JPH0261410B2 - - Google Patents

Info

Publication number
JPH0261410B2
JPH0261410B2 JP57222147A JP22214782A JPH0261410B2 JP H0261410 B2 JPH0261410 B2 JP H0261410B2 JP 57222147 A JP57222147 A JP 57222147A JP 22214782 A JP22214782 A JP 22214782A JP H0261410 B2 JPH0261410 B2 JP H0261410B2
Authority
JP
Japan
Prior art keywords
gas
reformed gas
producing
catalyst
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57222147A
Other languages
Japanese (ja)
Other versions
JPS59116114A (en
Inventor
Akio Hayashi
Isami Oooka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHII TETSUKOSHO KK
OOSAKA GASU KK
Original Assignee
ISHII TETSUKOSHO KK
OOSAKA GASU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHII TETSUKOSHO KK, OOSAKA GASU KK filed Critical ISHII TETSUKOSHO KK
Priority to JP57222147A priority Critical patent/JPS59116114A/en
Publication of JPS59116114A publication Critical patent/JPS59116114A/en
Publication of JPH0261410B2 publication Critical patent/JPH0261410B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Industrial Gases (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ナフサやLPG、天然ガスなどの
炭化水素と水蒸気および二酸化炭素、つまりCO2
とを接触反応させて改質ガスを発生させ、その改
質ガスを圧縮し、脱二酸化炭素装置にかけてCO2
を回収するとともに、改質ガスを深冷分離装置に
かけて工業的に有利な高純度の一酸化炭素ガス、
つまり、COガスを製造する方法に関するもので
ある。
[Detailed Description of the Invention] (Industrial Application Field) This invention is a method for combining hydrocarbons such as naphtha, LPG, and natural gas with water vapor and carbon dioxide, that is, CO 2
A catalytic reaction is carried out to generate reformed gas, the reformed gas is compressed, and the CO 2
At the same time, the reformed gas is passed through a cryogenic separator to produce high-purity carbon monoxide gas, which is industrially advantageous.
In other words, it relates to a method for producing CO gas.

(従来技術) 一酸化炭素が化学工業とくに合成化学工業にお
ける一次原料としてきわめて有用なものであるこ
とは周知である。
(Prior Art) It is well known that carbon monoxide is extremely useful as a primary raw material in the chemical industry, particularly in the synthetic chemical industry.

従来、化学工業原料としての一酸化炭素を生成
する方法としては、石炭を原料とした水性ガスを
深冷分離してCOガスを製造する方法や、コーク
スを原料としそれにCO2および酸素、つまりO2
添加して生成する方法や、炭化水素を原料とし、
それにO2および水蒸気、つまりスチームを添加
し、部分燃焼方式で生成する方法や、さらには、
ナフサや天然ガスなどの炭化水素原料をスチーム
と炭酸ガスとを触媒上において接触分解反応させ
て水素および一酸化炭素を主成分とする混合ガス
として生成するといつた方法がある。
Conventionally, methods for producing carbon monoxide as a raw material for the chemical industry include producing CO gas by cryogenically separating water gas from coal as a raw material, and producing CO gas by using coke as a raw material and CO 2 and oxygen, that is, O 2 , or using hydrocarbons as raw materials.
There is also a method of adding O 2 and water vapor (steam) to it and generating it by partial combustion method, and furthermore,
There is a method in which a hydrocarbon raw material such as naphtha or natural gas is subjected to a catalytic cracking reaction with steam and carbon dioxide gas on a catalyst to produce a mixed gas containing hydrogen and carbon monoxide as main components.

(発明が解決しようとする課題) 従来技術に示されたいずれの方法もランニング
コストが高く、とくに石炭やコークスを原料とす
る方法は公害防止に問題があり、かつハンドリン
グにも問題がある。その結果、合成化学製品の原
料価格の高騰を招き、最終的には化学製品を高騰
させてしまう要因となつている。また、メタノー
ル等の炭化水素の数が1である化学物質C1(シー
ワン)を取扱う事業者、つまり、C1化学事業者
は、1次、2次のオイルシヨツクから、原料を石
炭、重質油でスタートすることに注目している
が、設備としては大型のものが必要となる。
(Problems to be Solved by the Invention) All of the methods shown in the prior art have high running costs, and in particular, methods using coal or coke as raw materials have problems in preventing pollution and in handling. As a result, the price of raw materials for synthetic chemical products increases, which ultimately causes the price of chemical products to soar. In addition, businesses that handle C1 (C1) chemical substances containing one hydrocarbon such as methanol, in other words, C1 chemical businesses, use raw materials such as coal and heavy oil from primary and secondary oil shocks. We are focusing on starting with oil, but this will require large equipment.

最近におけるC1化学の提唱は、こうした背景
の中で、新しい化学製品の開発を含め化学原料を
どうするか、価格問題のひとつとして位置づけら
れているものである。
It is against this background that the recent proposal for C1 chemistry is positioned as one of the price issues, including what to do with chemical raw materials, including the development of new chemical products.

いずれにしてもCOの「より経済的」な製造は、
石油化学原料が高騰するわが国化学工業界にとつ
て重要な課題である。
In any case, a "more economical" production of CO is
This is an important issue for Japan's chemical industry, where prices of petrochemical raw materials are soaring.

(課題を解決するための手段) 本発明はこうした社会的背景の中で効率的な
COガスの製造方法を提供することを目的とする
もので、とくに省エネルギーで設備費が安く、し
かも運転操作の容易なCOガスの製造方法を開発
したものである。
(Means for solving the problem) The present invention provides efficient
The purpose of this project is to provide a CO gas production method that is particularly energy efficient, has low equipment costs, and is easy to operate.

その発明にかかる方法は、改質炉の触媒を改質
ガスの製造に必要な温度にまで加熱する加熱期
と、ナフサやLPG、天然ガスなどの炭化水素と
スチームおよびCO2とを前記改質炉の触媒上で反
応させて改質ガスを生成する製造期とを交互、つ
まり、サイクリツクに繰り返し、さらに、その生
成した改質ガスを圧縮して脱二酸化炭素の脱CO2
装置にかけてCO2を回収するとともに、改質ガス
はさらにCOガスの原料ガスとして、深冷分離装
置にかけて精留し、COガスを製造するというも
のである。
The method according to the invention includes a heating period in which a catalyst in a reforming furnace is heated to a temperature required for producing reformed gas, and a heating period in which a catalyst in a reforming furnace is heated to a temperature required for producing reformed gas, and a hydrocarbon such as naphtha, LPG, or natural gas is heated in the reforming process using steam and CO2 . The production period in which reformed gas is produced by reacting on a catalyst in the furnace is alternately or cyclically repeated, and the produced reformed gas is compressed to remove carbon dioxide and remove CO 2 .
In addition to recovering CO 2 through the equipment, the reformed gas is further used as a raw material gas for CO gas and is then rectified through a cryogenic separator to produce CO gas.

とくに前記改質ガスを生成する製造期に移る前
の加熱期に必要な加熱燃料を深冷分離の工程で得
た水素リツチな改質ガスをリサイクルして利用す
ることにより、改質ガス製造に要する燃料費の経
済性を図つたことにある。
In particular, by recycling and using the hydrogen-rich reformed gas obtained in the cryogenic separation process as the heating fuel required for the heating period before proceeding to the production period for producing the reformed gas, it is possible to produce reformed gas. The aim is to make the required fuel costs more economical.

さらに製造期における原料として、炭化水素と
スチームと前記脱CO2プロセスで得られたCO2
リサイクルして添加し、接触分解反応を行わせ、
一酸化炭素と水素とを主成分とする混合ガスを発
生させ、とくに一酸化炭素の発生量が多くなるよ
う配慮したことにある。
Furthermore, as raw materials in the manufacturing stage, hydrocarbons, steam, and the CO 2 obtained in the above CO 2 removal process are recycled and added, and a catalytic cracking reaction is performed.
A mixed gas containing carbon monoxide and hydrogen as main components is generated, and care is taken to increase the amount of carbon monoxide generated.

(実施例) 以下、本発明製造方法を図で示すフローシート
に基づいて具体的に示す。
(Example) Hereinafter, the manufacturing method of the present invention will be specifically described based on a flow sheet shown in figures.

(1) 改質ガスの製造工程 まず、加熱期として、改質炉1の触媒温度を
改質ガスの製造に必要な温度の700℃〜900℃ま
で加熱する。
(1) Production process of reformed gas First, as a heating period, the catalyst temperature of the reforming furnace 1 is heated to 700°C to 900°C, which is the temperature required for producing reformed gas.

次に、製造期に入り、原料として、炭化水
素、この実施例では、LPGとスチームおよび
CO2ガスとを改質炉内に送り込み、接触分解反
応により改質ガスを生成させる。その際の反応
温度は、吸熱反応であるため触媒温度が低下す
る。
Next, the production stage begins, and the raw materials are hydrocarbons, in this example LPG and steam, and
CO 2 gas is sent into the reforming furnace to generate reformed gas through a catalytic cracking reaction. Since the reaction is an endothermic reaction, the catalyst temperature decreases.

そこで、改質に必要な吸熱反応温度以下に触
媒温度が低下する前に改質ガスの製造を止め、
再度前記触媒を改質に必要な温度まで高める加
熱操作を行う。すなわち、加熱期に移行し、以
下加熱期と製造期とを交互に繰り返し、いわゆ
るサイクリツク式運転によつて改質ガスを製造
する。
Therefore, production of reformed gas is stopped before the catalyst temperature drops below the endothermic reaction temperature required for reforming.
A heating operation is performed again to raise the temperature of the catalyst to the temperature required for reforming. That is, the process shifts to the heating period, and thereafter the heating period and the production period are repeated alternately to produce reformed gas by a so-called cyclic operation.

さらにサイクリツク式プロセスを詳述する
と、このプロセスは、炭化水素を触媒上で改質
する製造期と、触媒を加熱する加熱期を交互に
繰り返す工程で、その反応式は、つぎのように
なる。
To further explain the cyclic process in detail, this process is a process in which a production period in which hydrocarbons are reformed on a catalyst and a heating period in which the catalyst is heated are repeated alternately, and the reaction formula is as follows.

製造期 CxHy+H2O+CO2 →CO+H2+CH4+CO2+H2O(改質) NiO+H2+CO →Ni+H2O+CO2(触媒の還元) 加熱期 CxHy+O2+N2 +O2→CO2+H2O+N2(燃料の燃焼) Ni+O2→NiO(触媒の酸化) この反応式から明らかなように、製造期には
酸化された触媒が還元し、加熱期では、余剰の
空気で触媒が酸化されることとなり、加熱期の
触媒を酸化した酸素は、製造期にCOの生成に
有効に使用されることとなる。
Manufacturing period CxHy+H 2 O+CO 2 →CO+H 2 +CH 4 +CO 2 +H 2 O (reforming) NiO+H 2 +CO →Ni+H 2 O+CO 2 (catalyst reduction) Heating period CxHy+O 2 +N 2 +O 2 →CO 2 +H 2 O+N 2 (fuel (combustion) Ni + O 2 → NiO (oxidation of catalyst) As is clear from this reaction equation, the oxidized catalyst is reduced during the manufacturing stage, and during the heating stage, the catalyst is oxidized by excess air. The oxygen that oxidizes the catalyst during the production stage will be effectively used to generate CO during the manufacturing stage.

なお、厳密には製造期と加熱期との間には、
それぞれ残ガスを改質炉から排出させるパージ
期を置く。
In addition, strictly speaking, between the manufacturing period and the heating period,
There is a purge period in each case in which the remaining gas is discharged from the reforming furnace.

通常、このプロセスは、2基運転して連続運
転できる。
Usually, this process can be operated continuously with two units operating.

(2) 改質ガスよりCO2の回収工程 次に前記製造工程で生成した改質ガスを水封
式スクラバー2を通して冷却し、一旦リリーフ
ホルダー3に貯蔵する。そして、このリリーフ
ホルダー3より改質ガスを引き出し、圧縮機4
にかけて、CO2洗浄塔5へ誘導し、CO2を吸収
する。
(2) Recovery process of CO 2 from reformed gas Next, the reformed gas generated in the above manufacturing process is cooled through a water ring type scrubber 2 and temporarily stored in a relief holder 3. Then, the reformed gas is pulled out from this relief holder 3, and the compressor 4
The CO 2 is then guided to the CO 2 cleaning tower 5 to absorb CO 2 .

CO2を吸収した溶液は、熱交換器6を通して
加熱し、再生塔7でCO2ガスを放出させ、適
時、製造期に改質炉1へ送り込む。
The solution that has absorbed CO 2 is heated through a heat exchanger 6, releases CO 2 gas in a regeneration tower 7, and is sent to the reforming furnace 1 at an appropriate time during the production period.

(3) 改質ガスよりCOガスの分離工程 CO2洗浄塔5を経由した改質ガスを原料ガス
として深冷分離装置12へ誘導する。
(3) Separation step of CO gas from reformed gas The reformed gas that has passed through the CO 2 cleaning tower 5 is guided to the cryogenic separator 12 as a raw material gas.

深冷分離装置12は図に例示するように冷凍
機8、吸着器9、気液分離器10、精留塔11
より構成されている。そこでまず、原料ガスを
冷凍機8により深冷ガスとするとともに、モレ
キユラーシーブ等で構成した吸着器9を通して
水分、不純物を除去したのち気液分離器10を
通して水素ガスを分離し、最終的に精留塔11
によりCOガスを分離し、製品COガスとして回
収する。
The cryogenic separation device 12 includes a refrigerator 8, an adsorber 9, a gas-liquid separator 10, and a rectification column 11, as illustrated in the figure.
It is composed of Therefore, first, the raw material gas is made into a deep-chilled gas by a refrigerator 8, water and impurities are removed by an adsorber 9 made of a molecular sieve, etc., and then hydrogen gas is separated by a gas-liquid separator 10. Rectification tower 11
The CO gas is separated and recovered as product CO gas.

なお、前記気液分離器10において分離した
水素を主成分とするガス、つまり、水素リツチ
な改質ガスは、一部を改質ガス製造工程におけ
る加熱期の加熱燃料として使用し、残りは化学
原料となる。
A portion of the hydrogen-rich gas separated in the gas-liquid separator 10, that is, the hydrogen-rich reformed gas, is used as a heating fuel during the heating period in the reformed gas production process, and the rest is used as a chemical fuel. Becomes raw material.

また、前記気液分離器10において分離した
水素は、精留することによつて純度を高いもの
にすることができる。
Furthermore, the hydrogen separated in the gas-liquid separator 10 can be purified to a high degree by rectification.

下記は、LPGを原料として改質ガスを1時
間当たり6980Nm3生成させた場合の改質ガス
の組成を示すものである。
The following shows the composition of reformed gas when 6980 Nm 3 of reformed gas is produced per hour using LPG as a raw material.

CO2 …3.9% CO …28.5% H2 …64.6% CH4 …1.3% N2 …1.6% これから理解されるように改質ガスの組成
は、一酸化炭素と水素とを主成分とする混合ガ
スである。
CO 2 …3.9% CO …28.5% H 2 …64.6% CH 4 …1.3% N 2 …1.6% As you will understand, the composition of the reformed gas is a mixed gas whose main components are carbon monoxide and hydrogen. It is.

次にこれをスクラバーにより洗浄して脱CO2
処理を施せば、1時間当たり6820Nm3の組成
として、 CO …29.2% H2 …68.8% CH4 …1.0% N2 …1.0% となる。これをさらにCOの原料として深冷分
離処理すると1時間当たりのCOを主成分とし
たガス2000Nm3として次のような組成例とな
る。
Next, this is cleaned with a scrubber to remove CO 2
If the treatment is carried out, the composition becomes 6820Nm 3 per hour: CO...29.2% H2 ...68.8% CH4 ...1.0% N2 ...1.0%. If this is further subjected to cryogenic separation treatment as a raw material for CO, the following composition example will be obtained with 2000Nm 3 of gas containing CO as the main component per hour.

CO …95.0% H2 …1.0% CH4 …3.0% N2 …1.0% きわめて、高純度のCOガスが製造された。 CO...95.0% H2 ...1.0% CH4 ...3.0% N2 ...1.0% Extremely high purity CO gas was produced.

(発明の効果) 本発明によるサイクリツク式のCOガス製造方
法によると以上のように高純度のCOガスが得ら
れるばかりでなく、次のような利点を有するもの
である。
(Effects of the Invention) The cyclic CO gas production method according to the present invention not only provides highly purified CO gas as described above, but also has the following advantages.

(1) サイクリツク式であるためブロセスの操作が
自動操作できる。
(1) Since it is a cyclic type, the process can be operated automatically.

(2) 従来の石炭やコークスを原料とするものと比
較し、紛塵硫黄酸化物などに対する、公害防止
の付帯設備を必要とせず、設備費が安い。
(2) Compared to conventional methods that use coal or coke as raw materials, there is no need for incidental equipment to prevent pollution such as dust sulfur oxides, and equipment costs are low.

(3) 加熱期および製造期に生成ガスである水素リ
ツチなガスおよびCO2ガスをリサイクルして利
用するので、CO純度が高くなり、またランニ
ングコストが安くてすむ。
(3) Since hydrogen-rich gas and CO 2 gas produced during the heating and manufacturing stages are recycled and used, CO purity is high and running costs are low.

(4) 従来の連続式プロセスは改質反応において、
カーボンが多量に析出するのでスチーム比を上
げて運転するので、CO2およびH2生成量が増
加し、またCOの生成量が減少し、さらに未分
解スチーム量が多くプロセス全体としての効率
が低かつたが、本プロセスはサイクリツク方式
であるため、製造期において、もしカーボンが
析出したとしても、加熱期で燃焼させて取り除
くスカーフイングをするのでスチーム比は小さ
く、全体の効率が優れている。
(4) In the conventional continuous process, in the reforming reaction,
Since a large amount of carbon precipitates, the steam ratio is increased, which increases the amount of CO 2 and H 2 produced, and decreases the amount of CO produced. Furthermore, the amount of undecomposed steam is large, reducing the efficiency of the entire process. However, since this process is a cyclic method, even if carbon precipitates during the manufacturing stage, scarfing is performed to burn it off and remove it during the heating stage, so the steam ratio is small and the overall efficiency is excellent.

(5) さらに、本プロセスが加熱期に触媒を酸化し
た酸素を製造期にCOの生成に有効使用するサ
イクリツク方式であるため、従来の連続式プロ
セスのように高価な酸素分離設備を設置した
り、液化酸素を使用する必要がなく、改質反応
を同時に行わせることができるため、従来のプ
ロセスに比して、安価な設備で経済的なガスを
製造することができる。
(5) Furthermore, because this process is a cyclic method in which the oxygen that oxidizes the catalyst during the heating period is effectively used to generate CO during the production period, expensive oxygen separation equipment is not required to be installed as in conventional continuous processes. Since there is no need to use liquefied oxygen and the reforming reaction can be carried out simultaneously, gas can be produced economically with less expensive equipment than in conventional processes.

以上の通り、本発明COガス製造方法は、水素
リツチなガスとともに、高純度のCOガスを得る
ことができるので合成化学原料を製造する方法と
してきわめて有益なものである。
As described above, the method for producing CO gas of the present invention is extremely useful as a method for producing raw materials for synthetic chemicals, since it is possible to obtain hydrogen-rich gas as well as highly purified CO gas.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明に係るCOガス製造方法を実施する
COガス製造プラントのフローシートである。 1……改質炉、2……水封式スクラバー、3…
…リリーフホルダー、4……圧縮機、5……CO2
洗浄塔、6……熱交換器、7……再生塔、8……
冷凍機、9……吸着器、10……気液分離器、1
1……精留塔、12……深冷分離装置。
The figure shows the implementation of the CO gas production method according to the present invention.
This is a flow sheet for a CO gas production plant. 1...Reforming furnace, 2...Water seal scrubber, 3...
...Relief holder, 4...Compressor, 5...CO 2
Washing tower, 6... Heat exchanger, 7... Regeneration tower, 8...
Refrigerator, 9... Adsorption device, 10... Gas-liquid separator, 1
1... Rectification column, 12... Cryogenic separation device.

Claims (1)

【特許請求の範囲】 1 改質炉の触媒を改質ガスの製造に必要な温度
まで加熱する加熱期と、ナフサ等の炭化水素と水
蒸気と二酸化炭素からなる原料を前記改質炉の触
媒上で反応させて改質ガスを生成する製造期とを
交互に繰り返す工程と、該改質ガスを圧縮して脱
二酸化炭素装置にかけて二酸化炭素を回収する工
程と、該改質ガスを深冷分離装置にかけて高純度
の一酸化炭素ガスを製造する工程とを設けたこと
を特徴とするCOガス製造方法。 2 加熱期における加熱燃料として、深冷分離工
程を経て得られた水素リツチな改質ガスをリサイ
クルして利用することを特徴とする特許請求の範
囲第1項記載のCOガス製造方法。 3 製造期における原料として、脱二酸化炭素工
程を経て得られた二酸化炭素をリサイクルして利
用することを特徴とする特許請求の範囲第1項記
載のCOガス製造方法。
[Claims] 1. A heating period in which a catalyst in a reforming furnace is heated to a temperature required for producing reformed gas, and a heating period in which a raw material consisting of hydrocarbons such as naphtha, steam, and carbon dioxide is heated over the catalyst in the reforming furnace. A step in which the reformed gas is compressed and passed through a carbon dioxide removal device to recover carbon dioxide, and a step in which the reformed gas is transferred to a cryogenic separation device. A method for producing CO gas, comprising the steps of: producing high-purity carbon monoxide gas. 2. The method for producing CO gas according to claim 1, characterized in that hydrogen-rich reformed gas obtained through a cryogenic separation step is recycled and used as heating fuel in the heating period. 3. The CO gas production method according to claim 1, characterized in that carbon dioxide obtained through a carbon dioxide removal process is recycled and used as a raw material in the production stage.
JP57222147A 1982-12-20 1982-12-20 Production of gaseous co Granted JPS59116114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57222147A JPS59116114A (en) 1982-12-20 1982-12-20 Production of gaseous co

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57222147A JPS59116114A (en) 1982-12-20 1982-12-20 Production of gaseous co

Publications (2)

Publication Number Publication Date
JPS59116114A JPS59116114A (en) 1984-07-04
JPH0261410B2 true JPH0261410B2 (en) 1990-12-20

Family

ID=16777911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57222147A Granted JPS59116114A (en) 1982-12-20 1982-12-20 Production of gaseous co

Country Status (1)

Country Link
JP (1) JPS59116114A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE65065T1 (en) * 1985-02-13 1991-07-15 Shell Int Research PROCESS FOR PRODUCING A HYDROGEN-CONTAINING GAS FROM CARBON HYDROGEN, WATER VAPOR AND/IF ANY. CARBON DIOXIDE.
EP0291857A3 (en) * 1987-05-18 1990-07-18 Air Products And Chemicals, Inc. Method of carbon monoxide production
FR2648800B1 (en) * 1989-06-27 1991-10-18 Inst Francais Du Petrole DEVICE AND METHOD FOR MANUFACTURING SYNTHETIC GAS BY COMBUSTION AND ITS APPLICATION
JPH03242302A (en) * 1990-02-20 1991-10-29 Mitsubishi Kakoki Kaisha Ltd Production of hydrogen and carbon monoxide
US5102645A (en) * 1990-06-21 1992-04-07 Liquid Carbonic Corporation Method for manufacture of high purity carbon monoxide
JPH0551778U (en) * 1991-12-13 1993-07-09 積水化成品工業株式会社 Buffer packaging material with ventilation holes
US7699907B2 (en) * 2005-08-17 2010-04-20 Air Liquide Process & Construction, Inc. Apparatus and methods for gas separation
US8703089B2 (en) 2010-03-03 2014-04-22 Ino Therapeutics Llc Method and apparatus for the manufacture of high purity carbon monoxide

Also Published As

Publication number Publication date
JPS59116114A (en) 1984-07-04

Similar Documents

Publication Publication Date Title
US6797253B2 (en) Conversion of static sour natural gas to fuels and chemicals
CA1301431C (en) Hydrogen generation and recovery
JP4707665B2 (en) Process for producing hydrogen from methane-containing gas, in particular natural gas, and system for carrying out the process
US4409196A (en) Synthesis gas for ammonia production
RU2166546C1 (en) Method of combination of blast furnace and direct reduction reactor with use of cryogenic rectification
EP0130846B1 (en) Process for the production of ammonia
KR102446845B1 (en) Ammonia Synthesis Gas Manufacturing Method
EP4172105A1 (en) Process for producing hydrogen
JPH0624703A (en) Preparation of high purity hydrogen
US3420633A (en) Removal of impurities from hydrogen
US4159201A (en) Process for producing a carbon monoxide-rich gas
JPH0261410B2 (en)
CA1160844A (en) Synthesis gas for ammonia production
JP3322923B2 (en) Method for producing carbon monoxide and hydrogen
JPH03242302A (en) Production of hydrogen and carbon monoxide
KR20010014504A (en) Use of cryogenic rectification for the production of ammonia
CN115707649A (en) Process for producing H2 and synthesis gas
JPS6039050B2 (en) Methanol manufacturing method
JP2000233918A (en) Production of carbon monoxide
JPS60258294A (en) Desulfurization refining of natural gas
JPH0517163B2 (en)
RU2729790C1 (en) Gas chemical production of hydrogen
JPH03115117A (en) Substance application of residual gas in rare gas apparatus
MX2013010818A (en) Process and system for removing sulfur from sulfur-containing gaseous streams.
JPH06305701A (en) Method for producing hydrogen from hydrocarbon and device therefor