent. will be collected.

複数個の吸着装置を備え、交互に吸着と脱着とを行なう
分離工程(15)から脱着により放出されるオフガスは
、ライン(17)を経て水蒸気改質工程(11)に送ら
れ、加熱用燃料として有効利用される。なお、水蒸気改
質工程(11)における加熱エネルギーがオフガスの燃
焼のみによっては不足する場合には、例えば、COGタ
ンク(1)からCOGを送り、燃料の一部として使用し
ても良い。
The off-gas released by desorption from the separation step (15), which is equipped with a plurality of adsorption devices and alternately performs adsorption and desorption, is sent to the steam reforming step (11) via a line (17), where it is used as heating fuel. It is effectively used as Note that if the heating energy in the steam reforming step (11) is insufficient due to only the combustion of off-gas, for example, COG may be sent from the COG tank (1) and used as part of the fuel.

発明の効果 本発明によれば、以下の如き効果が奏される。Effect of the invention According to the present invention, the following effects are achieved.

(i>共通の設備によりH2製造時及びSNI造時のC
OG前処理を行なうことができるので、設備費が軽減さ
れ、H2及びSNGの製造コストが低下する。
(i>C during H2 production and SNI production using common equipment)
Since OG pretreatment can be performed, equipment costs are reduced and the manufacturing costs of H2 and SNG are reduced.

(ii> PSA法による分離工程で発生する大量のオ
フガスをCOGの水蒸気改質工程の燃料として有効利用
するので、操業費が大巾に低減される。
(ii> Since a large amount of off-gas generated in the separation process using the PSA method is effectively used as fuel for the COG steam reforming process, operating costs are significantly reduced.

< iii )前処理工程からのCOGは、高温(25
Q〜300℃程度)であるため、水蒸気改質工程での加
熱燃料を減少させることができる。
<iii) The COG from the pre-treatment step is heated to a high temperature (25
(about 300° C.), it is possible to reduce heating fuel in the steam reforming process.

X−塵−1 以下実施例及び比較例を示し、本発明の特徴とするとこ
ろをより一層明らかにする。
X-Dust-1 Examples and comparative examples will be shown below to further clarify the characteristics of the present invention.

実施例1 第1図に示すフローに従って本発明を実施した。Example 1 The present invention was carried out according to the flow shown in FIG.

圧縮工程(3)において10kg/CIt−Gに加圧さ
れたCOG 185 ONm3/hを前処理工程(5)
に送り、常法に従って脱タールミスト、脱硫、脱酸素、
脱ジエン類、脱アンモニア、脱シアン、脱ペンゾール、
脱ナフタリンの各処理を行なった。
The COG 185 ONm3/h pressurized to 10 kg/CIt-G in the compression step (3) is subjected to the pretreatment step (5)
De-tar mist, desulfurization, deoxidation,
Remove dienes, remove ammonia, remove cyanogen, remove penzole,
Various treatments for removing naphthalene were performed.

前処理工程(5)からの温度380℃のCOGのうち6
158m3/hを水蒸気改質工程(11)に送り、貴金
属系触媒の存在下且つS/C=3.0〜3.5となる水
蒸気の供給下に水蒸気改質を行なった。反応器の入口温
度は約400℃、出口温度は約800℃、反応器内圧力
は約10kg/cd−Gであり、C0G2158m3/
hと後述のオフガスとにより加熱を行なった。
6 of the COGs at a temperature of 380°C from pretreatment step (5)
158 m3/h was sent to the steam reforming step (11), and steam reforming was performed in the presence of a noble metal catalyst and while supplying steam such that S/C=3.0 to 3.5. The inlet temperature of the reactor is about 400℃, the outlet temperature is about 800℃, the pressure inside the reactor is about 10kg/cd-G, and the C0G2158m3/
Heating was performed using h and an off-gas described below.

水蒸気改質により得られたガスをCO変成工程(13)
に送り、Fe系触媒の存在下に反応器出口温度約400
℃で処理した。
CO transformation process (13) of gas obtained by steam reforming
in the presence of a Fe-based catalyst to maintain a reactor outlet temperature of approximately 400°C.
Processed at °C.

CO変成を終えたガスをPSA法による分離工程(15
)に送り、水素10100ON/hを得た。
The gas that has undergone CO conversion is separated by the PSA method (15
) to obtain 10,100 ON/h of hydrogen.

分離工程(15〉で生成するオフガス(1000Kca
l/ h )は、ライン(17)から水蒸気改質工程(
11)に送り、燃料として使用した。
Off gas (1000Kca) generated in the separation process (15)
l/h) is the steam reforming process (
11) and used as fuel.

一方、上記の水素製造と並行して、前処理工程(5〉か
らのC00100ONm3/hをメタン化工程(7)に
送り、白金系触媒の存在下且つS/C=0.9となる水
蒸気の供給下にメタン化処理を行なった。かくして、発
熱量7300KCal/Nm3のガス6808m3/h
が得られた。
On the other hand, in parallel with the above hydrogen production, the CO00100ONm3/h from the pretreatment step (5) is sent to the methanation step (7), and in the presence of a platinum-based catalyst, the steam is converted to S/C=0.9. Methanation treatment was performed during the supply.Thus, 6808 m3/h of gas with a calorific value of 7300 KCal/Nm3
was gotten.

比較例1 実施例1と同様にして前処理したCOGをPSA法によ
る分離工程に直接供した。
Comparative Example 1 COG pretreated in the same manner as in Example 1 was directly subjected to a separation process using the PSA method.

この場合、水素10008m3/hを得るためにC0G
28608m3/hを要し、且つオフガス19608m
3/hが生成した。このオフガスは、水素を含有しない
ため、燃焼性が悪く、はとんど利用価値がないので、燃
焼後大気に放出した。
In this case, to obtain 10008 m3/h of hydrogen, C0G
Requires 28,608m3/h and off-gas 19,608m
3/h was generated. Since this off-gas does not contain hydrogen, it has poor combustibility and is of little use value, so it was released into the atmosphere after combustion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の大要を示すフローチャートである。 (1)・・・COGタンク、 (3)・・・圧縮工程、 (5)・・・前処理工程、 (7)・・・メタン化工程、 (9)・・・精製工程、 (11)・・・水蒸気改質工程、 (13)・・・CO変成工程、 (15)・・・PSA法による分離工程。 (以 上) FIG. 1 is a flowchart outlining the invention. (1)...COG tank, (3)...compression step, (5)...pretreatment step, (7)...Methanation step, (9)...Refining process, (11)...steam reforming step, (13)...CO metamorphosis process, (15) Separation step by PSA method. (that's all)

Claims (1)

【特許請求の範囲】 [1](i)コークス炉ガスを脱硫、脱酸素、水洗等の
前処理に供した後、 (ii)該コークス炉ガスの一部を水蒸気改質処理及び
CO変成処理し、次いでプレツシヤースイングアドソー
プション法により水素を回収し、 (iii)上記コークス炉ガスの残部をメタン化処理及
び精製して合成天然ガスを得る ことを特徴とするコークス炉ガスを原料とする水素ガス
の製造方法。 [2]プレッシャースイングアドソープション法により
分離されたオフガスを水蒸気改質における熱源材料とし
て使用する特許請求の範囲第1項の方法。
[Claims] [1] (i) After subjecting the coke oven gas to pretreatment such as desulfurization, deoxidation, and water washing, (ii) subjecting a portion of the coke oven gas to steam reforming treatment and CO conversion treatment. and then recovering hydrogen by a pressure swing adsorption method, and (iii) methanating and refining the remainder of the coke oven gas to obtain synthetic natural gas. A method for producing hydrogen gas. [2] The method according to claim 1, wherein the off-gas separated by the pressure swing adsorption method is used as a heat source material in steam reforming.
JP29646085A 1985-12-24 1985-12-24 Production of hydrogen gas using coke oven gas as raw material Pending JPS62153102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29646085A JPS62153102A (en) 1985-12-24 1985-12-24 Production of hydrogen gas using coke oven gas as raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29646085A JPS62153102A (en) 1985-12-24 1985-12-24 Production of hydrogen gas using coke oven gas as raw material

Publications (1)

Publication Number Publication Date
JPS62153102A true JPS62153102A (en) 1987-07-08

Family

ID=17833836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29646085A Pending JPS62153102A (en) 1985-12-24 1985-12-24 Production of hydrogen gas using coke oven gas as raw material

Country Status (1)

Country Link
JP (1) JPS62153102A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045366A (en) * 2005-08-11 2007-02-22 Bridgestone Corp Pneumatic radial tire for motorcycle
EP1967491A3 (en) * 2007-03-06 2008-10-01 Linde Aktiengesellschaft Method and device for separating hydrogen from gas streams containing oxygen
JP2008239443A (en) * 2007-03-28 2008-10-09 Mitsubishi Chemicals Corp Method and system for producing synthesis gas
JP2011116595A (en) * 2009-12-04 2011-06-16 Mitsubishi Chemicals Corp Method and apparatus for producing reformed gas
JP2011213545A (en) * 2010-03-31 2011-10-27 Nippon Steel Corp Method for producing synthesis gas and method for producing reduced iron
JP2012218964A (en) * 2011-04-07 2012-11-12 Aienji:Kk Cog hydrogen recovery apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194705A (en) * 1982-05-04 1983-11-12 Osaka Gas Co Ltd Preparation of hydrogen using coal gas as raw material
JPS59199501A (en) * 1983-04-27 1984-11-12 Res Assoc Residual Oil Process<Rarop> Preparation of hydrogen
JPS60197793A (en) * 1984-03-19 1985-10-07 Kansai Coke & Chem Co Ltd Preparation of synthetic natural gas from coke oven gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194705A (en) * 1982-05-04 1983-11-12 Osaka Gas Co Ltd Preparation of hydrogen using coal gas as raw material
JPS59199501A (en) * 1983-04-27 1984-11-12 Res Assoc Residual Oil Process<Rarop> Preparation of hydrogen
JPS60197793A (en) * 1984-03-19 1985-10-07 Kansai Coke & Chem Co Ltd Preparation of synthetic natural gas from coke oven gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045366A (en) * 2005-08-11 2007-02-22 Bridgestone Corp Pneumatic radial tire for motorcycle
EP1967491A3 (en) * 2007-03-06 2008-10-01 Linde Aktiengesellschaft Method and device for separating hydrogen from gas streams containing oxygen
JP2008239443A (en) * 2007-03-28 2008-10-09 Mitsubishi Chemicals Corp Method and system for producing synthesis gas
JP2011116595A (en) * 2009-12-04 2011-06-16 Mitsubishi Chemicals Corp Method and apparatus for producing reformed gas
JP2011213545A (en) * 2010-03-31 2011-10-27 Nippon Steel Corp Method for producing synthesis gas and method for producing reduced iron
JP2012218964A (en) * 2011-04-07 2012-11-12 Aienji:Kk Cog hydrogen recovery apparatus

Similar Documents

Publication Publication Date Title
US6379645B1 (en) Production of hydrogen using methanation and pressure swing adsorption
US7004985B2 (en) Recycle of hydrogen from hydroprocessing purge gas
JP3638618B2 (en) Production method of high purity hydrogen
JP2007500115A (en) Process for producing hydrogen from methane-containing gas, in particular natural gas, and system for carrying out the process
KR20070100962A (en) Method for producing syngas with low carbon dioxide emission
JPS61275101A (en) Manufacture of chemical substance
JPS62153102A (en) Production of hydrogen gas using coke oven gas as raw material
JPS6129328B2 (en)
JPH0261410B2 (en)
JP4187569B2 (en) Hydrogen production equipment
JPS6039050B2 (en) Methanol manufacturing method
JPH04200713A (en) Manufacture of high-purity carbon monoxide
JPH04357101A (en) Production of hydrogen gas from coke furnace gas
JPH04280080A (en) Pretreatment of fuel cell material
JPH0517163B2 (en)
JPH07115845B2 (en) Method for producing hydrogen and carbon monoxide
CN218853934U (en) Carbon dioxide adjustable system for preparing reducing gas of shaft furnace by coke oven gas
JPH06248275A (en) Apparatus for producing substitute natural gas
CN218811562U (en) System for preparing reducing gas by coke oven gas coupling shaft furnace conversion
CN218811560U (en) Decarbonization and process gas recycling system for reducing gas of coke oven gas preparation shaft furnace
CN213895742U (en) Shaft furnace reducing gas preparation and desorption gas self-heating system
JPS5811591A (en) Preparation of high calorie gas from coal gas as raw material
US4395355A (en) Process and apparatus for treating a pressurized feed stream capable of undergoing an endothermic reaction
JPS60197793A (en) Preparation of synthetic natural gas from coke oven gas
EP3626328A1 (en) Method for separating a gas mixture by pressure swing adsorption