JPH06305701A - Method for producing hydrogen from hydrocarbon and device therefor - Google Patents

Method for producing hydrogen from hydrocarbon and device therefor

Info

Publication number
JPH06305701A
JPH06305701A JP5123330A JP12333093A JPH06305701A JP H06305701 A JPH06305701 A JP H06305701A JP 5123330 A JP5123330 A JP 5123330A JP 12333093 A JP12333093 A JP 12333093A JP H06305701 A JPH06305701 A JP H06305701A
Authority
JP
Japan
Prior art keywords
carbon dioxide
hydrogen
reforming
gas
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5123330A
Other languages
Japanese (ja)
Inventor
Tsugio Kimura
次雄 木村
Takashi Yoshizawa
隆 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Original Assignee
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COSMO SOGO KENKYUSHO KK, Cosmo Oil Co Ltd filed Critical COSMO SOGO KENKYUSHO KK
Priority to JP5123330A priority Critical patent/JPH06305701A/en
Publication of JPH06305701A publication Critical patent/JPH06305701A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • C01B2203/0288Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step containing two CO-shift steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To produce hydrogen from hydrocarbons in good yield by steam- reforming hydrocarbons, CO2-reforming the generated gas and the successively applying shift reaction of CO in the generated gas, CO2 removal and gas refining and recycling CO2. CONSTITUTION:Steam 11 is added to hydrocarbons 6, the mixture is introduced into a steam reformer 1, and a steam reforming reaction takes place. The gas 7 leaving the reformer 1 is introduced into a CO2 reformer 2 to bring about a CO2 reforming reaction. The gas 8 from the reformer 2 is subjected to high- temp. CO conversion and low-temp. CO conversion in a CO2 converter 3. The gas 9 from the converter 3 is introduced into a CO absorber 4 to separate and remove CO2. A requisite amt. 12 of the separated CO2 is circulated to the CO2 reformer 2, and the surplus CO2 13 is discharged. The gas 10 from the absorber 4 is introduced into a pressure-swing adsorber 5 and refined by pressure-swing adsorption. Pure hydrogen is recovered through a hydrogen recovery passage 14, and the impurities are discharged from a discharge passage 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化水素から改質反応
によって水素を製造する方法及び装置に関し、特に灯
油、軽油、重油、減圧残渣等の炭化水素油から高純度の
水素を収率良く製造する方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing hydrogen from a hydrocarbon by a reforming reaction, and particularly, to obtain a highly pure hydrogen from a hydrocarbon oil such as kerosene, light oil, heavy oil, and vacuum residue in a high yield. A manufacturing method and apparatus.

【0002】[0002]

【従来の技術】炭化水素を原料とする水素の製造方法
は、水蒸気改質法と部分酸化法とに大別される。水蒸気
改質法は、原料炭化水素と水蒸気とを触媒の存在下にお
いて高温で反応させる方法である。水蒸気改質法では、
触媒の活性を長期にわたって安定に維持する必要上、原
料中の不純物を除去しておく必要があり、このため原料
として使用可能な炭化水素はナフサ留分より軽質な炭化
水素に限定されている。
2. Description of the Related Art A method for producing hydrogen using hydrocarbon as a raw material is roughly classified into a steam reforming method and a partial oxidation method. The steam reforming method is a method in which a raw material hydrocarbon and steam are reacted at a high temperature in the presence of a catalyst. In the steam reforming method,
Since it is necessary to keep the activity of the catalyst stable over a long period of time, it is necessary to remove impurities in the raw material, and therefore hydrocarbons usable as a raw material are limited to hydrocarbons lighter than the naphtha fraction.

【0003】部分酸化法は、炭化水素を酸素で部分燃焼
し、燃焼によって得られる高温と水蒸気とで残存する炭
化水素を無触媒で改質する方法である。部分酸化法で
は、触媒を用いないので、原料中の不純物の影響を受け
ることがなく、このため軽質炭化水素だけでなく、重質
油や石炭も原料として使用することができる。
The partial oxidation method is a method in which a hydrocarbon is partially combusted with oxygen, and the residual hydrocarbon is reformed without a catalyst due to the high temperature and steam obtained by the combustion. Since the partial oxidation method does not use a catalyst, it is not affected by impurities in the raw material, and therefore not only light hydrocarbons but also heavy oil and coal can be used as raw materials.

【0004】また、最近では、水蒸気改質法と部分酸化
法とを組み合わせた水素製造法によって重質油から水素
を製造することが報告されている(例えば「ペトロテッ
ク、第5巻、第12号、第89〜90頁(1982)」及び「Proceed
ing of 11th World Petroleum Congress(1983)」な
ど)。
Further, recently, it has been reported that hydrogen is produced from heavy oil by a hydrogen production method which is a combination of a steam reforming method and a partial oxidation method (for example, "Petrotech, Vol. 5, No. 12"). No. 89-90 (1982) "and" Proceed
ing of 11th World Petroleum Congress (1983) ").

【0005】上記のように、従来の炭化水素からの水素
製造方法は、水蒸気改質法、部分酸化法あるいはこれら
を組み合わせた方法がある。この場合、部分酸化法での
発生ガスはH2/CO比がほぼ50/50であるのに対
し、水蒸気改質法での発生ガスは水素リッチであり、ま
た水蒸気改質法は部分酸化法に比べて単位原料当たりか
ら生成する水素量が多いという特徴を有している。
As described above, conventional methods for producing hydrogen from hydrocarbons include a steam reforming method, a partial oxidation method, or a combination of these methods. In this case, the gas generated by the partial oxidation method has an H 2 / CO ratio of about 50/50, whereas the gas generated by the steam reforming method is rich in hydrogen, and the steam reforming method uses the partial oxidation method. It has a feature that the amount of hydrogen generated per unit raw material is larger than that of

【0006】[0006]

【発明が解決しようとする課題】前述したように、水蒸
気改質法は、水素リッチな発生ガスが得られ、かつ単位
原料当たりから得られる水素量が多いという利点を有し
ている。本発明は、このような点に鑑みてなされたもの
で、水蒸気改質法を組み込んだ改質法により炭化水素、
特に灯油、軽油、重油、減圧残渣等の炭化水素油から水
素を収率良く製造することができる方法及び装置を提供
することを目的とする。
As described above, the steam reforming method has an advantage that a hydrogen-rich generated gas is obtained and a large amount of hydrogen is obtained from a unit raw material. The present invention has been made in view of such a point, and a hydrocarbon by a reforming method incorporating a steam reforming method,
In particular, it is an object of the present invention to provide a method and an apparatus capable of producing hydrogen in good yield from hydrocarbon oil such as kerosene, light oil, heavy oil, and vacuum residue.

【0007】[0007]

【課題を解決するための手段及びその作用】本発明者ら
は、上記目的を達成するために鋭意研究を行った結果、
第1段で原料炭化水素の水蒸気改質、第2段で第1段に
おける生成ガスの二酸化炭素改質を行う2段改質法を採
用し、さらにそれらの後段で生成ガス中の一酸化炭素の
シフト反応、生成ガスからの二酸化炭素の分離除去、生
成ガスの精製を順次行うとともに、後段で分離した二酸
化炭素を第2段の二酸化炭素改質工程に循環して使用す
ることにより、単位原料当たりからの水素の生成量、水
素の回収率を高めて水素を収率良く製造することがで
き、しかも系外への二酸化炭素の排出量を少なくできる
ことを知見し、本発明を完成するに至った。
Means for Solving the Problem and Its Action As a result of intensive research conducted by the present inventors to achieve the above object,
A two-stage reforming method is employed in which steam reforming of raw material hydrocarbons is carried out in the first stage, and carbon dioxide reforming of the product gas in the first stage is carried out in the second stage, and carbon monoxide in the product gas is further provided in the subsequent stages. Shift reaction, separation and removal of carbon dioxide from the produced gas, and purification of the produced gas are carried out in sequence, and the carbon dioxide separated in the latter stage is circulated and used in the second stage carbon dioxide reforming step, whereby a unit raw material is obtained. It was found that the amount of hydrogen produced per hit, the recovery rate of hydrogen can be increased to produce hydrogen in a high yield, and the amount of carbon dioxide emission to the outside of the system can be reduced, and the present invention has been completed. It was

【0008】したがって、本発明は、下記工程(イ)〜
(ヘ)を具備する炭化水素からの水素製造方法を提供す
る。 (イ)原料炭化水素に水蒸気を添加して水蒸気改質反応
を行う水蒸気改質工程 (ロ)前記水蒸気改質工程(イ)からの生成ガスに二酸
化炭素を添加し、改質触媒を接触させて水素含有ガスを
得る二酸化炭素改質工程 (ハ)前記二酸化炭素改質工程(ロ)からの水素含有ガ
スをシフト反応触媒と接触させて該水素含有ガスに含ま
れる一酸化炭素を二酸化炭素に転換するシフト反応工程 (ニ)前記シフト反応工程(ハ)からの生成ガスに含ま
れる二酸化炭素を分離除去して水素含有ガスを得る二酸
化炭素吸収工程 (ホ)前記二酸化炭素吸収工程(ニ)からの水素含有ガ
スを精製して純水素を得る水素回収工程 (ヘ)前記二酸化炭素吸収工程(ニ)で分離除去した二
酸化炭素を前記二酸化炭素改質工程(ロ)に循環する二
酸化炭素循環工程
Therefore, the present invention provides the following steps (a) to
There is provided a method for producing hydrogen from a hydrocarbon, which comprises (f). (A) Steam reforming step in which steam is added to the raw material hydrocarbon to carry out a steam reforming reaction. (B) Carbon dioxide is added to the gas produced from the steam reforming step (a), and a reforming catalyst is brought into contact. Carbon dioxide reforming step for obtaining hydrogen-containing gas (c) The hydrogen-containing gas from the carbon dioxide reforming step (b) is brought into contact with a shift reaction catalyst to convert carbon monoxide contained in the hydrogen-containing gas into carbon dioxide. Shift reaction step for conversion (d) Carbon dioxide absorption step for obtaining hydrogen-containing gas by separating and removing carbon dioxide contained in the gas produced from the shift reaction step (c) (e) From the carbon dioxide absorption step (d) For recovering pure hydrogen by purifying the hydrogen-containing gas in step (f) Carbon dioxide circulation step for circulating the carbon dioxide separated and removed in the carbon dioxide absorption step (d) to the carbon dioxide reforming step (b)

【0009】また、本発明は、上記方法を実施するため
の装置として、下記構成要素(1)〜(6)を備えた炭
化水素からの水素製造装置を提供する。 (1)原料炭化水素の水蒸気改質反応を行う水蒸気改質
部 (2)前記水蒸気改質部(1)で生じた生成ガスの二酸
化炭素改質反応を改質触媒の存在下で行う二酸化炭素改
質部 (3)前記二酸化炭素改質部(3)で生じた水素含有ガ
スのシフト反応をシフト反応触媒の存在下で行うシフト
反応部 (4)前記シフト反応部(3)で生じた生成ガス中の二
酸化炭素を分離除去する二酸化炭素吸収部 (5)前記二酸化炭素吸収工程(4)で生じた水素含有
ガスを精製して純水素を回収する水素回収部 (6)前記二酸化炭素吸収工程(ニ)で分離除去した二
酸化炭素を前記二酸化炭素改質工程(ロ)に循環する二
酸化炭素循環手段
The present invention also provides a hydrogen production device from hydrocarbons, which comprises the following components (1) to (6) as a device for carrying out the above method. (1) Steam reforming section for carrying out steam reforming reaction of raw material hydrocarbon (2) Carbon dioxide for carrying out carbon dioxide reforming reaction of produced gas generated in the steam reforming section (1) in the presence of a reforming catalyst Reforming section (3) Shift reaction section for carrying out shift reaction of hydrogen-containing gas produced in the carbon dioxide reforming section (3) in the presence of a shift reaction catalyst (4) Generation produced in the shift reaction section (3) Carbon dioxide absorption part for separating and removing carbon dioxide in gas (5) Hydrogen recovery part for purifying hydrogen-containing gas produced in the carbon dioxide absorption step (4) to recover pure hydrogen (6) Carbon dioxide absorption step Carbon dioxide circulation means for circulating the carbon dioxide separated and removed in (d) to the carbon dioxide reforming step (b)

【0010】以下、本発明の水素製造方法をさらに詳し
く説明する。水蒸気改質工程 第1段の水蒸気改質工程では、原料炭化水素に水蒸気を
添加して水蒸気改質反応を行う。これにより、通常、メ
タンを主体とする炭化水素ガスが生成される。ここで、
原料炭化水素としては、ナフサ、灯油、軽油、重油、減
圧残渣、メタノール等の任意の炭化水素類を使用するこ
とができ、特に灯油、軽油、重油、減圧残渣等の炭化水
素油を有効に使用することができる。本工程における水
蒸気改質反応の反応条件に限定はないが、通常、原料と
水蒸気とを圧力1〜10kg/cm2、好ましくは2〜6kg/c
m2、温度400〜800℃、好ましくは500〜600
℃、水蒸気/炭素比(モル/原子比)1〜6、好ましく
は2〜3で反応させる。また、触媒は通常は用いない
が、必要に応じ例えばアルミナ担体にアルカリ土類金属
等を添加した触媒を使用してもよい。本工程で用いる反
応装置としては、管型反応器を好適に使用することがで
きる。
The hydrogen production method of the present invention will be described in more detail below. In the steam reforming process of the first stage, the steam reforming reaction is performed by adding steam to the raw material hydrocarbon. As a result, a hydrocarbon gas mainly containing methane is usually produced. here,
As the raw material hydrocarbon, any hydrocarbon such as naphtha, kerosene, light oil, heavy oil, reduced pressure residue, methanol, etc. can be used, and particularly hydrocarbon oil such as kerosene, light oil, heavy oil, reduced pressure residue is effectively used. can do. The reaction conditions of the steam reforming reaction in this step are not limited, but usually the pressure of the raw material and steam is 1 to 10 kg / cm 2 , preferably 2 to 6 kg / c.
m 2 , temperature 400 to 800 ° C., preferably 500 to 600
The reaction is conducted at a temperature of 0 ° C. and a steam / carbon ratio (mol / atomic ratio) of 1 to 6, preferably 2 to 3. Although a catalyst is not usually used, a catalyst obtained by adding an alkaline earth metal or the like to an alumina carrier may be used if necessary. A tubular reactor can be preferably used as the reaction device used in this step.

【0011】二酸化炭素改質工程 第2段の二酸化炭素改質工程では、第1段の水蒸気改質
工程からの生成ガスに後述する二酸化炭素吸収工程から
循環された二酸化炭素を添加し、改質触媒と接触させて
二酸化炭素改質を行うことにより、水素含有ガスを得
る。本工程における二酸化炭素改質反応の反応条件に制
限はないが、改質触媒の存在下において、通常、水蒸気
改質工程からの生成ガスと二酸化炭素とを圧力1〜15
kg/cm2、好ましくは2〜6kg/cm2、温度700〜100
0℃、好ましくは800〜1000℃で反応させる。二
酸化炭素吸収工程からの二酸化炭素の循環量は、水蒸気
改質工程からの生成ガス1モルに対し1〜5モル、好ま
しくは3〜4モルである。改質触媒としては、公知の触
媒、例えばSiO2からなる担体にNi、Rh、Ru等
の金属を含浸法などの通常の方法で5重量%程度担持さ
せたものを使用することができる。触媒は、使用に先立
ち、500〜800℃で5〜6時間、H2O及びH2(H
2O/H2=6モル)で還元処理することができる。さら
に、触媒床を通過するガスはGHSV500〜2500
-1で処理することができる。また、原料として硫黄化
合物等の不純物を多量に含有する重質油等を用いる場合
は、第1段の水蒸気改質工程の後に硫黄化合物を除去す
る脱硫工程を設けることが好ましい。
Carbon Dioxide Reforming Step In the second carbon dioxide reforming step, the carbon dioxide circulated from the carbon dioxide absorption step described below is added to the product gas from the first steam reforming step to reform the gas. A hydrogen-containing gas is obtained by contacting with a catalyst and reforming carbon dioxide. The reaction conditions of the carbon dioxide reforming reaction in this step are not limited, but in the presence of the reforming catalyst, the product gas from the steam reforming step and the carbon dioxide are usually at a pressure of 1 to 15.
kg / cm 2, preferably 2~6kg / cm 2, temperature 700 to 100
The reaction is performed at 0 ° C, preferably 800 to 1000 ° C. The circulating amount of carbon dioxide from the carbon dioxide absorption step is 1 to 5 moles, preferably 3 to 4 moles, relative to 1 mole of the produced gas from the steam reforming step. As the reforming catalyst, it is possible to use a known catalyst, for example, a support made of SiO 2 on which a metal such as Ni, Rh or Ru is supported by about 5% by weight by an ordinary method such as an impregnation method. Prior to use, the catalyst was heated at 500-800 ° C. for 5-6 hours to remove H 2 O and H 2 (H 2
The reduction treatment can be carried out with 2 O / H 2 = 6 mol). Further, the gas passing through the catalyst bed is GHSV500-2500.
It can be processed with h −1 . When a heavy oil containing a large amount of impurities such as a sulfur compound is used as a raw material, it is preferable to provide a desulfurization step for removing the sulfur compound after the first steam reforming step.

【0012】シフト反応工程 シフト反応工程では、二酸化炭素改質工程からの水素含
有ガスに含まれる一酸化炭素のシフト反応をシフト反応
触媒の存在下で行う。これにより、一酸化炭素は二酸化
炭素と水素に変成される。本工程において、シフト反応
の方法は特に限られないが、高温CO変成及び低温CO
変成を順次行う2段変成を好適に採用できる。高温CO
変成では、通常、圧力10〜40kg/cm2G、好ましくは
25〜35kg/cm2G、温度350〜450℃、好ましく
は370〜400℃の条件でシフト反応を行い、ガス中
のCO濃度を2〜4容量%に低下させる。高温CO変成
に使われるシフト反応触媒は、通常Fe、Crの酸化物
である。低温CO変成では、通常、圧力10〜40kg/c
m2G、好ましくは25〜35kg/cm2G、温度190〜2
40℃、好ましくは200〜220℃の条件でシフト反
応を行い、ガス中のCO濃度を0.2〜0.5容量%ま
で低下させる。低温CO変成に使われるシフト反応触媒
は、通常Cu−Zn等の酸化物である。このCu-Zn
系の触媒は硫黄の影響を極めて敏感に受けるため、低温
CO変成工程にガスを導入する前にZnO吸着剤等でガ
ス中の硫化水素を除去しておくことが望ましい。
Shift Reaction Step In the shift reaction step, the shift reaction of carbon monoxide contained in the hydrogen-containing gas from the carbon dioxide reforming step is carried out in the presence of the shift reaction catalyst. As a result, carbon monoxide is transformed into carbon dioxide and hydrogen. In this step, the method of shift reaction is not particularly limited, but high temperature CO conversion and low temperature CO conversion
A two-stage metamorphism in which the metamorphism is sequentially performed can be preferably adopted. High temperature CO
In the transformation, the shift reaction is usually carried out under the conditions of a pressure of 10 to 40 kg / cm 2 G, preferably 25 to 35 kg / cm 2 G, and a temperature of 350 to 450 ° C., preferably 370 to 400 ° C. to change the CO concentration in the gas. Reduce to 2-4% by volume. The shift reaction catalyst used for high temperature CO shift conversion is usually an oxide of Fe or Cr. In low temperature CO shift, pressure is usually 10-40kg / c
m 2 G, preferably 25 to 35 kg / cm 2 G, temperature 190 to 2
The shift reaction is carried out under the conditions of 40 ° C., preferably 200 to 220 ° C., to reduce the CO concentration in the gas to 0.2 to 0.5% by volume. The shift reaction catalyst used for low temperature CO shift conversion is usually an oxide such as Cu-Zn. This Cu-Zn
Since the system catalyst is extremely sensitive to the influence of sulfur, it is desirable to remove hydrogen sulfide from the gas with a ZnO adsorbent or the like before introducing the gas into the low temperature CO shift process.

【0013】二酸化炭素吸収工程 二酸化炭素吸収工程では、シフト反応工程で生じた生成
ガスから二酸化炭素を分離除去し、水素含有ガスを得
る。本工程における二酸化炭素除去手段としては、通
常、MEA法、熱炭酸カリ法等が採用される。MEA法
は、モノエタノールアミンの10〜20%水溶液を吸収
溶剤として二酸化炭素の吸収を行う。熱炭酸カリ法は、
炭酸カリウムを主体とした熱水溶剤を吸収溶剤として二
酸化炭素の吸収を行う。本工程では、一酸化炭素シフト
反応工程で生じたガス中の二酸化炭素を濃度0.1〜
0.5容量%まで除去することが望ましい。また、本工
程で分離除去した二酸化炭素は第2段の二酸化炭素改質
工程に循環され、水蒸気改質工程で生じた生成ガスの二
酸化炭素改質反応に使用される。
Carbon dioxide absorption step In the carbon dioxide absorption step, carbon dioxide is separated and removed from the product gas generated in the shift reaction step to obtain a hydrogen-containing gas. As the carbon dioxide removing means in this step, the MEA method, the hot potassium carbonate method or the like is usually adopted. The MEA method absorbs carbon dioxide using a 10 to 20% aqueous solution of monoethanolamine as an absorbing solvent. The hot potassium carbonate method is
Carbon dioxide is absorbed using a hot water solvent mainly composed of potassium carbonate as an absorbing solvent. In this step, the concentration of carbon dioxide in the gas generated in the carbon monoxide shift reaction step is 0.1 to 0.1%.
It is desirable to remove up to 0.5% by volume. Further, the carbon dioxide separated and removed in this step is circulated to the second-stage carbon dioxide reforming step and used for the carbon dioxide reforming reaction of the produced gas generated in the steam reforming step.

【0014】水素回収工程 本工程では、二酸化炭素吸収工程で生じた水素含有ガス
を精製して純水素を得る。本工程におけるガス精製手段
としては、圧力変動吸着法(PSA法)が好適に採用さ
れる。圧力変動吸着法では、吸着剤に対する水素と他の
不純物との物理吸着能の差を用いてガス精製を行う。通
常、圧力変動吸着法を用いたガス精製装置は4塔以上の
吸着塔より構成され、塔内にはモレキュラーシーブ又は
活性炭等が吸着材として充填される。ガス中の水素以外
の不純物は高圧下で吸着剤に吸着され、高純度の水素ガ
スが得られる。
Hydrogen recovery step In this step, the hydrogen-containing gas produced in the carbon dioxide absorption step is purified to obtain pure hydrogen. The pressure fluctuation adsorption method (PSA method) is preferably adopted as the gas purification means in this step. In the pressure fluctuation adsorption method, gas purification is performed by using the difference in physical adsorption ability between hydrogen and other impurities with respect to the adsorbent. Usually, a gas purification apparatus using the pressure fluctuation adsorption method is composed of four or more adsorption towers, and molecular sieves or activated carbon is filled as an adsorbent in the towers. Impurities other than hydrogen in the gas are adsorbed by the adsorbent under high pressure to obtain high-purity hydrogen gas.

【0015】二酸化炭素循環工程 本工程では、二酸化炭素吸収工程で除去した二酸化炭素
を二酸化炭素改質工程に循環する。循環した二酸化炭素
は、二酸化炭素改質工程でリサイクル使用される。
Carbon Dioxide Circulation Step In this step, the carbon dioxide removed in the carbon dioxide absorption step is circulated to the carbon dioxide reforming step. The circulated carbon dioxide is recycled and used in the carbon dioxide reforming process.

【0016】[0016]

【作用】本発明は、水蒸気改質反応(第1段)及び系内
で生成する二酸化炭素を用いた二酸化炭素改質反応(第
2段)の2段改質反応により、炭化水素から水素を製造
するものである。すなわち、第1段で生成したガス(炭
化水素ガス)を、第2段で次式 Cmn + CO2 → CO + H2 に示すように二酸化炭素で改質し、生成した一酸化炭素
を次式 CO + H2O → CO2 + H2 のようにシフト反応によって二酸化炭素に転換するた
め、水素生成量が多くなる。しかも、生成した二酸化炭
素を分離除去して循環し、第2段の二酸化炭素改質反応
に利用するため、水素回収率が高まる。
The present invention produces hydrogen from hydrocarbons by a two-stage reforming reaction of a steam reforming reaction (first stage) and a carbon dioxide reforming reaction (second stage) using carbon dioxide produced in the system. It is manufactured. That is, the gas (hydrocarbon gas) generated in the first stage is reformed with carbon dioxide in the second stage as shown by the following formula C m H n + CO 2 → CO + H 2 to generate carbon monoxide. Is converted into carbon dioxide by a shift reaction as in the following formula CO + H 2 O → CO 2 + H 2 , so that the amount of hydrogen produced increases. Moreover, since the generated carbon dioxide is separated and removed and circulated and used for the second-stage carbon dioxide reforming reaction, the hydrogen recovery rate is increased.

【0017】[0017]

【実施例】次に、実施例により本発明を具体的に示す
が、本発明は下記実施例に限定されるものではない。実施例 図1は本発明に係る炭化水素からの水素製造装置の一実
施例を示す概略構成図である。本実施例の水素製造装置
は、上流側から下流側にかけて、水蒸気改質装置(水蒸
気改質部)1、二酸化炭素改質装置(二酸化炭素改質
部)2、CO変成装置(シフト反応部)3、MEA法に
よるCO2吸収装置(二酸化炭素吸収部)4、圧力変動
吸着装置(水素回収部)5を順次備えている。
EXAMPLES Next, the present invention will be illustrated concretely by examples, but the present invention is not limited to the following examples. Example FIG. 1 is a schematic configuration diagram showing an example of a hydrogen producing device from hydrocarbons according to the present invention. The hydrogen production apparatus of the present embodiment has a steam reforming apparatus (steam reforming section) 1, a carbon dioxide reforming apparatus (carbon dioxide reforming section) 2, a CO shift conversion apparatus (shift reaction section) from the upstream side to the downstream side. 3, a CO 2 absorption device (carbon dioxide absorption part) 4 by the MEA method, and a pressure fluctuation adsorption device (hydrogen recovery part) 5 are sequentially provided.

【0018】水蒸気改質装置1には原料導入路6が連結
されているとともに、前記各装置1、2、3、4、5の
間にはそれぞれガス移送路7、8、9、10が設けられ
ている。また、原料導入路6には水蒸気導入路11が連
結され、CO2吸収装置4と二酸化炭素改質装置2との
間にはCO2吸収装置4から二酸化炭素改質装置2にC
2を循環するCO2循環路(二酸化炭素循環手段)12
が設けられている。CO2吸収装置4には排出路13が
連結され、圧力変動吸着装置5には水素回収路14及び
排出路15が連結されている。
A raw material introduction passage 6 is connected to the steam reforming apparatus 1, and gas transfer passages 7, 8, 9, 10 are provided between the respective apparatuses 1, 2, 3, 4, 5. Has been. Further, a steam introducing passage 11 is connected to the raw material introducing passage 6, and the CO 2 absorbing device 4 and the carbon dioxide reforming device 2 are connected to the C 2 between the CO 2 absorbing device 4 and the carbon dioxide reforming device 2.
CO 2 circulation path (carbon dioxide circulation means) for circulating O 2 12
Is provided. A discharge passage 13 is connected to the CO 2 absorption device 4, and a hydrogen recovery passage 14 and a discharge passage 15 are connected to the pressure fluctuation adsorption device 5.

【0019】二酸化炭素改質装置2には、SiO2担体
にNi、Rh、Ru等を担持させた改質触媒が充填され
ている。CO変成装置3は、前段の高温CO変成部及び
後段の低温CO変成部に分けられ、高温CO変成部には
シフト反応触媒としてFe、Crの酸化物が充填され、
低温CO変成部にはシフト反応触媒としてCu−Zn等
の酸化物が充填されている。また、圧力変動吸着装置5
には、吸着材としてモレキュラーシーブが充填されてい
The carbon dioxide reforming apparatus 2 is filled with a reforming catalyst in which Ni, Rh, Ru, etc. are supported on a SiO 2 carrier. The CO shift converter 3 is divided into a high temperature CO shift section in the front stage and a low temperature CO shift section in the rear stage, and the high temperature CO shift section is filled with oxides of Fe and Cr as shift reaction catalysts.
An oxide such as Cu-Zn is filled in the low-temperature CO shift converter as a shift reaction catalyst. In addition, the pressure fluctuation adsorption device 5
Is filled with molecular sieve as adsorbent

【0020】本実施例の水素製造装置を用いた水素の製
造は、下記〜の手順で行われる。 原料導入路6を流れる炭化水素に水蒸気導入路11か
ら水蒸気が添加されるとともに、これら炭化水素及び水
蒸気が蒸気改質装置1に導入され、水蒸気改質反応が行
われる。 水蒸気改質装置1を出たガスはガス移送路7を通して
二酸化炭素改質装置2に導入され、二酸化炭素改質反応
が行われる。 二酸化炭素改質装置2を出たガスはガス移送路8を通
してCO変成装置3に導入され、高温CO変成及び低温
CO変成が順次行われる。 CO変成装置3を出たガスはガス移送路9を通してC
2吸収装置4に導入され、MEA法によってCO2が分
離除去される。分離除去したCO2の必要量はCO2循環
路12を通して二酸化炭素改質装置2に循環される。余
分なCO2は排出路13から排出される。 CO2吸収装置4を出たガスはガス移送路10を通し
て圧力変動吸着装置5に導入され、圧力変動吸着法によ
って精製される。純水素は水素回収路14を通して回収
され、不純物は排出路15から排出される。
The production of hydrogen using the hydrogen production apparatus of this embodiment is carried out according to the following procedures. Steam is added to the hydrocarbons flowing through the raw material introducing passage 6 from the steam introducing passage 11, and the hydrocarbons and steam are introduced into the steam reforming apparatus 1 to perform a steam reforming reaction. The gas that has left the steam reforming device 1 is introduced into the carbon dioxide reforming device 2 through the gas transfer path 7, and the carbon dioxide reforming reaction is performed. The gas discharged from the carbon dioxide reformer 2 is introduced into the CO shift converter 3 through the gas transfer passage 8, and the high temperature CO shift and the low temperature CO shift are sequentially performed. The gas leaving the CO shift converter 3 passes through the gas transfer path 9 to C
It is introduced into the O 2 absorber 4, and CO 2 is separated and removed by the MEA method. The required amount of the separated and removed CO 2 is recycled to the carbon dioxide reformer 2 through the CO 2 circulation path 12. Excess CO 2 is discharged from the discharge passage 13. The gas that has left the CO 2 absorption device 4 is introduced into the pressure fluctuation adsorption device 5 through the gas transfer passage 10 and purified by the pressure fluctuation adsorption method. Pure hydrogen is recovered through the hydrogen recovery passage 14, and impurities are discharged through the discharge passage 15.

【0021】次いで、本実施例の水素製造装置による製
造例を示す。製造例 原料炭化水素として減圧残渣油を用い、水蒸気改質装置
1において圧力5.0kg/cm2G、温度600℃、水蒸気
/炭素比(モル/原子比)3.0の条件で水蒸気改質反
応を行った。水蒸気改質装置1の生成ガスを二酸化炭素
改質装置2に送り、圧力5.0kg/cm2G、温度1000
℃、二酸化炭素/生成ガス(モル比)3.6の条件で二
酸化炭素改質反応を行った。CO2はCO2吸収装置4か
ら循環されたものを用いた。二酸化炭素改質装置2を出
たガスをCO変成装置3に送り、まず高温CO変成次い
で低温CO変成を順次行った。高温CO変成は圧力30
kg/cm2G、温度400℃の条件で行い、低温CO変成は
圧力30kg/cm2、温度200℃の条件で行った。CO変
成装置3を出たガスをCO2吸収装置4に送り、CO2
吸収分離した。分離したCO2の一部は二酸化炭素改質
装置2に循環した。CO2吸収装置4を出たガスを圧力
変動吸着装置5に送り、水素以外の不純物を吸着分離し
て純度の高い水素ガスを得た。
Next, an example of production by the hydrogen producing apparatus of this embodiment will be shown. Production Example Using reduced-pressure residual oil as a raw material hydrocarbon, steam reforming is performed in a steam reforming apparatus 1 under conditions of a pressure of 5.0 kg / cm 2 G, a temperature of 600 ° C., and a steam / carbon ratio (mol / atom ratio) of 3.0. The reaction was carried out. The generated gas of the steam reforming apparatus 1 is sent to the carbon dioxide reforming apparatus 2, and the pressure is 5.0 kg / cm 2 G and the temperature is 1000.
The carbon dioxide reforming reaction was carried out under conditions of ° C and carbon dioxide / produced gas (molar ratio) of 3.6. The CO 2 circulated from the CO 2 absorber 4 was used. The gas discharged from the carbon dioxide reforming apparatus 2 was sent to the CO shift converter 3, and first, high temperature CO shift and then low temperature CO shift were sequentially performed. High temperature CO shift is pressure 30
It was carried out under the conditions of kg / cm 2 G and temperature of 400 ° C., and the low temperature CO shift was carried out under the conditions of pressure of 30 kg / cm 2 and temperature of 200 ° C. The gas discharged from the CO shift converter 3 was sent to the CO 2 absorber 4 to absorb and separate CO 2 . Part of the separated CO 2 was circulated to the carbon dioxide reformer 2. The gas discharged from the CO 2 absorption device 4 was sent to the pressure fluctuation adsorption device 5 to adsorb and separate impurities other than hydrogen to obtain high-purity hydrogen gas.

【0022】上記製造例の結果を下記表1に示す。表1
は水素製造量10,000Nm3/hrにおける物質収支を示
すものである。なお、表1中の記号A〜Fは下記のもの
を示す(図1参照)。 A:水蒸気改質装置1への原料導入量 B:水蒸気改質装置1への水蒸気導入量 C:二酸化炭素改質装置2への二酸化炭素導入量 D:排出路13からの二酸化炭素排出量 E:圧力変動吸着装置5からの純水素回収量 F:圧力変動吸着装置5からの排出ガス量 表1の結果より、本製造例における水素生成量は、原料
1Kg-mol当たり58.0Kg-mol、すなわち原料1t当た
り3,849Nm3になることがわかった。
The results of the above production examples are shown in Table 1 below. Table 1
Shows the material balance at a hydrogen production amount of 10,000 Nm 3 / hr. The symbols A to F in Table 1 indicate the following (see FIG. 1). A: Raw material introduction amount into the steam reforming device 1 B: Steam introduction amount into the steam reforming device 1 C: Carbon dioxide introduction amount into the carbon dioxide reforming device D D: Carbon dioxide emission amount from the discharge passage 13 E : Amount of pure hydrogen recovered from the pressure fluctuation adsorption device 5 F: Amount of exhaust gas from the pressure fluctuation adsorption device 5 From the results of Table 1, the hydrogen generation amount in this production example is 58.0 kg-mol per 1 kg of raw material, That is, it was found that it was 3,849 Nm 3 per 1 t of the raw material.

【0023】[0023]

【表1】 [Table 1]

【0024】比較例 表2に重質油を原料として部分酸化法により水素を製造
した例(ペトロテック、第4巻、第12号、第27頁(198
1))を示す。本発明と同等の原料(減圧残渣油)による
水素生成量は2,604Nm3/t原料であり、本発明製造
例による水素生成量は部分酸化法に比べて約48%多い
ことがわかる。
Comparative Example Table 2 shows an example of producing hydrogen by a partial oxidation method using heavy oil as a raw material (Petrotech, Vol. 4, No. 12, p. 27 (198).
1)) is shown. The amount of hydrogen produced by the same raw material (vacuum residue oil) as in the present invention is 2,604 Nm 3 / t, and it can be seen that the amount of hydrogen produced by the production example of the present invention is about 48% higher than that in the partial oxidation method.

【0025】[0025]

【表2】 [Table 2]

【0026】表3に重質油を原料として水蒸気改質法及
び部分酸化法を組み合わせて水素を製造した例(ペトロ
テック、第5巻、第12号、第89頁(1982))を示す。本発
明と同等の原料(減圧残渣油)による水素生成量は3,
033Nm3/t原料であり、本発明製造例の方が約27%
水素生産量が多いことがわかる。
Table 3 shows an example of producing hydrogen by combining the steam reforming method and the partial oxidation method using heavy oil as a raw material (Petrotech, Volume 5, No. 12, page 89 (1982)). The amount of hydrogen produced by the same raw material (vacuum residue oil) as in the present invention is 3,
033Nm 3 / t raw material, the production example of the present invention is about 27%
It can be seen that hydrogen production is large.

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【発明の効果】以上説明したように、本発明に係る炭化
水素からの水素製造方法及び水素製造装置は、第1段の
水蒸気改質及び第2段の二酸化炭素改質からなる2段改
質を採用し、かつ第2段の二酸化炭素改質に系内で発生
した二酸化炭素を循環使用するようにしたので、従来の
方法に比較して大きな改質効果が得られ、単位原料当た
りからの水素の生成量、水素の回収率を高めて水素を収
率良く製造できるとともに、系外への二酸化炭素の排出
量を少なくできるという利点を有する。したがって、本
発明の水素製造方法及び水素製造装置は、種々の炭化水
素、特に灯油、軽油、重油、減圧残渣等の炭化水素油か
らの水素の製造に有効に使用することができる。
As described above, the method for producing hydrogen from hydrocarbons and the apparatus for producing hydrogen according to the present invention are the two-stage reforming consisting of the first-stage steam reforming and the second-stage carbon dioxide reforming. Since the carbon dioxide generated in the system is circulated and used for the second stage carbon dioxide reforming, a large reforming effect can be obtained compared to the conventional method, and It has the advantages that the amount of hydrogen produced and the recovery rate of hydrogen can be increased to produce hydrogen with a high yield, and the amount of carbon dioxide discharged to the outside of the system can be reduced. Therefore, the hydrogen production method and the hydrogen production apparatus of the present invention can be effectively used for producing hydrogen from various hydrocarbons, particularly kerosene, light oil, heavy oil, reduced pressure residue, and other hydrocarbon oils.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明水素製造装置の一実施例を示す概略構成
図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of a hydrogen production device of the present invention.

【符号の説明】[Explanation of symbols]

1 水蒸気改質装置 2 二酸化炭素改質装置 3 CO変成装置 4 CO2吸収装置 5 圧力変動吸着装置 12 CO2循環路1 steam reformer 2 carbon dioxide reformer 3 CO shifter 4 CO 2 absorber 5 pressure fluctuation adsorption device 12 CO 2 circulation path

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (イ)原料炭化水素に水蒸気を添加して
水蒸気改質反応を行う水蒸気改質工程と、(ロ)前記水
蒸気改質工程(イ)からの生成ガスに二酸化炭素を添加
し、改質触媒を接触させて水素含有ガスを得る二酸化炭
素改質工程と、(ハ)前記二酸化炭素改質工程(ロ)か
らの水素含有ガスをシフト反応触媒と接触させて該水素
含有ガスに含まれる一酸化炭素を二酸化炭素に転換する
シフト反応工程と、(ニ)前記シフト反応工程(ハ)か
らの生成ガスに含まれる二酸化炭素を分離除去して水素
含有ガスを得る二酸化炭素吸収工程と、(ホ)前記二酸
化炭素吸収工程(ニ)からの水素含有ガスを精製して純
水素を得る水素回収工程と、(ヘ)前記二酸化炭素吸収
工程(ニ)で分離除去した二酸化炭素を前記二酸化炭素
改質工程(ロ)に循環する二酸化炭素循環工程とを具備
することを特徴とする炭化水素からの水素製造方法。
1. A steam reforming step of (a) adding steam to a raw material hydrocarbon to carry out a steam reforming reaction, and (b) adding carbon dioxide to the gas produced from the steam reforming step (a). A carbon dioxide reforming step of contacting a reforming catalyst to obtain a hydrogen-containing gas; and (c) contacting the hydrogen-containing gas from the carbon dioxide reforming step (b) with a shift reaction catalyst to obtain the hydrogen-containing gas. A shift reaction step of converting the contained carbon monoxide into carbon dioxide, and (d) a carbon dioxide absorption step of separating and removing carbon dioxide contained in the product gas from the shift reaction step (c) to obtain a hydrogen-containing gas. (E) a hydrogen recovery step of purifying the hydrogen-containing gas from the carbon dioxide absorption step (d) to obtain pure hydrogen, and (f) the carbon dioxide separated and removed in the carbon dioxide absorption step (d) as the carbon dioxide. Cycle to carbon reforming process (b) A method for producing hydrogen from hydrocarbons, which comprises a step of circulating carbon dioxide.
【請求項2】 (1)原料炭化水素の水蒸気改質反応を
行う水蒸気改質部と、(2)前記水蒸気改質部(1)で
生じた生成ガスの二酸化炭素改質反応を改質触媒の存在
下で行う二酸化炭素改質部と、(3)前記二酸化炭素改
質部(3)で生じた水素含有ガスのシフト反応をシフト
反応触媒の存在下で行うシフト反応部と、(4)前記シ
フト反応部(3)で生じた生成ガス中の二酸化炭素を分
離除去する二酸化炭素吸収部と、(5)前記二酸化炭素
吸収工程(4)で生じた水素含有ガスを精製して純水素
を回収する水素回収部と、(6)前記二酸化炭素吸収工
程(ニ)で分離除去した二酸化炭素を前記二酸化炭素改
質工程(ロ)に循環する二酸化炭素循環手段とを具備す
ることを特徴とする炭化水素からの水素製造装置。
2. A steam reforming section for performing a steam reforming reaction of a raw material hydrocarbon, and (2) a carbon dioxide reforming reaction of a product gas produced in the steam reforming section (1) as a reforming catalyst. (4) a carbon dioxide reforming section for carrying out the shift reaction of the hydrogen-containing gas produced in the carbon dioxide reforming section (3) in the presence of a shift reaction catalyst, and (4) A carbon dioxide absorption part that separates and removes carbon dioxide from the product gas generated in the shift reaction part (3), and (5) the hydrogen-containing gas generated in the carbon dioxide absorption step (4) is purified to obtain pure hydrogen. It is characterized by comprising a hydrogen recovery unit for recovering and (6) carbon dioxide circulating means for circulating the carbon dioxide separated and removed in the carbon dioxide absorption step (d) to the carbon dioxide reforming step (b). Hydrogen production equipment from hydrocarbons.
JP5123330A 1993-04-27 1993-04-27 Method for producing hydrogen from hydrocarbon and device therefor Pending JPH06305701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5123330A JPH06305701A (en) 1993-04-27 1993-04-27 Method for producing hydrogen from hydrocarbon and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5123330A JPH06305701A (en) 1993-04-27 1993-04-27 Method for producing hydrogen from hydrocarbon and device therefor

Publications (1)

Publication Number Publication Date
JPH06305701A true JPH06305701A (en) 1994-11-01

Family

ID=14857894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5123330A Pending JPH06305701A (en) 1993-04-27 1993-04-27 Method for producing hydrogen from hydrocarbon and device therefor

Country Status (1)

Country Link
JP (1) JPH06305701A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342003A (en) * 2000-05-30 2001-12-11 Mitsubishi Heavy Ind Ltd Method of production for gasoline, gas oil and synthesis gas for kerosene
JP2003523450A (en) * 2000-02-17 2003-08-05 インペリアル・ケミカル・インダストリーズ・ピーエルシー Desulfurization
EP2711336A1 (en) * 2011-04-12 2014-03-26 Chiyoda Corporation Non-co2 emitting manufacturing method for synthesis gas
KR20190013447A (en) * 2017-08-01 2019-02-11 한국과학기술연구원 High purity hydrogen production device and high purity hydrogen production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523450A (en) * 2000-02-17 2003-08-05 インペリアル・ケミカル・インダストリーズ・ピーエルシー Desulfurization
JP2001342003A (en) * 2000-05-30 2001-12-11 Mitsubishi Heavy Ind Ltd Method of production for gasoline, gas oil and synthesis gas for kerosene
EP2711336A1 (en) * 2011-04-12 2014-03-26 Chiyoda Corporation Non-co2 emitting manufacturing method for synthesis gas
EP2711336A4 (en) * 2011-04-12 2014-12-03 Chiyoda Corp Non-co2 emitting manufacturing method for synthesis gas
US9045336B2 (en) 2011-04-12 2015-06-02 Chiyoda Corporation Non-CO2 emitting manufacturing method for synthesis gas
KR20190013447A (en) * 2017-08-01 2019-02-11 한국과학기술연구원 High purity hydrogen production device and high purity hydrogen production method

Similar Documents

Publication Publication Date Title
US4553981A (en) Enhanced hydrogen recovery from effluent gas streams
US4869894A (en) Hydrogen generation and recovery
KR940006239B1 (en) Integrated processes for the production of carbon monoxide
CA2100811C (en) Hydrogen and carbon monoxide production by partial oxidation of hydrocarbon feed
US7041271B2 (en) Integrated olefin recovery and hydrogen production from refinery off-gases
US4592860A (en) Process and apparatus for ammonia synthesis gas production
EP0411506A2 (en) Production of hydrogen, carbon monoxide and mixtures thereof
JPH0624703A (en) Preparation of high purity hydrogen
MX2012014703A (en) Co-production of methanol and ammonia.
WO2015173290A1 (en) Process for generating hydrogen from a fischer-tropsch off-gas
WO2007114279A1 (en) Liquid fuel synthesis system
JP6930513B2 (en) Organic matter synthesizer and synthesis method
JPH06305701A (en) Method for producing hydrogen from hydrocarbon and device therefor
JPH06191801A (en) Production of hydrogen
US4755361A (en) Apparatus for ammonia synthesis gas production
JPS63501791A (en) High hydrogen recovery from the effluent gas stream
JPH0261410B2 (en)
JPH03242302A (en) Production of hydrogen and carbon monoxide
US9682342B2 (en) Method for processing fischer-tropsch off-gas
US9539534B2 (en) Method for processing Fischer-Tropsch off-gas
JPH04200713A (en) Manufacture of high-purity carbon monoxide
AU2015282636B2 (en) Method for processing a gas mixture
JP2000233917A (en) Method of producing carbon monoxide from carbon dioxide
RU2774658C1 (en) Method for producing methanol
US5059411A (en) Process and apparatus for the production of carbon monoxide