WO2020054088A1 - Synthetic gas production system for low-carbon ft synthetic oil production - Google Patents

Synthetic gas production system for low-carbon ft synthetic oil production Download PDF

Info

Publication number
WO2020054088A1
WO2020054088A1 PCT/JP2018/043875 JP2018043875W WO2020054088A1 WO 2020054088 A1 WO2020054088 A1 WO 2020054088A1 JP 2018043875 W JP2018043875 W JP 2018043875W WO 2020054088 A1 WO2020054088 A1 WO 2020054088A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
hydrogen
carbon monoxide
rich
supplied
Prior art date
Application number
PCT/JP2018/043875
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 信三
Original Assignee
株式会社 ユーリカ エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ユーリカ エンジニアリング filed Critical 株式会社 ユーリカ エンジニアリング
Priority to JP2019520174A priority Critical patent/JP6552030B1/en
Priority to PCT/JP2019/020969 priority patent/WO2020054138A1/en
Publication of WO2020054088A1 publication Critical patent/WO2020054088A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide

Definitions

  • the present invention relates to a system for producing a synthesis gas suitable for producing a low carbon FT synthetic oil.
  • Patent Literature 1 discloses that saccharification of biomass is performed to generate a saccharified liquid, saccharified liquid is subjected to methane fermentation treatment to generate methane fermentation biogas, and a steam reforming method, a partial oxidation method, and the like are used from the methane fermentation biogas. It is described that a synthetic gas containing hydrogen and carbon monoxide as main components is generated using FT, and the synthetic gas is subjected to FT synthesis processing to generate an FT synthetic oil.
  • Patent Document 2 discloses a pyrolysis furnace that generates a pyrolysis gas from a biomass raw material, a gas separator that selectively separates H 2 gas and CO gas from the pyrolysis gas, and separates the H 2 gas and the CO gas from each other.
  • Patent Document 3 discloses a hydrogen separation step in which a mixed gas containing hydrogen and carbon monoxide is brought into contact with a hydrogen separation membrane to separate the hydrogen, and an off-gas after contacting the hydrogen separation membrane is converted into a carbon monoxide separation membrane.
  • Patent Document 4 discloses a pyrolysis apparatus that pyrolyzes a biomass raw material to produce a biomass gas, a purification apparatus that purifies a biomass gas, and a carbonization method that converts the purified biomass gas into a hydrocarbon oil in the presence of a hydrocarbon synthesis catalyst.
  • a BLT production system comprising a hydrogen synthesizing unit, a hydrogen supply system for metering and adding hydrogen gas between a refining unit and a hydrocarbon synthesizing unit, and a molar ratio of carbon to hydrogen may be a predetermined value.
  • an adjusting device for mixing and adjusting biomass gas and hydrogen.
  • Patent Literature 5 discloses that gasified combustible gas generated by gasifying waste and biomass has a problem in that the raw material is unstable, so that the gasified combustible gas is generated as a by-product combustible gas generated in an ironworks. It is described that they are mixed and used as fuel gas for boilers and heating furnaces.
  • a synthesis gas containing hydrogen and carbon monoxide as main components is generated from a methane fermentation biogas using a steam reforming method, a partial oxidation method, or the like. It does not mention controlling the molar ratio of hydrogen to carbon monoxide to the target value. Usually, the molar ratio of hydrogen to carbon monoxide supplied to the liquid oil production device is about 2. In the apparatus described in Patent Literature 2, hydrogen and carbon monoxide are separately selectively separated from biomass gas generated by pyrolysis of biomass, and the hydrogen and carbon monoxide are separated at a constant flow rate according to a molar ratio of about 2.
  • Patent Document 3 Since liquid hydrocarbons are synthesized by performing a polymerization reaction at a specific ratio, there is a shortage of hydrogen separated from a pyrolysis gas rich in carbon monoxide generated from biomass, and it is difficult to effectively use biomass gas.
  • the gas separation method described in Patent Document 3 mixes three or more gases, separates hydrogen from the mixed gas mixture, and separates carbon monoxide from off-gas after separating hydrogen.
  • Document 3 does not mention a technique of mixing a hydrogen-rich fuel gas and a carbon monoxide-rich fuel gas at a set ratio such that the ratio of hydrogen and carbon monoxide to be separated is a target value.
  • Patent Document 4 Although the adjusting device for mixing and adjusting biomass gas and hydrogen described in Patent Document 4 mixes hydrogen with biomass gas so that the molar ratio of carbon and hydrogen becomes a predetermined value, Patent Document 4, It does not show a technique for separating carbon monoxide from biomass gas and appropriately mixing hydrogen with the separated carbon monoxide.
  • Patent Document 5 shows that gasified combustible gas generated by gasification of waste and biomass is mixed with by-product combustible gas generated in a steel mill and used as fuel gas for boilers and heating furnaces. However, there is no mention of producing a synthesis gas having a target value of a molar ratio of hydrogen to carbon monoxide from a carbon monoxide-rich fuel gas and a hydrogen-rich fuel gas.
  • the present invention reduces the emission of carbon dioxide gas from a fuel gas rich in carbon monoxide and a fuel gas capable of providing hydrogen, and uses both fuel gases without waste to reduce the molar ratio of hydrogen to carbon monoxide.
  • An object of the present invention is to provide a synthesis gas production system for producing low-carbon FT synthetic oil that can easily and efficiently produce a synthesis gas as a target value.
  • the present invention provides a synthesis gas production system for producing low-carbon FT synthetic oil, wherein a fuel gas rich in carbon monoxide and a fuel gas capable of providing hydrogen are used as two types of fuel gas, and the two types of fuel gas are used to produce monoxide.
  • a blending device that separates carbon and secures hydrogen, and combines the separated carbon monoxide and the secured hydrogen such that the molar ratio of hydrogen to carbon monoxide becomes a target value to produce synthesis gas.
  • the capacity ratio of the two types of fuel gas in a standard state is defined as the ratio of carbon monoxide and the ratio of hydrogen contained in the fuel gas capable of providing the carbon monoxide-rich fuel gas and hydrogen, and the target value.
  • the most main feature is that the setting is made based on the following.
  • the two types of fuel gas, the carbon monoxide-rich fuel gas and the fuel gas capable of providing hydrogen are a gasified gas containing at least a biomass-derived gasified gas rich in carbon monoxide, a hydrogen-rich by-product gas, and a hydrogen-rich by-product gas. Any combination of carbon-rich at least biomass-derived gasified gas and hydrogen, carbon monoxide-rich gasified gas containing at least biomass-derived gasified gas and steam, or a combination of carbon monoxide-rich by-product gas and carbon dioxide-free hydrogen Or one.
  • the gasification gas containing at least biomass-derived gasification gas rich in carbon monoxide is a gasification gas containing at least biomass-derived gasification gas and having a high content (ratio) of carbon monoxide, and a hydrogen-rich by-product gas is , Is a by-product gas having a high hydrogen content (ratio), and a by-product gas rich in carbon monoxide is a by-product gas having a high carbon monoxide content (ratio).
  • the synthesis gas production system for producing low-carbon FT synthetic oil of the present invention determines the volume ratio of the two types of fuel gas in the standard state to the carbon monoxide-rich gas and the fuel gas capable of providing hydrogen. Since the ratio is set based on the ratio of carbon and the ratio of hydrogen and the target value, the two types of fuel gas can be held at appropriate amounts. As a result, it is possible to prevent the amounts of the two types of fuel gas from being increased more than necessary, and to prevent the system itself, particularly the carbon monoxide separation device, from becoming larger and increasing installation costs and running costs. Further, a synthetic gas for producing a low-carbon FT synthetic oil can be produced using the two types of fuel gas without waste. In addition, since at least one of the two types of fuel gas is a gas generated by reducing the amount of carbon dioxide emission, it is possible to reduce the carbon dioxide emission and produce a low-carbon FT synthetic oil producing synthesis gas. it can.
  • a synthesis gas production system 1 for producing a low-carbon FT synthetic oil includes a CO-rich gasified gas supply device 10 and an H 2 -rich by-product gas. It comprises a supply device 20, a mixing device 30, a hydrogen separation device 40, a carbon monoxide separation device 50, and a blending device 60.
  • a known FT synthetic oil production device 2 is connected to a blending device 60 that is the final stage of the synthesis gas production system 1 for producing low carbon FT synthetic oil.
  • the FT synthetic oil production apparatus 2 uses a known Fischer-Tropsch process (FT method) to perform a desired reaction from a synthesis gas having a target molar ratio of hydrogen to carbon monoxide using a known Fischer-Tropsch process.
  • FT method Fischer-Tropsch process
  • the FT synthetic oil production apparatus 2 is known, and introduces a synthesis gas having an adjusted composition (H 2 / CO molar ratio) into a reactor filled with various catalysts to cause a synthesis reaction represented by the chemical formula (1).
  • Equation (1) it is necessary to cause hydrogen (H 2 ) and carbon monoxide (CO) to react at an appropriate ratio.
  • the molar ratio of hydrogen to carbon monoxide is determined from equation (1). Is adjusted so that the target value is obtained. In the production of the FT synthetic oil, the target value is almost 2, since n in the chemical formula (1) is 5 to 20.
  • the CO-rich gasification gas supply device 10 includes a gasification furnace that generates a gasification gas and a purification device that purifies the generated gasification gas.
  • a gasification furnace that generates a gasification gas
  • a purification device that purifies the generated gasification gas.
  • biomass preferably woody biomass, such as thinned wood, waste wood, rice straw, straw, rice husk, corn, etc.
  • the gasifier When supplied with biomass, preferably woody biomass, such as thinned wood, waste wood, rice straw, straw, rice husk, corn, etc., as a fuel, the gasifier generates a 100% biomass-derived gasified gas. I do.
  • the biomass-derived gasified gas is a gas rich in carbon monoxide. When an example of the composition is shown by volume%, carbon monoxide (CO) 48%, hydrogen (H 2 ) 16%, methane (CH 4 ) 16%, Carbon dioxide (CO 2 ) 13%, hydrocarbon (CmHn) 7%.
  • the gasification furnace When a gasification furnace is supplied with a mixture of biomass and coal as a mixed fuel, the gasification furnace generates a gasified gas derived from a mixed fuel in which a biomass-derived gasification gas and a coal-derived gasification gas are mixed. Further, when the gasification furnace is supplied with a mixture of biomass and waste plastics (not including vinyl chloride) as a mixed fuel, the gasification furnace is derived from a mixed fuel derived from a mixture of biomass-derived gasification gas and waste plastic-derived gasification gas. Generate gasification gas. As described above, the gasification furnace includes at least the biomass-derived gasification gas rich in carbon monoxide, which contains at least the biomass-derived gasification gas and has a high carbon monoxide content (ratio) according to the supplied fuel.
  • the CO-rich gasified gas supply device 10 is connected to the mixing device 30 and purifies the gasified gas including at least the biomass-derived gasified gas generated in the gasification furnace by the purification device and supplies the gasified gas to the mixing device 30.
  • a gasification gas containing at least a biomass-derived gasification gas is generated in a gasification furnace and the gasification gas containing at least the biomass-derived gasification gas purified by a purification device is stored in a gas holder
  • CO-rich gasification is performed.
  • the gas supply device 10 may be a gas holder that stores a gasified gas containing at least a biomass-derived gasified gas rich in carbon monoxide and supplies the gasified gas to the mixing device 30.
  • the H 2 rich by-product gas supply device 20 is connected to the mixing device 30 and supplies the mixing device 30 with a hydrogen-rich by-product gas composed of at least one of a coke oven gas and a refinery gas.
  • the hydrogen-rich by-product gas is a gas that has a high hydrogen content rate (ratio) and can provide hydrogen.
  • Coke oven gas is a hydrogen-rich dry distillation gas generated during coke production.
  • Refinery gas is a hydrogen-rich off-gas generated in the crude oil refining process.
  • the mixing device 30 is supplied with the gasified gas containing at least the biomass-derived gasified gas rich in carbon monoxide from the CO-rich gasified gas supply device 10, and is supplied with the hydrogen-rich by-product gas from the H 2 -rich by-product gas supply device 20.
  • the gas is supplied, and the gasification gas containing at least the biomass-derived gasification gas is mixed with the hydrogen-rich by-product gas to generate a mixed gas (first mixed gas).
  • the mixing device 30 includes two types of gasification gas (carbon monoxide-rich fuel gas) including at least biomass-derived gasification gas and hydrogen-rich by-product gas (fuel gas capable of providing hydrogen). Fuel gas is supplied.
  • the mixing device 30 is provided with at least biomass-derived gasification.
  • the volume ratio of the gasified gas containing gas to the hydrogen-rich by-product gas under standard conditions is at least the ratio of carbon monoxide contained in the gasified gas containing the biomass-derived gasified gas and the hydrogen-rich by-product gas.
  • hydrogen so as to have a value set based on the ratio of hydrogen and the target value. Since the gasification gas containing at least the biomass-derived gasification gas is rich in carbon monoxide, a hydrogen-rich by-product gas is mixed to supplement hydrogen in the production of a hydrogen-rich synthesis gas.
  • the ratio of carbon monoxide contained in the biomass-derived gasified gas in a standard state is 48%, The ratio is 16%, the ratio of carbon monoxide contained in the hydrogen-rich by-product gas is 7%, and the ratio of hydrogen is 56%. Therefore, when the biomass-derived gasified gas and the hydrogen-rich by-product gas are mixed at a volume ratio (1: x), the ratio of carbon monoxide contained in the mixed gas is 0.48 + 0.07x, and the ratio of hydrogen is , 0.16 + 0.56x.
  • the volume ratio of the biomass-derived gasified gas and the hydrogen-rich by-product gas in the standard state is determined by the ratio of the carbon monoxide contained in the biomass-derived gasified gas and the hydrogen-rich by-product gas (48% And 7%) and the proportions of hydrogen (16% and 56%) and the target value (2).
  • the mixed gas obtained by mixing the gasified gas containing at least the biomass-derived gasified gas rich in carbon monoxide with the hydrogen-rich by-product gas has a high hydrogen content, thereby producing a low-carbon FT synthetic oil. It is possible to improve the yield of syngas production suitable for the above.
  • the hydrogen separation device 40 is connected to the mixing device 30 and separates the supplied first mixed gas into hydrogen and a first off-gas.
  • the hydrogen separation device 40 may use a known pressure fluctuation adsorption method (PSA: Pressure Swing Adsorption), a hydrogen separation polymer membrane, a hydrogen separation metal membrane, a cryogenic separation method, or the like.
  • PSA Pressure Swing Adsorption
  • the carbon monoxide separator 50 is connected to the hydrogen separator 40 and separates the supplied first off-gas into carbon monoxide and a second off-gas.
  • the carbon monoxide separation device 30 may use a known pressure fluctuation adsorption method (PSA), a carbon monoxide separation polymer membrane, a carbon monoxide separation metal membrane, a cryogenic separation method, or the like.
  • PSA pressure fluctuation adsorption method
  • the preparation device 60 is connected to the hydrogen separation device 40 and the carbon monoxide separation device 50, and has the same temperature as the capacity of hydrogen supplied from the hydrogen separation device 40 and the carbon monoxide supplied from the carbon monoxide separation device 50, Each is measured at the same pressure, and is adjusted so that the capacity of hydrogen with respect to the capacity of carbon monoxide becomes a target value. Thereby, the hydrogen separated by the hydrogen separation device 40 and the carbon monoxide separated by the carbon monoxide separation device 50 are prepared so that the molar ratio of hydrogen to carbon monoxide becomes a target value, and becomes a synthesis gas. .
  • the offgas utilization device 3 is connected to the carbon monoxide separation device 50, and uses the second offgas supplied from the carbon monoxide gas separation device 50 as fuel.
  • the off-gas utilization device 3 is a boiler combustion furnace or the like.
  • the hydrogen-rich by-product gas is supplied to the mixing device 30.
  • the mixing device 30 mixes a gasification gas containing at least a biomass-derived gasification gas and a hydrogen-rich by-product gas to generate a first mixed gas, and supplies the first mixed gas to the hydrogen separation device 40.
  • the hydrogen separator 40 separates the supplied first mixed gas into hydrogen and a first off-gas, and supplies the first off-gas to the carbon monoxide separator 50 and the hydrogen to the blender 60.
  • the carbon monoxide separator 50 separates the supplied first off-gas into carbon monoxide and a second off-gas, and supplies the carbon monoxide to the blender 60.
  • the blending device 60 blends the supplied hydrogen and carbon monoxide such that the molar ratio of hydrogen to carbon monoxide becomes a target value, and makes the synthesis gas suitable for the production of low carbon FT synthetic oil.
  • the FT synthetic oil production device 2 generates FT synthetic oil from the synthesis gas supplied from the low-carbon FT synthetic oil production synthesis gas production system 1.
  • the offgas utilization device 3 uses the combustion heat by burning the supplied second offgas. Thereby, two types of fuel gas can be used effectively.
  • At least biomass-derived gasified gas rich in carbon monoxide which is two types of fuel gas
  • the volume ratio of the gasified gas and the hydrogen-rich by-product gas in the standard state is defined as the ratio of carbon monoxide and the ratio of hydrogen contained in the two types of fuel gas, and the ratio of hydrogen to carbon monoxide in the synthesis gas to be produced. Since the value set based on the target value of the molar ratio is used, the two types of fuel gas can be used without waste.
  • the amounts of the two types of fuel gas do not increase more than necessary, and it is possible to prevent an increase in the size of the system itself, particularly the hydrogen separation device and the carbon monoxide separation device, and an increase in installation costs and running costs.
  • the production of gasified gas containing at least the biomass-derived gasified gas involves a small amount of carbon dioxide emission, it is possible to reduce the carbon dioxide emission and produce a synthesis gas for producing low carbon FT synthetic oil.
  • a hydrogen separation device 40 is connected between the H 2 rich by-product gas supply device 20 and the mixing device 30, and the mixing device 30 point that is directly connected to a carbon monoxide separator 50, and CO-rich gas of gasification gas and H 2 rich product gas supply system comprising at least from biomass gasification gas supplied to the mixer 30 from the gas supply apparatus 10 20
  • the volume ratio in a standard state with the hydrogen-rich by-product gas supplied to the hydrogen separation device 40 from the gaseous gas containing at least the biomass-derived gasification gas and the monoxide contained in the hydrogen-rich by-product gas The first embodiment differs from the first embodiment in that the ratio is set based on the ratio of carbon, the ratio of hydrogen contained in the hydrogen-rich by-product gas, and the target value. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the H 2 -rich by-product gas supply device 20 is connected to the hydrogen separation device 40, and supplies the hydrogen-rich by-product gas to the hydrogen separation device 40.
  • the hydrogen separation device 40 is connected to the mixing device 60, supplies the separated hydrogen to the mixing device 60, and supplies the third off-gas to the mixing device 30.
  • the CO-rich gasification gas supply device 10 is connected to the mixing device 30 and supplies the gasification gas containing at least a biomass-derived gasification gas rich in carbon monoxide to the mixing device 30.
  • the mixing device 30 mixes the gasified gas containing at least the biomass-derived gasified gas and the third off-gas into a second mixed gas, and supplies the second mixed gas to the carbon monoxide separation device 50.
  • the second mixed gas contains at least hydrogen contained in the gasified gas containing the biomass-derived gasified gas, and the hydrogen contained in the second mixed gas is contained in the fourth offgas from the carbon monoxide separation device 50 and is contained in the offgas. It is sent to the utilization device 3 and is not supplied to the blending device 60. Therefore, the gasification gas containing at least the biomass-derived gasification gas and the carbon monoxide contained in the hydrogen-rich by-product gas are supplied to the blender 60, but are contained in the gasification gas containing at least the biomass-derived gasification gas. The supplied hydrogen is not supplied to the blender 60.
  • the amount of the gasified gas containing at least the biomass-derived gasified gas and the amount of the hydrogen-rich by-product gas supplied as the two types of fuel gas are such that the volume ratio under the standard condition is at least the gasification containing the biomass-derived gasified gas. It is set to be a value set based on the ratio of carbon monoxide contained in the gas and the hydrogen-rich by-product gas, the ratio of hydrogen contained in the hydrogen-rich by-product gas, and the target value. .
  • the capacity ratio of hydrogen to carbon monoxide contained in the second mixed gas is set to a target value, for example, 2
  • the amount of the gasification gas is 2.3 times, the gasification gas derived from biomass and the hydrogen-rich by-product gas can be used without waste.
  • a carbon monoxide separation device 50 is connected between a CO-rich gasified gas supply device 10 and a mixing device 30 and a hydrogen separation device 40 And a gaseous gas containing at least the biomass-derived gasified gas and an H 2 rich by-product gas supplied from the CO-rich gasified gas supply device 10 to the carbon monoxide separation device 50.
  • the volume ratio of the hydrogen-rich by-product gas supplied from the device 20 to the mixing device 30 in a standard state is defined as the ratio of carbon monoxide contained in the gasified gas containing at least the biomass-derived gasified gas, and
  • the first embodiment is set based on the ratio of hydrogen contained in the gasified gas including the derived gasified gas and the hydrogen-rich by-product gas and the target value. And different. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the CO-rich gasification gas supply device 10 is connected to the carbon monoxide separation device 50, and supplies the carbon monoxide-rich gasification gas containing at least biomass-derived gasification gas to the carbon monoxide separation device 50.
  • the carbon monoxide separation device 50 supplies the separated carbon monoxide to the preparation device 60, and supplies the fifth off-gas to the mixing device.
  • the mixing device 30 mixes the hydrogen-rich by-product gas supplied from the H 2 -rich by-product gas supply device 20 with the fifth off-gas to form a third mixed gas, and supplies the third mixed gas to the hydrogen separation device 40.
  • the hydrogen separation device 40 is supplied with the third mixed gas, supplies the separated hydrogen to the preparation device 60, and supplies the sixth off-gas to the off-gas utilization device 4.
  • the offgas utilization device 4 utilizes the combustion heat by burning the supplied sixth offgas. Thereby, two types of fuel gas can be used effectively.
  • the third mixed gas contains carbon monoxide contained in the hydrogen-rich by-product gas, and the carbon monoxide contained in the third mixed gas is contained in the sixth offgas from the hydrogen separator 40 and the offgas utilization device 4 And is not supplied to the blending device 60. Therefore, the hydrogen contained in the gasification gas containing at least the biomass-derived gasification gas and the hydrogen contained in the hydrogen-rich by-product gas are supplied to the mixing device 60, but the carbon monoxide contained in the hydrogen-rich by-product gas is supplied to the preparation device 60. Not supplied to 60.
  • the amount of the gasified gas containing at least the biomass-derived gasified gas and the amount of the hydrogen-rich by-product gas supplied as the two types of fuel gas are the gasified gas containing at least the biomass-derived gasified gas at the standard volume ratio.
  • the ratio of hydrogen contained in at least the gasification gas containing the biomass-derived gasification gas and the hydrogen-rich by-product gas, and the value set based on the target value. Set to. For example, when a biomass-derived gasification gas and a hydrogen-rich by-product gas having the same composition as the above-described compositions are used as two types of fuel gases, the volume ratio of hydrogen to carbon monoxide contained in the synthesis gas is set to a target value, for example, 2.
  • the fourth embodiment is different from the first embodiment in that a gasified gas containing at least a biomass-derived gasified gas and hydrogen are used as two types of fuel gas as shown in FIG. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and the description will be made focusing on this difference.
  • hydrogen is a fuel gas that can provide hydrogen, and its composition is 100% hydrogen.
  • the hydrogen supply device 25 is connected to the mixing device 60 and supplies hydrogen to the mixing device 60.
  • the hydrogen supplied from the hydrogen supply device 25 may be a mixture of one or more of soda electrolytic hydrogen, water electrolytic hydrogen, natural gas reformed hydrogen, biogas reformed hydrogen, and CO 2 -free hydrogen.
  • the carbon monoxide separation device 50 separates carbon monoxide from the gasified gas containing at least the biomass-derived gasified gas rich in carbon monoxide supplied from the CO-rich gasified gas supply device 10, and supplies the separated gas to the blending device 60.
  • the seventh off-gas is supplied to the off-gas utilization device 3.
  • the mixing device 60 mixes the hydrogen supplied from the hydrogen supply device 25 and the carbon monoxide supplied from the carbon monoxide separation device 50 such that the molar ratio of hydrogen to carbon monoxide becomes a target value, and synthesizes the synthesis gas.
  • the amount of the gasified gas containing at least the biomass-derived gasified gas and the amount of the hydrogen gas supplied as the two types of fuel gas are such that the volume ratio under standard conditions is at least one of the monoxide contained in the gasified gas containing the biomass-derived gasified gas.
  • the value is set to be a value set based on the ratio of carbon, the ratio of hydrogen contained in hydrogen supplied as fuel gas, and the target value. For example, when the biomass-derived gasification gas and hydrogen having the same composition as described above are used, and the volume of the biomass-derived gasification gas is 1, the volume ratio of hydrogen to carbon monoxide contained in the mixed gas is set to a target value, for example, 2.
  • the fifth embodiment is different from the first embodiment in that a gasified gas containing at least a biomass-derived gasified gas and steam are used as two types of fuel gas. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and the description will be focused on the differences.
  • steam is the fuel gas that can provide hydrogen.
  • the CO-rich gasification gas supply device 10 is connected to the distribution device 70 and supplies the gasification gas containing at least biomass-derived gasification gas rich in carbon monoxide to the distribution device 70.
  • the steam supply device 27 is connected to the carbon monoxide shift device 80 and supplies steam to the carbon monoxide shift device 80.
  • the distribution device 70 is connected to the carbon monoxide separation device 50 and the carbon monoxide conversion device 80, distributes the supplied gasification gas containing at least the biomass-derived gasification gas at a predetermined ratio, and distributes at least the distributed biomass-derived gasification gas.
  • One part of the gasified gas containing the gas is supplied to the carbon monoxide separator 50, and the other part is supplied to the carbon monoxide converter 80.
  • the carbon monoxide separator 50 separates the other part of the supplied gasified gas containing at least the biomass-derived gasified gas into carbon monoxide and an eighth offgas, and supplies the separated carbon monoxide to the blender 60, The eighth off-gas is supplied to the off-gas utilization device 3.
  • the carbon monoxide conversion device 80 converts the carbon monoxide contained in the other portion of the gasified gas containing at least the biomass-derived gasified gas supplied from the distribution device 70 and the steam supplied from the steam supply device 27 into a catalyst. Exothermic reaction is performed in the presence as shown in the chemical formula (2) to generate a hydrogen-rich modified gas-containing gas composed of hydrogen and carbon dioxide. CO + H 2 O ⁇ H 2 + CO 2 (exothermic reaction) (2)
  • the carbon monoxide shift device 80 is connected to the hydrogen separator 40 and supplies the generated hydrogen-rich shift gas-containing gas to the hydrogen separator 40.
  • the carbon monoxide converter 80 includes a radiator 81, and radiates heat generated by the exothermic reaction with the radiator 81.
  • the hydrogen separation device 40 is connected to the mixing device 60 and the off-gas utilization device 4, supplies the separated hydrogen to the preparation device 60, and supplies the ninth off-gas to the off-gas utilization device 4.
  • the off-gas utilization devices 3 and 4 are boiler combustion furnaces and the steam generated by the boilers is supplied to the steam supply device 27, the generation of carbon dioxide can be suppressed.
  • the exhaust heat of the FT synthesis (exothermic reaction) in the FT synthetic oil production device 2 and the exhaust heat in the CO-rich gasified gas supply device 10 can be used.
  • the amount of the gasified gas containing at least the biomass-derived gasified gas and the amount of water vapor supplied as the two types of fuel gas are such that the volume ratio under standard conditions is at least the carbon monoxide contained in the gasified gas containing the biomass-derived gasified gas.
  • the ratio of hydrogen, the distribution ratio p of the other part to the one part of the gasified gas containing the biomass-derived gasified gas distributed by the distribution device 70, and the value set based on the target value set as follows.
  • the distribution ratio p is calculated when the target value is set to 2 using a biomass-derived gasified gas and water vapor having the same composition as the above-described compositions as the two types of fuel gas.
  • the amount of carbon monoxide supplied from the distributor 70 to the carbon monoxide converter 80 and the amount of steam supplied from the steam supply device 27 are the same from the chemical formula (2). Assuming that the volume of the biomass-derived gasification gas supplied from the CO-rich gasification gas supply device 10 is 1, the amount of carbon monoxide supplied from the carbon monoxide separation device 50 to the blending device 60 is [0.48 ⁇ 1 / (1 + p)], and the amount of hydrogen supplied from the hydrogen separator 40 to the blender 60 is the amount of hydrogen converted from carbon monoxide contained in the other part of the biomass-derived gasified gas [0.48 ⁇ p / (1 + p)] and the amount of hydrogen contained in the other part [0.16 ⁇ p / (1 + p)].
  • the biomass-derived gasification gas supplied from the CO-rich gasification gas supply device 10 is distributed by the distribution device 70 such that the distribution ratio of the other portion to one portion becomes 1.5, and the steam supply device 80
  • the amount of water vapor converted to the standard state supplied to the carbon monoxide conversion device 80 from p / (1 + p) 0.6 times the amount of biomass-derived gasified gas supplied from the CO-rich gasified gas supply device 10
  • the biomass-derived gasified gas and steam can be used without waste.
  • the mixing device 30 is connected to the carbon monoxide separation device 50 in place of the off-gas utilization device 3, and the mixing device 30 is converted to carbon monoxide. Only the point of connection between the device 80 and the hydrogen separation device 40 is different from that of the fifth embodiment, and only the differences will be described.
  • the carbon monoxide separation device 50 separates carbon monoxide from one portion of the gasified gas containing at least the biomass-derived gasified gas rich in carbon monoxide supplied from the distribution device 70, and mixes the separated carbon monoxide. 60, and the eighth off-gas is supplied to the mixing device 30.
  • the mixing device 30 mixes the conversion gas-containing gas supplied from the carbon monoxide conversion device 80 with the eighth off-gas supplied from the carbon monoxide separation device 50 to generate a fourth mixed gas, and generates a fourth mixed gas.
  • the hydrogen separator 40 separates hydrogen from the fourth mixed gas and supplies it to the blender 60, and supplies the tenth offgas to the offgas utilization device 4.
  • the distribution ratio p by the distribution device 70 is calculated, for example, in the case where the biomass-derived gasified gas and the steam having the same composition as the above-mentioned compositions are used as the two types of fuel gas and the target value is 2. Assuming that the amount of the biomass-derived gasified gas is 1, the amount of carbon monoxide contained in one portion of the biomass-derived gasified gas distributed by the distribution device 70 is 0.48 ⁇ 1 / (1 + p). It is separated by the carbon oxide separating device 50 and supplied to the blending device 60. The amount of hydrogen contained in one portion is 0.16 ⁇ p / (1 + p), and is supplied to the mixing device 30 while being contained in the eighth off-gas.
  • the amount of carbon monoxide contained in the other portion of the biomass-derived gasified gas distributed by the distribution device 70 is 0.48 ⁇ p / (1 + p), and is converted by the carbon monoxide conversion device 80 to the same amount of steam. It reacts to become a hydrogen-rich modified gas-containing gas containing the same amount of hydrogen. Since the metamorphic gas-containing gas contains hydrogen contained in the other part of the biomass-derived gasified gas, the fourth mixed gas obtained by mixing the eighth off-gas and the metamorphic gas-containing gas contains [0.16 + 0.48 ⁇ p / (1 + p)], which is separated by the hydrogen separator 40 and supplied to the blender 60. Therefore, the distribution ratio p is given by the following equation (5).
  • the biomass-derived gasification gas supplied from the CO-rich gasification gas supply device 10 is distributed by the distribution device 70 so that the distribution ratio of the other portion to one portion becomes 1.25, and the gasification gas is supplied from the steam supply device 27.
  • the seventh embodiment is different from the fourth embodiment in that a carbon monoxide-rich by-product gas and carbon dioxide-free hydrogen are used as two types of fuel gas, as shown in FIG. Therefore, the same components as those of the fourth embodiment are denoted by the same reference numerals, and the description will be made focusing on this difference.
  • carbon dioxide-free hydrogen is a fuel gas that can provide hydrogen, and its composition is 100% hydrogen.
  • Carbon dioxide-free hydrogen is hydrogen produced by reducing the amount of carbon dioxide gas emitted, and is one or more of hydrogen derived from coal gasification gas with CCS, water electrolysis hydrogen using renewable power, hydrogen derived from biomass, and nuclear hydrogen. A mixture of a plurality of types may be used.
  • Hydrogen derived from coal gasification gas with CCS is hydrogen generated by separating hydrogen from coal gasification gas produced by a coal gasification gas apparatus with CCS (Carbon-Dioxide Capture and Storage).
  • Water electrolyzed hydrogen using renewable power is hydrogen generated by electrolyzing water using power obtained by solar power generation, wind power generation, geothermal power generation, wave power generation, tidal power generation, and the like.
  • Biomass-derived hydrogen is hydrogen produced by reforming biogas obtained by methane fermentation or hydrogen produced by a shift reaction of carbon monoxide of biomass gasified gas.
  • Nuclear hydrogen includes hydrogen generated by the electrolysis of water with nuclear power, and hydrogen generated by the thermochemical decomposition of water by reactor heat.
  • Converter gas is a by-product gas generated in the iron refining process in the converter, and contains about 70% of carbon monoxide.
  • Blast furnace gas is a by-product gas generated when pig iron is produced by reducing iron ore in a blast furnace and contains about 25% of carbon monoxide.
  • the CO-rich by-product gas supply device 15 is connected to the carbon monoxide separation device 50, and supplies a carbon monoxide-rich by-product gas having a high carbon monoxide content (ratio) to the carbon monoxide separation device 50.
  • the carbon monoxide separation device 50 separates carbon monoxide from the carbon monoxide rich by-product gas supplied from the CO-rich by-product gas supply device 15 and supplies the separated carbon monoxide to the blending device 60, and uses the eleventh off-gas as an off-gas utilization device.
  • Supply 3 The eleventh off-gas may be rendered harmless by flare treatment and discharged to the outside.
  • the carbon dioxide-free hydrogen supply device 29 is connected to the mixing device 60, and supplies the carbon dioxide-free hydrogen to the mixing device 60.
  • the amount of the carbon monoxide-rich by-product gas and the amount of the carbon dioxide-free hydrogen gas supplied as the two types of fuel gas are the same as in the fourth embodiment. Are set to values set based on the ratio of carbon monoxide contained in the hydrogen gas, the ratio of hydrogen contained in carbon dioxide-free hydrogen as fuel gas, and the target value.
  • 1 Synthetic gas production system for producing low carbon FT synthetic oil
  • 2 FT synthetic oil production device
  • 3 Off-gas utilization device
  • 10 CO-rich gasified gas supply device
  • 15 CO-rich by-product gas supply device
  • 20 H 2 rich by-product gas supply device
  • 25 hydrogen supply device
  • 27 steam supply device
  • 29 carbon dioxide free hydrogen supply device
  • 30 mixing device
  • 40 hydrogen separation device
  • 50 carbon monoxide separation device
  • 60 blending device
  • 70 distribution device
  • 80 carbon monoxide conversion device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Processing Of Solid Wastes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

In this synthetic gas production system for low-carbon FT synthetic oil production, there are two types of fuel gas, a fuel gas that is rich in carbon monoxide and a fuel gas that can provide hydrogen; carbon monoxide is separated and hydrogen is secured from these two types of fuel gas, and a mixing device is provided which creates a synthetic gas by blending the separated carbon monoxide and the secured hydrogen such that the molar ratio of hydrogen to carbon monoxide is a target value. The capacity ratio in a standard state of the two types of fuel gas is set on the basis of the aforementioned target value and the proportion of carbon monoxide and the proportion of hydrogen contained in the fuel gas that is rich in carbon monoxide and the fuel gas that can provide hydrogen.

Description

低炭素FT合成油製造用合成ガス製造システムSynthetic gas production system for low carbon FT synthetic oil production
 本発明は、低炭素FT合成油を製造するのに適した合成ガスを製造するシステムに関する。 The present invention relates to a system for producing a synthesis gas suitable for producing a low carbon FT synthetic oil.
 地球温暖化問題は深刻度を増しており、二酸化炭素排出の削減が強く求められ、自動車、飛行機等において石油系燃料の使用を制限する動きもある。このような背景からバイオマスの液体燃料化(BTL:Biomass To Liquid)が求められている。BTLは水素と一酸化炭素を適正な比率で反応させる必要があるので、水素の一酸化炭素に対するモル比(H/CO)が目標値である合成ガスを容易に生成する方法が求められている。
 特許文献1には、バイオマスを糖化処理して糖化液を生成し、この糖化液をメタン発酵処理してメタン発酵バイオガスを生成し、このメタン発酵バイオガスから水蒸気改質法や部分酸化法等を用いて水素と一酸化炭素を主成分とする合成ガスを生成し、この合成ガスをFT合成処理してFT合成油を生成することが記載されている。
 特許文献2には、バイオマス原料から熱分解ガスを生成する熱分解炉と、熱分解ガスからHガスとCOガスを別個に選択分離するガス分離器と、そのHガスとCOガスを各々別個に貯蔵する貯蔵タンクと、各ガスを一定の流量比に保つ弁及び調節装置と、このガスを重合反応させる触媒反応器を有する液状炭化水素を合成する液状油製造装置が記載されている。
 特許文献3には、水素及び一酸化炭素を含む混合ガスを水素分離膜に接触させて、前記水素を分離する水素分離工程と、前記水素分離膜に接触した後のオフガスを一酸化炭素分離膜に接触させて、前記一酸化炭素を分離する一酸化炭素分離工程と、を有する、ガス分離方法が記載されている。
 特許文献4には、バイオマス原料を熱分解してバイオマスガスとする熱分解装置と、バイオマスガスを精製する精製装置と、精製したバイオマスガスを炭化水素合成触媒の存在下で炭化水素オイルとする炭化水素合成装置とから構成されたBLT製造システムにおいて、精製装置と炭化水素合成装置との間に、水素ガスを計量添加する水素供給系と、炭素と水素とのモル比が所定値となるように、バイオマスガスと水素を混合調整する調整装置とを備えることが記載されている。
 特許文献5には、廃棄物やバイオマスをガス化処理して生成されるガス化可燃ガスは、原料の入荷が不安定であるので、ガス化可燃ガスを製鉄所で発生する副生可燃ガスと混合して、ボイラーや加熱炉の燃料ガスとして使用することが記載されている。
The problem of global warming is increasing in severity, and there is a strong demand for reduction of carbon dioxide emissions, and there is a movement to restrict the use of petroleum fuels in automobiles, airplanes and the like. From such a background, the conversion of biomass to liquid fuel (BTL: Biomass To Liquid) has been demanded. Since BTL needs to react hydrogen and carbon monoxide at an appropriate ratio, a method for easily generating a synthesis gas having a target value of a molar ratio of hydrogen to carbon monoxide (H 2 / CO) is required. I have.
Patent Literature 1 discloses that saccharification of biomass is performed to generate a saccharified liquid, saccharified liquid is subjected to methane fermentation treatment to generate methane fermentation biogas, and a steam reforming method, a partial oxidation method, and the like are used from the methane fermentation biogas. It is described that a synthetic gas containing hydrogen and carbon monoxide as main components is generated using FT, and the synthetic gas is subjected to FT synthesis processing to generate an FT synthetic oil.
Patent Document 2 discloses a pyrolysis furnace that generates a pyrolysis gas from a biomass raw material, a gas separator that selectively separates H 2 gas and CO gas from the pyrolysis gas, and separates the H 2 gas and the CO gas from each other. A liquid oil producing apparatus for synthesizing a liquid hydrocarbon having a storage tank for separately storing, a valve and a regulator for keeping each gas at a constant flow ratio, and a catalytic reactor for polymerizing the gas is described.
Patent Document 3 discloses a hydrogen separation step in which a mixed gas containing hydrogen and carbon monoxide is brought into contact with a hydrogen separation membrane to separate the hydrogen, and an off-gas after contacting the hydrogen separation membrane is converted into a carbon monoxide separation membrane. A carbon monoxide separation step of separating the carbon monoxide by contacting the gas with a gas.
Patent Document 4 discloses a pyrolysis apparatus that pyrolyzes a biomass raw material to produce a biomass gas, a purification apparatus that purifies a biomass gas, and a carbonization method that converts the purified biomass gas into a hydrocarbon oil in the presence of a hydrocarbon synthesis catalyst. In a BLT production system comprising a hydrogen synthesizing unit, a hydrogen supply system for metering and adding hydrogen gas between a refining unit and a hydrocarbon synthesizing unit, and a molar ratio of carbon to hydrogen may be a predetermined value. And an adjusting device for mixing and adjusting biomass gas and hydrogen.
Patent Literature 5 discloses that gasified combustible gas generated by gasifying waste and biomass has a problem in that the raw material is unstable, so that the gasified combustible gas is generated as a by-product combustible gas generated in an ironworks. It is described that they are mixed and used as fuel gas for boilers and heating furnaces.
国際公開第2015/174518号WO 2015/174518 特開2010-248459号公報JP 2010-248459 A 特開2017-202459号公報Japanese Patent Application Laid-Open No. 2017-202559 国際公開第2010/119972号International Publication No. 2010/119772 特開2011-6575号公報JP 2011-6575 A
 特許文献1に記載された方法では、メタン発酵バイオガスから水蒸気改質法や部分酸化法等を用いて水素と一酸化炭素を主成分とする合成ガスを生成しているが、どのようにして水素と一酸化炭素とのモル比を目標値にコントロールするかに言及していない。
 通常、液状油製造装置に供給する水素の一酸化炭素に対するモル比は2程度である。特許文献2に記載された装置では、バイオマスを熱分解して生成したバイオマスガスから水素と一酸化炭素を別個に選択分離し、その水素と一酸化炭素をモル比2程度に応じた一定の流量比で重合反応させて液状炭化水素を合成しているので、バイオマスから生成した一酸化炭素リッチな熱分解ガスから分離される水素が不足し、バイオマスガスを有効に利用することが困難である。
 特許文献3に記載されたガス分離方法は、3種以上のガスを混合し、混合した混合ガスから水素を分離し、水素を分離した後のオフガスから一酸化炭素を分離しているが、特許文献3は、分離される水素と一酸化炭素の割合が目標値となるように、水素リッチな燃料ガスと一酸化炭素リッチな燃料ガスとを設定割合で混合する技術に言及していない。
 特許文献4に記載されたバイオマスガスと水素を混合調整する調整装置は、炭素と水素とのモル比が所定値となるように、バイオマスガスに水素を混合しているが、特許文献4は、バイオマスガスから一酸化炭素を分離し、分離された一酸化炭素に水素を適切に調合する技術を示していない。
 特許文献5は、廃棄物やバイオマスをガス化処理して生成されるガス化可燃ガスを製鉄所で発生する副生可燃ガスと混合して、ボイラーや加熱炉の燃料ガスとして使用することを示しているが、一酸化炭素リッチな燃料ガスと水素リッチな燃料ガスとから一酸化炭素するに対する水素のモル比が目標値となる合成ガスを生成することに言及していない。
In the method described in Patent Document 1, a synthesis gas containing hydrogen and carbon monoxide as main components is generated from a methane fermentation biogas using a steam reforming method, a partial oxidation method, or the like. It does not mention controlling the molar ratio of hydrogen to carbon monoxide to the target value.
Usually, the molar ratio of hydrogen to carbon monoxide supplied to the liquid oil production device is about 2. In the apparatus described in Patent Literature 2, hydrogen and carbon monoxide are separately selectively separated from biomass gas generated by pyrolysis of biomass, and the hydrogen and carbon monoxide are separated at a constant flow rate according to a molar ratio of about 2. Since liquid hydrocarbons are synthesized by performing a polymerization reaction at a specific ratio, there is a shortage of hydrogen separated from a pyrolysis gas rich in carbon monoxide generated from biomass, and it is difficult to effectively use biomass gas.
The gas separation method described in Patent Document 3 mixes three or more gases, separates hydrogen from the mixed gas mixture, and separates carbon monoxide from off-gas after separating hydrogen. Document 3 does not mention a technique of mixing a hydrogen-rich fuel gas and a carbon monoxide-rich fuel gas at a set ratio such that the ratio of hydrogen and carbon monoxide to be separated is a target value.
Although the adjusting device for mixing and adjusting biomass gas and hydrogen described in Patent Document 4 mixes hydrogen with biomass gas so that the molar ratio of carbon and hydrogen becomes a predetermined value, Patent Document 4, It does not show a technique for separating carbon monoxide from biomass gas and appropriately mixing hydrogen with the separated carbon monoxide.
Patent Document 5 shows that gasified combustible gas generated by gasification of waste and biomass is mixed with by-product combustible gas generated in a steel mill and used as fuel gas for boilers and heating furnaces. However, there is no mention of producing a synthesis gas having a target value of a molar ratio of hydrogen to carbon monoxide from a carbon monoxide-rich fuel gas and a hydrogen-rich fuel gas.
 本発明は、一酸化炭素リッチな燃料ガスと水素を提供可能な燃料ガスとから、炭酸ガスの排出を削減し、かつ両燃料ガスを無駄なく利用して、水素の一酸化炭素に対するモル比が目標値である合成ガスを容易かつ効率的に製造可能な低炭素FT合成油製造用合成ガス製造システムを提供することを目的とする。 The present invention reduces the emission of carbon dioxide gas from a fuel gas rich in carbon monoxide and a fuel gas capable of providing hydrogen, and uses both fuel gases without waste to reduce the molar ratio of hydrogen to carbon monoxide. An object of the present invention is to provide a synthesis gas production system for producing low-carbon FT synthetic oil that can easily and efficiently produce a synthesis gas as a target value.
  本発明は、低炭素FT合成油製造用合成ガス製造システムにおいて、一酸化炭素リッチな燃料ガスと水素を提供可能な燃料ガスとを2種類の燃料ガスとし、前記2種類の燃料ガスから一酸化炭素を分離するとともに水素を確保し、前記分離された一酸化炭素と前記確保された水素とを一酸化炭素に対する水素のモル比が目標値になるように調合して合成ガスにする調合装置を設け、前記2種類の燃料ガスの標準状態での容量比を、前記一酸化炭素リッチな燃料ガスおよび水素を提供可能な燃料ガスに含まれる一酸化炭素の割合および水素の割合と、前記目標値とに基づいて設定することを最も主要な特徴とする。
 一酸化炭素リッチな燃料ガスと水素を提供可能な燃料ガスとの2種類の燃料ガスは、一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスと水素リッチな副生ガス、一酸化炭素リッチな少なくともバイオマス由来ガス化ガスと水素、一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスと水蒸気、或いは一酸化炭素リッチな副生ガスと炭酸ガスフリー水素との組合せのいずれか一つである。一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスは、少なくともバイオマス由来ガス化ガスを含み一酸化炭素の含有率(割合)が高いガス化ガスであり、水素リッチな副生ガスは、水素の含有率(割合)が高い副生ガスであり、一酸化炭素リッチな副生ガスは、一酸化炭素の含有率(割合)が高い副生ガスである。
The present invention provides a synthesis gas production system for producing low-carbon FT synthetic oil, wherein a fuel gas rich in carbon monoxide and a fuel gas capable of providing hydrogen are used as two types of fuel gas, and the two types of fuel gas are used to produce monoxide. A blending device that separates carbon and secures hydrogen, and combines the separated carbon monoxide and the secured hydrogen such that the molar ratio of hydrogen to carbon monoxide becomes a target value to produce synthesis gas. The capacity ratio of the two types of fuel gas in a standard state is defined as the ratio of carbon monoxide and the ratio of hydrogen contained in the fuel gas capable of providing the carbon monoxide-rich fuel gas and hydrogen, and the target value. The most main feature is that the setting is made based on the following.
The two types of fuel gas, the carbon monoxide-rich fuel gas and the fuel gas capable of providing hydrogen, are a gasified gas containing at least a biomass-derived gasified gas rich in carbon monoxide, a hydrogen-rich by-product gas, and a hydrogen-rich by-product gas. Any combination of carbon-rich at least biomass-derived gasified gas and hydrogen, carbon monoxide-rich gasified gas containing at least biomass-derived gasified gas and steam, or a combination of carbon monoxide-rich by-product gas and carbon dioxide-free hydrogen Or one. The gasification gas containing at least biomass-derived gasification gas rich in carbon monoxide is a gasification gas containing at least biomass-derived gasification gas and having a high content (ratio) of carbon monoxide, and a hydrogen-rich by-product gas is , Is a by-product gas having a high hydrogen content (ratio), and a by-product gas rich in carbon monoxide is a by-product gas having a high carbon monoxide content (ratio).
 本発明の低炭素FT合成油製造用合成ガス製造システムは、2種類の燃料ガスの標準状態での容量比を、前記一酸化炭素リッチなガスおよび水素を提供可能な燃料ガスに含まれる一酸化炭素の割合および水素の割合と、前記目標値に基づいて設定するので、前記2種類の燃料ガスを適量に保持することができる。これにより、前記2種類の燃料ガスの量が必要以上に増大し、システム自体、特に一酸化炭素分離装置が大型化し、設置費やランニングコストが増大することを防止できる。さらに、前記2種類の燃料ガスを無駄なく利用して低炭素FT合成油製造用合成ガスを製造することができる。また、前記2種類の燃料ガスの少なくとも一方を、炭酸ガスの排出量を低減して生成したガスとするので、炭酸ガス排出を削減して低炭素FT合成油製造用合成ガスを製造することができる。 The synthesis gas production system for producing low-carbon FT synthetic oil of the present invention determines the volume ratio of the two types of fuel gas in the standard state to the carbon monoxide-rich gas and the fuel gas capable of providing hydrogen. Since the ratio is set based on the ratio of carbon and the ratio of hydrogen and the target value, the two types of fuel gas can be held at appropriate amounts. As a result, it is possible to prevent the amounts of the two types of fuel gas from being increased more than necessary, and to prevent the system itself, particularly the carbon monoxide separation device, from becoming larger and increasing installation costs and running costs. Further, a synthetic gas for producing a low-carbon FT synthetic oil can be produced using the two types of fuel gas without waste. In addition, since at least one of the two types of fuel gas is a gas generated by reducing the amount of carbon dioxide emission, it is possible to reduce the carbon dioxide emission and produce a low-carbon FT synthetic oil producing synthesis gas. it can.
第1の実施形態に係る低炭素FT合成油製造用合成ガス製造システムの全体構成を示すブロック図である。It is a block diagram showing the whole composition of the synthesis gas manufacture system for low carbon FT synthetic oil manufacture concerning a 1st embodiment. 第2の実施形態に係る低炭素FT合成油製造用合成ガス製造システムの全体構成を示すブロック図である。It is a block diagram showing the whole composition of the synthesis gas manufacture system for low carbon FT synthetic oil manufacture concerning a 2nd embodiment. 第3の実施形態に係る低炭素FT合成油製造用合成ガス製造システムの全体構成を示すブロック図である。It is a block diagram showing the whole composition of the synthesis gas manufacture system for low carbon FT synthetic oil manufacture concerning a 3rd embodiment. 第4の実施形態に係る低炭素FT合成油製造用合成ガス製造システムの全体構成を示すブロック図である。It is a block diagram showing the whole composition of the synthesis gas manufacture system for low carbon FT synthetic oil manufacture concerning a 4th embodiment. 第5の実施形態に係る低炭素FT合成油製造用合成ガス製造システムの全体構成を示すブロック図である。It is a block diagram showing the whole composition of the synthesis gas manufacture system for low carbon FT synthetic oil manufacture concerning a 5th embodiment. 第6の実施形態に係る低炭素FT合成油製造用合成ガス製造システムの全体構成を示すブロック図である。It is a block diagram showing the whole composition of the synthesis gas manufacture system for low carbon FT synthetic oil manufacture concerning a 6th embodiment. 第7の実施形態に係る低炭素FT合成油製造用合成ガス製造システムの全体構成を示すブロック図である。It is a block diagram showing the whole composition of the synthesis gas manufacture system for low carbon FT synthetic oil manufacture concerning a 7th embodiment.
1.第1の実施形態の構成
  第1の実施形態に係る低炭素FT合成油製造用合成ガス製造システム1は、図1に示すように、COリッチガス化ガス供給装置10と、Hリッチ副生ガス供給装置20と、混合装置30と、水素分離装置40と、一酸化炭素分離装置50と、調合装置60とによって構成されている。
1. Configuration of First Embodiment As shown in FIG. 1, a synthesis gas production system 1 for producing a low-carbon FT synthetic oil according to a first embodiment includes a CO-rich gasified gas supply device 10 and an H 2 -rich by-product gas. It comprises a supply device 20, a mixing device 30, a hydrogen separation device 40, a carbon monoxide separation device 50, and a blending device 60.
 低炭素FT合成油製造用合成ガス製造システム1の最終段となる調合装置60には、公知のFT合成油製造装置2が接続されている。FT合成油製造装置2は、供給された一酸化炭素に対する水素のモル比が目標値である合成ガスから公知のフィッシャー・トロプシュ法(FT法:Fischer-Tropsch process)を用いて触媒反応で所望のFT合成油(液体炭化水素)を生成する。FT合成油製造装置2は公知であり、各種の触媒が充填された反応器に組成(H/COモル比)を調整した合成ガスを導入し、化学式(1)に示す合成反応を行わせてFT合成油(液体炭化水素)を生成する。
 (2n+1)H2 +nCO → CnH2n+2 +nHO   (1)
 式(1)より、水素(H)と一酸化炭素(CO)とを適正な比率で反応させる必要があり、調合装置60では、水素の一酸化炭素に対するモル比が式(1)から求められる目標値となるように調合される。FT合成油の生成において、化学式(1)のnは、5から20であるので、目標値はほぼ2である。
A known FT synthetic oil production device 2 is connected to a blending device 60 that is the final stage of the synthesis gas production system 1 for producing low carbon FT synthetic oil. The FT synthetic oil production apparatus 2 uses a known Fischer-Tropsch process (FT method) to perform a desired reaction from a synthesis gas having a target molar ratio of hydrogen to carbon monoxide using a known Fischer-Tropsch process. Produces FT synthetic oil (liquid hydrocarbon). The FT synthetic oil production apparatus 2 is known, and introduces a synthesis gas having an adjusted composition (H 2 / CO molar ratio) into a reactor filled with various catalysts to cause a synthesis reaction represented by the chemical formula (1). To produce FT synthetic oil (liquid hydrocarbon).
(2n + 1) H 2 + nCO → CnH 2n + 2 + nH 2 O (1)
According to equation (1), it is necessary to cause hydrogen (H 2 ) and carbon monoxide (CO) to react at an appropriate ratio. In blending device 60, the molar ratio of hydrogen to carbon monoxide is determined from equation (1). Is adjusted so that the target value is obtained. In the production of the FT synthetic oil, the target value is almost 2, since n in the chemical formula (1) is 5 to 20.
 COリッチガス化ガス供給装置10は、ガス化ガスを生成するガス化炉および生成されたガス化ガスを精製する精製装置を含む。ガス化炉は、燃料として間伐材、廃木材、稲わら、麦わら、もみがら、コーン等のバイオマス、好ましくは、木質バイオマスを供給されると、バイオマス由来ガス化ガス100%のガス化ガスを生成する。バイオマス由来ガス化ガスは一酸化炭素リッチなガスであり、組成の一例を容積%で示すと、一酸化炭素(CO)48%、水素(H)16%、メタン(CH)16%、炭酸ガス(CO)13%、炭化水素(CmHn)7%である。
 ガス化炉は、バイオマスと石炭との混合物を混合燃料として供給されると、バイオマス由来ガス化ガスと石炭由来ガス化ガスとが混ざった混合燃料由来のガス化ガスを生成する。さらに、ガス化炉は、バイオマスと廃プラスチック(塩化ビニールを含まない)との混合物を混合燃料として供給されると、バイオマス由来ガス化ガスと廃プラスチック由来ガス化ガスとが混ざった混合燃料由来のガス化ガスを生成する。このように、ガス化炉は、供給される燃料に応じて、少なくともバイオマス由来ガス化ガスを含み一酸化炭素の含有率(割合)が高い、一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスを生成する。そして、COリッチガス化ガス供給装置10は、混合装置30に接続され、ガス化炉で生成された少なくともバイオマス由来ガス化ガスを含むガス化ガスを精製装置で精製して混合装置30に供給する。
 少なくともバイオマス由来ガス化ガスを含むガス化ガスをガス化炉で生成し、精製装置で精製した少なくともバイオマス由来ガス化ガスを含むガス化ガスをガスホルダーに貯蔵するようにした場合は、COリッチガス化ガス供給装置10は、一酸化炭素リッチな少なくともバイオマス由来ガス化ガス含むガス化ガスを貯蔵し、混合装置30に供給するガスホルダーであってもよい。
The CO-rich gasification gas supply device 10 includes a gasification furnace that generates a gasification gas and a purification device that purifies the generated gasification gas. When supplied with biomass, preferably woody biomass, such as thinned wood, waste wood, rice straw, straw, rice husk, corn, etc., as a fuel, the gasifier generates a 100% biomass-derived gasified gas. I do. The biomass-derived gasified gas is a gas rich in carbon monoxide. When an example of the composition is shown by volume%, carbon monoxide (CO) 48%, hydrogen (H 2 ) 16%, methane (CH 4 ) 16%, Carbon dioxide (CO 2 ) 13%, hydrocarbon (CmHn) 7%.
When a gasification furnace is supplied with a mixture of biomass and coal as a mixed fuel, the gasification furnace generates a gasified gas derived from a mixed fuel in which a biomass-derived gasification gas and a coal-derived gasification gas are mixed. Further, when the gasification furnace is supplied with a mixture of biomass and waste plastics (not including vinyl chloride) as a mixed fuel, the gasification furnace is derived from a mixed fuel derived from a mixture of biomass-derived gasification gas and waste plastic-derived gasification gas. Generate gasification gas. As described above, the gasification furnace includes at least the biomass-derived gasification gas rich in carbon monoxide, which contains at least the biomass-derived gasification gas and has a high carbon monoxide content (ratio) according to the supplied fuel. Generate gasification gas. Then, the CO-rich gasified gas supply device 10 is connected to the mixing device 30 and purifies the gasified gas including at least the biomass-derived gasified gas generated in the gasification furnace by the purification device and supplies the gasified gas to the mixing device 30.
When a gasification gas containing at least a biomass-derived gasification gas is generated in a gasification furnace and the gasification gas containing at least the biomass-derived gasification gas purified by a purification device is stored in a gas holder, CO-rich gasification is performed. The gas supply device 10 may be a gas holder that stores a gasified gas containing at least a biomass-derived gasified gas rich in carbon monoxide and supplies the gasified gas to the mixing device 30.
 Hリッチ副生ガス供給装置20は混合装置30に接続され、コークス炉ガスおよび製油所ガスの少なくとも一方からなる水素リッチな副生ガスを混合装置30に供給する。水素リッチな副生ガスは、水素の含有率(割合)が高く、水素を提供可能なガスである。コークス炉ガスは、コークス製造に伴い発生する水素リッチな乾留ガスである。製油所ガスは原油の精製プロセスで発生する水素リッチなオフガスである。水素リッチな副生ガスの一つであるコークス炉ガスの組成の一例を容積%で示すと、一酸化炭素(CO)7%、水素(H)56%、メタン(CH)27%、炭酸ガス(CO2)7%、炭化水素(CmHn)3%である。コークス炉ガスおよび製油所ガスの少なくとも一方からなる水素リッチな副生ガスをガスホルダーに貯蔵するようにした場合は、Hリッチ副生ガス供給装置20は、水素リッチな副生ガスを貯蔵し、混合装置30に供給するガスホルダーであってもよい。 The H 2 rich by-product gas supply device 20 is connected to the mixing device 30 and supplies the mixing device 30 with a hydrogen-rich by-product gas composed of at least one of a coke oven gas and a refinery gas. The hydrogen-rich by-product gas is a gas that has a high hydrogen content rate (ratio) and can provide hydrogen. Coke oven gas is a hydrogen-rich dry distillation gas generated during coke production. Refinery gas is a hydrogen-rich off-gas generated in the crude oil refining process. When an example of the composition of the coke oven gas, which is one of the hydrogen-rich by-product gases, is shown by volume%, carbon monoxide (CO) 7%, hydrogen (H 2 ) 56%, methane (CH 4 ) 27%, Carbon dioxide (CO2) is 7% and hydrocarbon (CmHn) is 3%. If the coke oven gas and a hydrogen-rich product gas comprising at least one refinery gas so as to store the gas holder, H 2 rich product gas supply device 20 stores hydrogen rich product gas , A gas holder to be supplied to the mixing device 30.
 混合装置30は、COリッチガス化ガス供給装置10から一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスを供給されるとともに、Hリッチ副生ガス供給装置20から水素リッチな副生ガスが供給され、少なくともバイオマス由来ガス化ガスを含むガス化ガスと水素リッチな副生ガスとを混合し、混合ガス(第1混合ガス)を生成するように構成されている。このように、混合装置30は、少なくともバイオマス由来ガス化ガスを含むガス化ガス(一酸化炭素リッチな燃料ガス)と水素リッチな副生ガス(水素を提供可能な燃料ガス)との2種類の燃料ガスを供給される。 The mixing device 30 is supplied with the gasified gas containing at least the biomass-derived gasified gas rich in carbon monoxide from the CO-rich gasified gas supply device 10, and is supplied with the hydrogen-rich by-product gas from the H 2 -rich by-product gas supply device 20. The gas is supplied, and the gasification gas containing at least the biomass-derived gasification gas is mixed with the hydrogen-rich by-product gas to generate a mixed gas (first mixed gas). As described above, the mixing device 30 includes two types of gasification gas (carbon monoxide-rich fuel gas) including at least biomass-derived gasification gas and hydrogen-rich by-product gas (fuel gas capable of providing hydrogen). Fuel gas is supplied.
 低炭素FT合成油製造用合成ガス製造システム1で製造する合成ガスは、一酸化炭素に対する水素のモル比を目標値のほぼ2とするガスであるので、混合装置30は、少なくともバイオマス由来ガス化ガスを含むガス化ガスと水素リッチな副生ガスとを、標準状態での容量比が、少なくともバイオマス由来ガス化ガスを含むガス化ガスおよび水素リッチな副生ガスに含まれる一酸化炭素の割合および水素の割合と、目標値とに基づいて設定された値となるように混合する。少なくともバイオマス由来ガス化ガスを含むガス化ガスは一酸化炭素リッチであるので、水素リッチな合成ガスの製造において水素を補充するために水素リッチな副生ガスを混合する。 Since the synthesis gas produced by the synthesis gas production system 1 for producing low-carbon FT synthetic oil is a gas whose molar ratio of hydrogen to carbon monoxide is almost equal to a target value of 2, the mixing device 30 is provided with at least biomass-derived gasification. The volume ratio of the gasified gas containing gas to the hydrogen-rich by-product gas under standard conditions is at least the ratio of carbon monoxide contained in the gasified gas containing the biomass-derived gasified gas and the hydrogen-rich by-product gas. And hydrogen so as to have a value set based on the ratio of hydrogen and the target value. Since the gasification gas containing at least the biomass-derived gasification gas is rich in carbon monoxide, a hydrogen-rich by-product gas is mixed to supplement hydrogen in the production of a hydrogen-rich synthesis gas.
 例えば、上述の組成のバイオマス由来ガス化ガスと水素リッチな副生ガスとを2種類の燃料ガスとすると、標準状態でバイオマス由来ガス化ガスに含まれる一酸化炭素の割合は48%、水素の割合は16%であり、水素リッチな副生ガスに含まれる一酸化炭素の割合は7%、水素の割合は56%である。従って、バイオマス由来ガス化ガスと水素リッチな副生ガスとを容量比(1:x)で混合すると、混合ガスに含まれる一酸化炭素の割合は、0.48+0.07xとなり、水素の割合は、0.16+0.56xとなる。混合ガスに含まれる一酸化炭素に対する水素の容量比を目標値、例えば2とするための水素リッチな副生ガスの容量は式(2)から、
(0.16+0.56x)/(0.48+0.07x)=2    (2)
 x=80/42≒2となる。
 従って、例えば、Hリッチ副生ガス供給装置20から混合装置30に供給される水素リッチな副生ガスの量を、COリッチガス化ガス供給装置10から混合装置30に供給されるバイオマス由来ガス化ガスの量の2倍にして混合装置30で混合すると、バイオマス由来ガス化ガスおよび水素リッチな副生ガスを無駄なく利用することができる。
 上記例では、バイオマス由来ガス化ガスと水素リッチな副生ガスとを、標準状態での容量比が、バイオマス由来ガス化ガスおよび水素リッチな副生ガスに含まれる一酸化炭素の割合(48%と7%)および水素の割合(16%と56%)と、目標値(2)とに基づいて設定された値となるように混合している。
 これにより、一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスに水素リッチな副生ガスを混合された混合ガスは水素の含有量が多くなり、低炭素FT合成油を製造するのに適した合成ガス製造の歩留まりを向上することができる。
For example, if the biomass-derived gasified gas having the above composition and the hydrogen-rich by-product gas are two types of fuel gas, the ratio of carbon monoxide contained in the biomass-derived gasified gas in a standard state is 48%, The ratio is 16%, the ratio of carbon monoxide contained in the hydrogen-rich by-product gas is 7%, and the ratio of hydrogen is 56%. Therefore, when the biomass-derived gasified gas and the hydrogen-rich by-product gas are mixed at a volume ratio (1: x), the ratio of carbon monoxide contained in the mixed gas is 0.48 + 0.07x, and the ratio of hydrogen is , 0.16 + 0.56x. The capacity of the hydrogen-rich by-product gas for setting the capacity ratio of hydrogen to carbon monoxide contained in the mixed gas to a target value, for example, 2, is given by the equation (2).
(0.16 + 0.56x) / (0.48 + 0.07x) = 2 (2)
x = 80/42 ≒ 2.
Therefore, for example, the amount of the hydrogen-rich by-product gas supplied from the H 2 -rich by-product gas supply device 20 to the mixing device 30 is converted into the biomass-derived gasification supplied from the CO-rich gasification gas supply device 10 to the mixing device 30. When the amount of the gas is doubled and mixed by the mixing device 30, the gasified gas derived from the biomass and the hydrogen-rich by-product gas can be used without waste.
In the above example, the volume ratio of the biomass-derived gasified gas and the hydrogen-rich by-product gas in the standard state is determined by the ratio of the carbon monoxide contained in the biomass-derived gasified gas and the hydrogen-rich by-product gas (48% And 7%) and the proportions of hydrogen (16% and 56%) and the target value (2).
As a result, the mixed gas obtained by mixing the gasified gas containing at least the biomass-derived gasified gas rich in carbon monoxide with the hydrogen-rich by-product gas has a high hydrogen content, thereby producing a low-carbon FT synthetic oil. It is possible to improve the yield of syngas production suitable for the above.
 水素分離装置40は、混合装置30に接続され、供給された第1混合ガスを、水素と第1オフガスとに分離する。水素分離装置40は、公知の圧力変動吸着法(PSA:Pressure Swing Adsorption)、水素分離高分子膜、水素分離金属膜、深冷分離法等を用いたものでよい。 The hydrogen separation device 40 is connected to the mixing device 30 and separates the supplied first mixed gas into hydrogen and a first off-gas. The hydrogen separation device 40 may use a known pressure fluctuation adsorption method (PSA: Pressure Swing Adsorption), a hydrogen separation polymer membrane, a hydrogen separation metal membrane, a cryogenic separation method, or the like.
 一酸化炭素分離装置50は、水素分離装置40に接続され、供給された第1オフガスを一酸化炭素と第2オフガスとに分離する。一酸化炭素分離装置30は、公知の圧力変動吸着法(PSA)、一酸化炭素分離高分子膜、一酸化炭素分離金属膜、深冷分離法等を用いたものでよい。 The carbon monoxide separator 50 is connected to the hydrogen separator 40 and separates the supplied first off-gas into carbon monoxide and a second off-gas. The carbon monoxide separation device 30 may use a known pressure fluctuation adsorption method (PSA), a carbon monoxide separation polymer membrane, a carbon monoxide separation metal membrane, a cryogenic separation method, or the like.
 調合装置60は、水素分離装置40と一酸化炭素分離装置50とに接続され、水素分離装置40から供給される水素と一酸化炭素分離装置50から供給される一酸化炭素の容量を同温、同圧でそれぞれ計測し、一酸化炭素の容量に対する水素の容量が、目標値になるように調合するものである。これにより、水素分離装置40で分離された水素と一酸化炭素分離装置50で分離された一酸化炭素は、一酸化炭素に対する水素のモル比が目標値になるように調合されて合成ガスとなる。 The preparation device 60 is connected to the hydrogen separation device 40 and the carbon monoxide separation device 50, and has the same temperature as the capacity of hydrogen supplied from the hydrogen separation device 40 and the carbon monoxide supplied from the carbon monoxide separation device 50, Each is measured at the same pressure, and is adjusted so that the capacity of hydrogen with respect to the capacity of carbon monoxide becomes a target value. Thereby, the hydrogen separated by the hydrogen separation device 40 and the carbon monoxide separated by the carbon monoxide separation device 50 are prepared so that the molar ratio of hydrogen to carbon monoxide becomes a target value, and becomes a synthesis gas. .
 一酸化炭素分離装置50には、オフガス利用装置3が接続され、一酸化炭素ガス分離装置50から供給された第2オフガスを燃料として利用する。オフガス利用装置3は、ボイラーの燃焼炉等である。 オ フ The offgas utilization device 3 is connected to the carbon monoxide separation device 50, and uses the second offgas supplied from the carbon monoxide gas separation device 50 as fuel. The off-gas utilization device 3 is a boiler combustion furnace or the like.
2.第1の実施形態の作動
 COリッチガス化ガス供給装置10は、一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスを混合装置30に供給し、Hリッチ副生ガス供給装置20は水素リッチな副生ガスを混合装置30に供給する。混合装置30は少なくともバイオマス由来ガス化ガスを含むガス化ガスと水素リッチな副生ガスとを混合して第1混合ガスを生成し、水素分離装置40に供給する。水素分離装置40は供給された第1混合ガスを水素と第1オフガスに分離し、第1オフガスを一酸化炭素分離装置50に、水素を調合装置60に供給する。一酸化炭素分離装置50は供給された第1オフガスを一酸化炭素と第2オフガスに分離し、一酸化炭素を調合装置60に供給する。調合装置60は、供給された水素および一酸化炭素を水素の一酸化炭素に対するモル比が目標値になるように調合して、低炭素FT合成油の製造に適した合成ガスにする。
2. The actuating CO rich gas of the gas supply apparatus 10 of the first embodiment, the gasification gas containing carbon monoxide-rich least from biomass gasification gas supplied to the mixing device 30, H 2 rich product gas supply device 20 The hydrogen-rich by-product gas is supplied to the mixing device 30. The mixing device 30 mixes a gasification gas containing at least a biomass-derived gasification gas and a hydrogen-rich by-product gas to generate a first mixed gas, and supplies the first mixed gas to the hydrogen separation device 40. The hydrogen separator 40 separates the supplied first mixed gas into hydrogen and a first off-gas, and supplies the first off-gas to the carbon monoxide separator 50 and the hydrogen to the blender 60. The carbon monoxide separator 50 separates the supplied first off-gas into carbon monoxide and a second off-gas, and supplies the carbon monoxide to the blender 60. The blending device 60 blends the supplied hydrogen and carbon monoxide such that the molar ratio of hydrogen to carbon monoxide becomes a target value, and makes the synthesis gas suitable for the production of low carbon FT synthetic oil.
  FT合成油製造装置2は、低炭素FT合成油製造用合成ガス製造システム1から供給された合成ガスからFT合成油を生成する。オフガス利用装置3は、供給された第2オフガスを燃焼して燃焼熱を利用する。これにより、2種類の燃料ガスを有効に利用することができる。 The FT synthetic oil production device 2 generates FT synthetic oil from the synthesis gas supplied from the low-carbon FT synthetic oil production synthesis gas production system 1. The offgas utilization device 3 uses the combustion heat by burning the supplied second offgas. Thereby, two types of fuel gas can be used effectively.
3.第1の実施形態の効果
 第1の実施形態に係る低炭素FT合成油製造用合成ガス製造システム1によれば、2種類の燃料ガスである一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスと水素リッチな副生ガスとの標準状態での容量比を、前記2種類の燃料ガスに含まれる一酸化炭素の割合および水素の割合と、製造する合成ガスの一酸化炭素に対する水素のモル比の目標値とに基づいて設定された値とするので、前記2種類の燃料ガスを無駄なく利用することができる。さらに、前記2種類の燃料ガスの量が必要以上に増大することがなく、システム自体、特に水素分離装置や一酸化炭素分離装置の大型化および設置費やランニングコストの増大を防止することができる。また、少なくともバイオマス由来ガス化ガスを含むガス化ガスの製造は、炭酸ガスの排出量が少ないので、炭酸ガス排出を削減して低炭素FT合成油製造用合成ガスを製造することができる。
3. Effects of First Embodiment According to the synthesis gas production system 1 for producing low-carbon FT synthetic oil according to the first embodiment, at least biomass-derived gasified gas rich in carbon monoxide, which is two types of fuel gas, is included. The volume ratio of the gasified gas and the hydrogen-rich by-product gas in the standard state is defined as the ratio of carbon monoxide and the ratio of hydrogen contained in the two types of fuel gas, and the ratio of hydrogen to carbon monoxide in the synthesis gas to be produced. Since the value set based on the target value of the molar ratio is used, the two types of fuel gas can be used without waste. Furthermore, the amounts of the two types of fuel gas do not increase more than necessary, and it is possible to prevent an increase in the size of the system itself, particularly the hydrogen separation device and the carbon monoxide separation device, and an increase in installation costs and running costs. . In addition, since the production of gasified gas containing at least the biomass-derived gasified gas involves a small amount of carbon dioxide emission, it is possible to reduce the carbon dioxide emission and produce a synthesis gas for producing low carbon FT synthetic oil.
4.第2の実施形態の構成
  第2の実施形態は、図2に示すように、水素分離装置40がHリッチ副生ガス供給装置20と混合装置30との間に接続され、混合装置30が一酸化炭素分離装置50に直接接続された点、およびCOリッチガス化ガス供給装置10から混合装置30に供給される少なくともバイオマス由来ガス化ガスを含むガス化ガスとHリッチ副生ガス供給装置20から水素分離装置40に供給される水素リッチな副生ガスとの標準状態での容量比を、前記少なくともバイオマス由来ガス化ガスを含むガス化ガスおよび前記水素リッチな副生ガスに含まれる一酸化炭素の割合と、前記水素リッチな副生ガスに含まれる水素の割合と、前記目標値とに基づいて設定する点が第1実施形態と異なる。従って、第1の実施形態と同じ構成要素には同一の参照番号を付して説明を省略する。
4. Configuration of Second Embodiment In the second embodiment, as shown in FIG. 2, a hydrogen separation device 40 is connected between the H 2 rich by-product gas supply device 20 and the mixing device 30, and the mixing device 30 point that is directly connected to a carbon monoxide separator 50, and CO-rich gas of gasification gas and H 2 rich product gas supply system comprising at least from biomass gasification gas supplied to the mixer 30 from the gas supply apparatus 10 20 The volume ratio in a standard state with the hydrogen-rich by-product gas supplied to the hydrogen separation device 40 from the gaseous gas containing at least the biomass-derived gasification gas and the monoxide contained in the hydrogen-rich by-product gas The first embodiment differs from the first embodiment in that the ratio is set based on the ratio of carbon, the ratio of hydrogen contained in the hydrogen-rich by-product gas, and the target value. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 Hリッチ副生ガス供給装置20が水素分離装置40に接続され、水素リッチな副生ガスを水素分離装置40に供給する。水素分離装置40は調合装置60に接続され、分離した水素を調合装置60に供給するとともに、第3オフガスを混合装置30に供給する。COリッチガス化ガス供給装置10は混合装置30に接続され、一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスを混合装置30に供給する。混合装置30は、少なくともバイオマス由来ガス化ガスを含むガス化ガスと第3オフガスとを混合して第2混合ガスとし、一酸化炭素分離装置50に供給する。 The H 2 -rich by-product gas supply device 20 is connected to the hydrogen separation device 40, and supplies the hydrogen-rich by-product gas to the hydrogen separation device 40. The hydrogen separation device 40 is connected to the mixing device 60, supplies the separated hydrogen to the mixing device 60, and supplies the third off-gas to the mixing device 30. The CO-rich gasification gas supply device 10 is connected to the mixing device 30 and supplies the gasification gas containing at least a biomass-derived gasification gas rich in carbon monoxide to the mixing device 30. The mixing device 30 mixes the gasified gas containing at least the biomass-derived gasified gas and the third off-gas into a second mixed gas, and supplies the second mixed gas to the carbon monoxide separation device 50.
 第2混合ガスには、少なくともバイオマス由来ガス化ガスを含むガス化ガスに含まれる水素が含まれ、第2混合ガスに含まれる水素は一酸化炭素分離装置50から第4オフガスに含まれてオフガス利用装置3に送出され、調合装置60に供給されない。従って、少なくともバイオマス由来ガス化ガスを含むガス化ガスおよび水素リッチな副生ガスに含まれる一酸化炭素は、調合装置60に供給されるが、少なくともバイオマス由来ガス化ガスを含むガス化ガスに含まれる水素は調合装置60に供給されない。従って、2種類の燃料ガスとして供給される少なくともバイオマス由来ガス化ガスを含むガス化ガスと水素リッチな副生ガスの量は、標準状態での容量比が少なくともバイオマス由来ガス化ガスを含むガス化ガスおよび前記水素リッチな副生ガスに含まれる一酸化炭素の割合と、水素リッチな副生ガスに含まれる水素の割合と、前記目標値とに基づいて設定された値となるように設定する。
 例えば、2種類の燃料ガスとして前述の組成と同じバイオマス由来ガス化ガスおよび水素リッチな副生ガスを用いると、第2混合ガスに含まれる一酸化炭素に対する水素の容量比を目標値、例えば2とするための水素リッチな副生ガスの容量xは、バイオマス由来ガス化ガスの容量を1とすると、式(3)から、
(0.56x)/(0.48+0.07x)=2    (3)
 x=96/42≒2.3となる。
 従って、例えば、Hリッチ副生ガス供給装置20から水素分離装置40に供給される水素リッチな副生ガスの量を、COリッチガス化ガス供給装置10から混合装置30に供給されるバイオマス由来ガス化ガスの量の2.3倍にすると、バイオマス由来ガス化ガスおよび水素リッチな副生ガスを無駄なく利用することができる。
The second mixed gas contains at least hydrogen contained in the gasified gas containing the biomass-derived gasified gas, and the hydrogen contained in the second mixed gas is contained in the fourth offgas from the carbon monoxide separation device 50 and is contained in the offgas. It is sent to the utilization device 3 and is not supplied to the blending device 60. Therefore, the gasification gas containing at least the biomass-derived gasification gas and the carbon monoxide contained in the hydrogen-rich by-product gas are supplied to the blender 60, but are contained in the gasification gas containing at least the biomass-derived gasification gas. The supplied hydrogen is not supplied to the blender 60. Therefore, the amount of the gasified gas containing at least the biomass-derived gasified gas and the amount of the hydrogen-rich by-product gas supplied as the two types of fuel gas are such that the volume ratio under the standard condition is at least the gasification containing the biomass-derived gasified gas. It is set to be a value set based on the ratio of carbon monoxide contained in the gas and the hydrogen-rich by-product gas, the ratio of hydrogen contained in the hydrogen-rich by-product gas, and the target value. .
For example, when a biomass-derived gasified gas and a hydrogen-rich by-product gas having the same composition as the above-described compositions are used as the two types of fuel gas, the capacity ratio of hydrogen to carbon monoxide contained in the second mixed gas is set to a target value, for example, 2 Assuming that the capacity x of the biomass-derived gasified gas is 1, from the equation (3),
(0.56x) / (0.48 + 0.07x) = 2 (3)
x = 96/42 ≒ 2.3.
Therefore, for example, the amount of the hydrogen-rich by-product gas supplied from the H 2 -rich by-product gas supply device 20 to the hydrogen separation device 40 is changed to the biomass-derived gas supplied from the CO-rich gasification gas supply device 10 to the mixing device 30. When the amount of the gasification gas is 2.3 times, the gasification gas derived from biomass and the hydrogen-rich by-product gas can be used without waste.
5.第2の実施形態の効果
 第2の実施形態では、第1の実施形態が奏する効果に加え、水素分離装置40には水素リッチな副生ガスのみが供給されるので、水素分離装置を小型化し、設置費やランニングコストを低減することができる。
5. Effects of the Second Embodiment In the second embodiment, in addition to the effects of the first embodiment, since only the hydrogen-rich by-product gas is supplied to the hydrogen separation device 40, the hydrogen separation device can be downsized. In addition, installation costs and running costs can be reduced.
6.第3の実施形態の構成
 第3の実施形態は、図3に示すように、一酸化炭素分離装置50がCOリッチガス化ガス供給装置10と混合装置30との間に接続され、水素分離装置40にオフガス利用装置4が接続された点、およびCOリッチガス化ガス供給装置10から一酸化炭素分離装置50に供給される前記少なくともバイオマス由来ガス化ガスを含むガス化ガスとHリッチ副生ガス供給装置20から混合装置30に供給される前記水素リッチな副生ガスとの標準状態での容量比を、少なくともバイオマス由来ガス化ガスを含むガス化ガスに含まれる一酸化炭素の割合と、少なくともバイオマス由来ガス化ガスを含むガス化ガスおよび前記水素リッチな副生ガスに含まれる水素の割合と、前記目標値とに基づいて設定する点が第1実施形態と異なる。従って、第1の実施形態と同じ構成要素には同一の参照番号を付して説明を省略する。
6. Configuration of Third Embodiment In the third embodiment, as shown in FIG. 3, a carbon monoxide separation device 50 is connected between a CO-rich gasified gas supply device 10 and a mixing device 30 and a hydrogen separation device 40 And a gaseous gas containing at least the biomass-derived gasified gas and an H 2 rich by-product gas supplied from the CO-rich gasified gas supply device 10 to the carbon monoxide separation device 50. The volume ratio of the hydrogen-rich by-product gas supplied from the device 20 to the mixing device 30 in a standard state is defined as the ratio of carbon monoxide contained in the gasified gas containing at least the biomass-derived gasified gas, and The first embodiment is set based on the ratio of hydrogen contained in the gasified gas including the derived gasified gas and the hydrogen-rich by-product gas and the target value. And different. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 COリッチガス化ガス供給装置10が一酸化炭素分離装置50に接続され、一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスを一酸化炭素分離装置50に供給する。一酸化炭素分離装置50は、分離した一酸化炭素を調合装置60に供給し、第5オフガスを混合装置に供給する。混合装置30は、Hリッチ副生ガス供給装置20から供給された水素リッチな副生ガスと第5オフガスとを混合して第3混合ガスとし、水素分離装置40に供給する。水素分離装置40は、第3混合ガスを供給され、分離した水素を調合装置60の供給し、第6オフガスをオフガス利用装置4に供給する。オフガス利用装置4は、供給された第6オフガスを燃焼して燃焼熱を利用する。これにより、2種類の燃料ガスを有効に利用することができる。 The CO-rich gasification gas supply device 10 is connected to the carbon monoxide separation device 50, and supplies the carbon monoxide-rich gasification gas containing at least biomass-derived gasification gas to the carbon monoxide separation device 50. The carbon monoxide separation device 50 supplies the separated carbon monoxide to the preparation device 60, and supplies the fifth off-gas to the mixing device. The mixing device 30 mixes the hydrogen-rich by-product gas supplied from the H 2 -rich by-product gas supply device 20 with the fifth off-gas to form a third mixed gas, and supplies the third mixed gas to the hydrogen separation device 40. The hydrogen separation device 40 is supplied with the third mixed gas, supplies the separated hydrogen to the preparation device 60, and supplies the sixth off-gas to the off-gas utilization device 4. The offgas utilization device 4 utilizes the combustion heat by burning the supplied sixth offgas. Thereby, two types of fuel gas can be used effectively.
 第3混合ガスには、水素リッチな副生ガスに含まれる一酸化炭素が含まれ、第3混合ガスに含まれる一酸化炭素は水素分離装置40から第6オフガスに含まれてオフガス利用装置4に送出され、調合装置60に供給されない。従って、少なくともバイオマス由来ガス化ガスを含むガス化ガスおよび水素リッチな副生ガスに含まれる水素は、調合装置60に供給されるが、水素リッチな副生ガスに含まれる一酸化炭素は調合装置60に供給されない。
 従って、2種類の燃料ガスとして供給する少なくともバイオマス由来ガス化ガスを含むガス化ガスと水素リッチな副生ガスの量は、標準状態での容量比が少なくともバイオマス由来ガス化ガスを含むガス化ガスに含まれる一酸化炭素の割合と、少なくともバイオマス由来ガス化ガスを含むガス化ガスおよび水素リッチな副生ガスに含まれる水素の割合と、前記目標値とに基づいて設定された値となるように設定する。
 例えば、2種類の燃料ガスとして前述の組成と同じバイオマス由来ガス化ガスおよび水素リッチな副生ガスを用いると、合成ガスに含まれる一酸化炭素に対する水素の容量比を目標値、例えば2とするための水素リッチな副生ガスの容量xは、バイオマス由来ガス化ガスの容量を1とすると、次式(4)から、
(0.16+0.56x)/(0.48)=2    (4)
 x=0.80/0.56≒1.4となる。
 従って、例えば、Hリッチ副生ガス供給装置20から混合装置30に供給される水素リッチな副生ガスの量を、COリッチガス化ガス供給装置10から一酸化炭素分離装置50に供給されるバイオマス由来ガス化ガスの量の1.4倍にすると、バイオマス由来ガス化ガスおよび水素リッチな副生ガスを無駄なく利用することができる。
The third mixed gas contains carbon monoxide contained in the hydrogen-rich by-product gas, and the carbon monoxide contained in the third mixed gas is contained in the sixth offgas from the hydrogen separator 40 and the offgas utilization device 4 And is not supplied to the blending device 60. Therefore, the hydrogen contained in the gasification gas containing at least the biomass-derived gasification gas and the hydrogen contained in the hydrogen-rich by-product gas are supplied to the mixing device 60, but the carbon monoxide contained in the hydrogen-rich by-product gas is supplied to the preparation device 60. Not supplied to 60.
Therefore, the amount of the gasified gas containing at least the biomass-derived gasified gas and the amount of the hydrogen-rich by-product gas supplied as the two types of fuel gas are the gasified gas containing at least the biomass-derived gasified gas at the standard volume ratio. And the ratio of hydrogen contained in at least the gasification gas containing the biomass-derived gasification gas and the hydrogen-rich by-product gas, and the value set based on the target value. Set to.
For example, when a biomass-derived gasification gas and a hydrogen-rich by-product gas having the same composition as the above-described compositions are used as two types of fuel gases, the volume ratio of hydrogen to carbon monoxide contained in the synthesis gas is set to a target value, for example, 2. The capacity x of the hydrogen-rich by-product gas is given by the following equation (4), where the capacity of the biomass-derived gasified gas is 1.
(0.16 + 0.56x) / (0.48) = 2 (4)
x = 0.80 / 0.56 ≒ 1.4.
Therefore, for example, the amount of the hydrogen-rich by-product gas supplied from the H 2 -rich by-product gas supply device 20 to the mixing device 30 is converted into the amount of the biomass supplied from the CO-rich gasification gas supply device 10 to the carbon monoxide separation device 50. When the amount of the derived gasified gas is 1.4 times, the biomass-derived gasified gas and the hydrogen-rich by-product gas can be used without waste.
7.第3の実施形態の効果
 第3の実施形態では、第1の実施形態が奏する効果に加え、一酸化炭素分離装置50には少なくともバイオマス由来ガス化ガスを含むガス化ガスのみが供給されるので、一酸化炭素分離装置50を小型化し、設置費やランニングコストを低減することができる。
7. Effects of Third Embodiment In the third embodiment, in addition to the effects of the first embodiment, since only the gasified gas containing at least the biomass-derived gasified gas is supplied to the carbon monoxide separation device 50, In addition, the carbon monoxide separation device 50 can be downsized, and the installation cost and running cost can be reduced.
8.第4の実施形態の構成
  第4の実施形態は、図4に示すように、2種類の燃料ガスとして少なくともバイオマス由来ガス化ガスを含むガス化ガスと水素とを用いる点が第1の実施形態と異なるので、第1の実施形態と同じ構成要素には同一の参照番号を付して、この相違点を中心に説明する。この場合、水素が、水素を提供可能な燃料ガスであり、その組成は水素の割合が100%である。
8. Configuration of Fourth Embodiment The fourth embodiment is different from the first embodiment in that a gasified gas containing at least a biomass-derived gasified gas and hydrogen are used as two types of fuel gas as shown in FIG. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and the description will be made focusing on this difference. In this case, hydrogen is a fuel gas that can provide hydrogen, and its composition is 100% hydrogen.
 水素供給装置25が調合装置60に接続され、水素を調合装置60に供給する。水素供給装置25から供給される水素としては、ソーダ電解水素、水電解水素、天然ガス改質水素、バイオガス改質水素、COフリー水素のいずれか一種又は複数種を混合したものでもよい。一酸化炭素分離装置50は、COリッチガス化ガス供給装置10から供給された一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスから一酸化炭素を分離して調合装置60に供給し、第7オフガスをオフガス利用装置3に供給する。調合装置60は、水素供給装置25から供給された水素と一酸化炭素分離装置50から供給された一酸化炭素とを一酸化炭素に対する水素のモル比が目標値になるように調合して合成ガスにする。 The hydrogen supply device 25 is connected to the mixing device 60 and supplies hydrogen to the mixing device 60. The hydrogen supplied from the hydrogen supply device 25 may be a mixture of one or more of soda electrolytic hydrogen, water electrolytic hydrogen, natural gas reformed hydrogen, biogas reformed hydrogen, and CO 2 -free hydrogen. The carbon monoxide separation device 50 separates carbon monoxide from the gasified gas containing at least the biomass-derived gasified gas rich in carbon monoxide supplied from the CO-rich gasified gas supply device 10, and supplies the separated gas to the blending device 60. The seventh off-gas is supplied to the off-gas utilization device 3. The mixing device 60 mixes the hydrogen supplied from the hydrogen supply device 25 and the carbon monoxide supplied from the carbon monoxide separation device 50 such that the molar ratio of hydrogen to carbon monoxide becomes a target value, and synthesizes the synthesis gas. To
 2種類の燃料ガスとして供給される少なくともバイオマス由来ガス化ガスを含むガス化ガスと水素ガスの量は、標準状態での容量比が少なくともバイオマス由来ガス化ガスを含むガス化ガスに含まれる一酸化炭素の割合と、燃料ガスとして供給される水素に含まれる水素の割合と、前記目標値とに基づいて設定された値となるように設定する。
 例えば、前述の組成と同じバイオマス由来ガス化ガスおよび水素を用い、バイオマス由来ガス化ガスの容量を1とすると、混合ガスに含まれる一酸化炭素に対する水素の容量比を目標値、例えば2とするための水素の容量xは、式(5)から、
x/0.48=2    (5)
 x=0.48×2=0.96となる。
 従って、例えば、水素供給装置25から調合装置60に供給される水素の量を、COリッチガス化ガス供給装置10から一酸化炭素分離装置50に供給されるバイオマス由来ガス化ガスの量とほぼ同じにすると、バイオマス由来ガス化ガスおよび水素を無駄なく利用することができる。
The amount of the gasified gas containing at least the biomass-derived gasified gas and the amount of the hydrogen gas supplied as the two types of fuel gas are such that the volume ratio under standard conditions is at least one of the monoxide contained in the gasified gas containing the biomass-derived gasified gas. The value is set to be a value set based on the ratio of carbon, the ratio of hydrogen contained in hydrogen supplied as fuel gas, and the target value.
For example, when the biomass-derived gasification gas and hydrogen having the same composition as described above are used, and the volume of the biomass-derived gasification gas is 1, the volume ratio of hydrogen to carbon monoxide contained in the mixed gas is set to a target value, for example, 2. From equation (5), the capacity x of hydrogen for
x / 0.48 = 2 (5)
x = 0.48 × 2 = 0.96.
Therefore, for example, the amount of hydrogen supplied from the hydrogen supply device 25 to the blending device 60 is substantially the same as the amount of biomass-derived gasification gas supplied from the CO-rich gasification gas supply device 10 to the carbon monoxide separation device 50. Then, the biomass-derived gasified gas and hydrogen can be used without waste.
9.第4の実施形態の効果
 第4の実施形態では、第1の実施形態が奏する効果に加え、一酸化炭素分離装置50には少なくともバイオマス由来ガス化ガスを含むガス化ガスのみが供給されるので、一酸化炭素分離装置50を小型化できるとともに水素分離装置が不要となるので、設置費やランニングコストを低減することができる。
9. Effects of Fourth Embodiment In the fourth embodiment, in addition to the effects of the first embodiment, since only the gasified gas containing at least the biomass-derived gasified gas is supplied to the carbon monoxide separation device 50, Since the carbon monoxide separator 50 can be reduced in size and a hydrogen separator is not required, installation costs and running costs can be reduced.
10.第5の実施形態の構成
 第5の実施形態は、図5に示すように、2種類の燃料ガスとして少なくともバイオマス由来ガス化ガスを含むガス化ガスと水蒸気とを用いた点が第1の実施形態とことなるので、第1の実施形態と同じ構成要素には同一の参照番号を付してこの相違点を中心に説明する。この場合、水蒸気が水素を提供可能な燃料ガスである。
10. Configuration of Fifth Embodiment As shown in FIG. 5, the fifth embodiment is different from the first embodiment in that a gasified gas containing at least a biomass-derived gasified gas and steam are used as two types of fuel gas. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and the description will be focused on the differences. In this case, steam is the fuel gas that can provide hydrogen.
 COリッチガス化ガス供給装置10は分配装置70に接続され、一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスを分配装置70に供給する。水蒸気供給装置27が、一酸化炭素変成装置80に接続され、水蒸気を一酸化炭素変成装置80に供給する。分配装置70は一酸化炭素分離装置50と一酸化炭素変成装置80とに接続され、供給された少なくともバイオマス由来ガス化ガスを含むガス化ガスを所定割合に分配し、分配した少なくともバイオマス由来ガス化ガスを含むガス化ガスの一方部分を一酸化炭素分離装置50に供給し、他方部分を一酸化炭素変成装置80に供給する。一酸化炭素分離装置50は供給された少なくともバイオマス由来ガス化ガスを含むガス化ガスの他方部分を一酸化炭素と第8オフガスとに分離し、分離した一酸化炭素を調合装置60に供給し、第8オフガスをオフガス利用装置3に供給する。 The CO-rich gasification gas supply device 10 is connected to the distribution device 70 and supplies the gasification gas containing at least biomass-derived gasification gas rich in carbon monoxide to the distribution device 70. The steam supply device 27 is connected to the carbon monoxide shift device 80 and supplies steam to the carbon monoxide shift device 80. The distribution device 70 is connected to the carbon monoxide separation device 50 and the carbon monoxide conversion device 80, distributes the supplied gasification gas containing at least the biomass-derived gasification gas at a predetermined ratio, and distributes at least the distributed biomass-derived gasification gas. One part of the gasified gas containing the gas is supplied to the carbon monoxide separator 50, and the other part is supplied to the carbon monoxide converter 80. The carbon monoxide separator 50 separates the other part of the supplied gasified gas containing at least the biomass-derived gasified gas into carbon monoxide and an eighth offgas, and supplies the separated carbon monoxide to the blender 60, The eighth off-gas is supplied to the off-gas utilization device 3.
 一酸化炭素変成装置80は、分配装置70から供給されたた少なくともバイオマス由来ガス化ガスを含むガス化ガスの他方部分に含まれる一酸化炭素と水蒸気供給装置27から供給された水蒸気とを触媒の存在下で化学式(2)に示すように発熱反応させて水素と炭酸ガスからなる水素リッチな変成ガス含有ガスを生成する。
 CO+HO → H+CO2 (発熱反応)   (2)
一酸化炭素変成装置80は水素分離装置40に接続され、生成した水素リッチな変成ガス含有ガスを水素分離装置40に供給する。一酸化炭素変成装置80は放熱装置81を備え、発熱反応で生じた熱を放熱装置81で放熱する。水素分離装置40は調合装置60とオフガス利用装置4とに接続され、分離した水素を調合装置60に供給し、第9オフガスをオフガス利用装置4に供給する。オフガス利用装置3、4をボイラーの燃焼炉とし、このボイラーで生成した水蒸気を水蒸気供給装置27に供給すると炭酸ガスの発生を抑制することができる。その他、FT合成油製造装置2でのFT合成(発熱反応)の排熱、COリッチガス化ガス供給装置10での排熱を利用可能である。
The carbon monoxide conversion device 80 converts the carbon monoxide contained in the other portion of the gasified gas containing at least the biomass-derived gasified gas supplied from the distribution device 70 and the steam supplied from the steam supply device 27 into a catalyst. Exothermic reaction is performed in the presence as shown in the chemical formula (2) to generate a hydrogen-rich modified gas-containing gas composed of hydrogen and carbon dioxide.
CO + H 2 O → H 2 + CO 2 (exothermic reaction) (2)
The carbon monoxide shift device 80 is connected to the hydrogen separator 40 and supplies the generated hydrogen-rich shift gas-containing gas to the hydrogen separator 40. The carbon monoxide converter 80 includes a radiator 81, and radiates heat generated by the exothermic reaction with the radiator 81. The hydrogen separation device 40 is connected to the mixing device 60 and the off-gas utilization device 4, supplies the separated hydrogen to the preparation device 60, and supplies the ninth off-gas to the off-gas utilization device 4. When the off- gas utilization devices 3 and 4 are boiler combustion furnaces and the steam generated by the boilers is supplied to the steam supply device 27, the generation of carbon dioxide can be suppressed. In addition, the exhaust heat of the FT synthesis (exothermic reaction) in the FT synthetic oil production device 2 and the exhaust heat in the CO-rich gasified gas supply device 10 can be used.
 2種類の燃料ガスとして供給される少なくともバイオマス由来ガス化ガスを含むガス化ガスと水蒸気の量は、標準状態での容量比が少なくともバイオマス由来ガス化ガスを含むガス化ガスに含まれる一酸化炭素の割合および水素の割合と、分配装置70で分配されたバイオマス由来ガス化ガスを含むガス化ガスの一方部分に対する他方部分の分配比pと、前記目標値とに基づいて設定された値となるように設定する。例えば、2種類の燃料ガスとして前述の組成と同じバイオマス由来ガス化ガスおよび水蒸気を用い、目標値を2とした場合について、分配比pを算出する。一酸化炭素変成装置80に分配装置70から供給される一酸化炭素の量と水蒸気供給装置27から供給される水蒸気の量は化学式(2)から同じである。COリッチガス化ガス供給装置10から供給されるバイオマス由来ガス化ガスの容量を1とすると、一酸化炭素分離装置50から調合装置60に供給される一酸化炭素の量は[0.48×1/(1+p)]であり、水素分離装置40から調合装置60に供給される水素の量は、バイオマス由来ガス化ガスの他方部分に含まれる一酸化炭素から変成された水素の量[0.48×p/(1+p)]と他方部分に含まれる水素の量[0.16×p/(1+p)]である。従って、分配比pは、次式(5)から、
[0.48×p/(1+p)+0.16×p/(1+p)]/[0.48×1/(1+p)]=2                   (5)
 p=0.96/ 0.64=1.5となる。
 これにより、例えば、COリッチガス化ガス供給装置10から供給されるバイオマス由来ガス化ガスを、一方部分に対する他方部分の分配比が1.5となるように分配装置70で分配し、水蒸気供給装置80から一酸化炭素変成装置80に供給される標準状態に換算した水蒸気の量を、COリッチガス化ガス供給装置10から供給されるバイオマス由来ガス化ガスの量のp/(1+p)=0.6倍にすると、バイオマス由来ガス化ガスおよび水蒸気を無駄なく利用することができる。
The amount of the gasified gas containing at least the biomass-derived gasified gas and the amount of water vapor supplied as the two types of fuel gas are such that the volume ratio under standard conditions is at least the carbon monoxide contained in the gasified gas containing the biomass-derived gasified gas. And the ratio of hydrogen, the distribution ratio p of the other part to the one part of the gasified gas containing the biomass-derived gasified gas distributed by the distribution device 70, and the value set based on the target value. Set as follows. For example, the distribution ratio p is calculated when the target value is set to 2 using a biomass-derived gasified gas and water vapor having the same composition as the above-described compositions as the two types of fuel gas. The amount of carbon monoxide supplied from the distributor 70 to the carbon monoxide converter 80 and the amount of steam supplied from the steam supply device 27 are the same from the chemical formula (2). Assuming that the volume of the biomass-derived gasification gas supplied from the CO-rich gasification gas supply device 10 is 1, the amount of carbon monoxide supplied from the carbon monoxide separation device 50 to the blending device 60 is [0.48 × 1 / (1 + p)], and the amount of hydrogen supplied from the hydrogen separator 40 to the blender 60 is the amount of hydrogen converted from carbon monoxide contained in the other part of the biomass-derived gasified gas [0.48 × p / (1 + p)] and the amount of hydrogen contained in the other part [0.16 × p / (1 + p)]. Therefore, the distribution ratio p is given by the following equation (5).
[0.48 × p / (1 + p) + 0.16 × p / (1 + p)] / [0.48 × 1 / (1 + p)] = 2 (5)
p = 0.96 / 0.64 = 1.5.
Thereby, for example, the biomass-derived gasification gas supplied from the CO-rich gasification gas supply device 10 is distributed by the distribution device 70 such that the distribution ratio of the other portion to one portion becomes 1.5, and the steam supply device 80 The amount of water vapor converted to the standard state supplied to the carbon monoxide conversion device 80 from p / (1 + p) = 0.6 times the amount of biomass-derived gasified gas supplied from the CO-rich gasified gas supply device 10 Then, the biomass-derived gasified gas and steam can be used without waste.
11.第5の実施形態の効果
  第5の実施形態では、第1の実施形態が奏する効果に加え、一酸化炭素分離装置50には少なくともバイオマス由来ガス化ガスを含むガス化ガスのみが供給されるので、一酸化炭素分離装置50を小型化できるので、設置費やランニングコストを低減することができる。さらに、2種類の燃料ガスがともに炭酸ガスの排出量が少ないので、炭酸ガス排出を極めて削減して低炭素FT合成油製造用合成ガスを製造することができる。
11. Effects of Fifth Embodiment In the fifth embodiment, in addition to the effects of the first embodiment, since only the gasified gas containing at least the biomass-derived gasified gas is supplied to the carbon monoxide separation device 50, Since the carbon monoxide separation device 50 can be downsized, installation costs and running costs can be reduced. Furthermore, since both types of fuel gas emit a small amount of carbon dioxide gas, it is possible to produce a low-carbon FT synthetic oil-producing synthetic gas with extremely reduced carbon dioxide gas emissions.
12.第6の実施形態の構成
 第6の実施形態は、図6に示すように、一酸化炭素分離装置50に混合装置30をオフガス利用装置3に代えて接続し、混合装置30を一酸化炭素変成装置80と水素分離装置40との間に接続した点のみが第5実施形態と異なるので、相違点のみについて説明する。
12. Configuration of Sixth Embodiment In the sixth embodiment, as shown in FIG. 6, the mixing device 30 is connected to the carbon monoxide separation device 50 in place of the off-gas utilization device 3, and the mixing device 30 is converted to carbon monoxide. Only the point of connection between the device 80 and the hydrogen separation device 40 is different from that of the fifth embodiment, and only the differences will be described.
 一酸化炭素分離装置50は、分配装置70から供給された一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスの一方部分から一酸化炭素を分離し、分離した一酸化炭素を調合装置60に供給し、第8オフガスを混合装置30に供給する。混合装置30は、一酸化炭素変成装置80から供給された変成ガス含有ガスと一酸化炭素分離装置50から供給された第8オフガスとを混合して第4混合ガスを生成して水素分離装置40に供給する。水素分離装置40は第4混合ガスから水素を分離して調合装置60に供給し、第10オフガスをオフガス利用装置4に供給する。 The carbon monoxide separation device 50 separates carbon monoxide from one portion of the gasified gas containing at least the biomass-derived gasified gas rich in carbon monoxide supplied from the distribution device 70, and mixes the separated carbon monoxide. 60, and the eighth off-gas is supplied to the mixing device 30. The mixing device 30 mixes the conversion gas-containing gas supplied from the carbon monoxide conversion device 80 with the eighth off-gas supplied from the carbon monoxide separation device 50 to generate a fourth mixed gas, and generates a fourth mixed gas. To supply. The hydrogen separator 40 separates hydrogen from the fourth mixed gas and supplies it to the blender 60, and supplies the tenth offgas to the offgas utilization device 4.
 第6実施形態において、例えば、2種類の燃料ガスとして前述の組成と同じバイオマス由来ガス化ガスおよび水蒸気を用い、目標値を2とした場合について、分配装置70による分配比pを算出する。バイオマス由来ガス化ガスの量を1とすると、分配装置70によって分配されたバイオマス由来ガス化ガスの一方部分に含まれる一酸化炭素の量は、0.48×1/(1+p)であり、一酸化炭素分離装置50で分離されて調合装置60に供給される。一方部分に含まれる水素の量は、0.16×p/(1+p)であり、第8オフガスに含まれて混合装置30に供給される。分配装置70によって分配されたバイオマス由来ガス化ガスの他方部分に含まれる一酸化炭素の量は、0.48×p/(1+p)であり、一酸化炭素変成装置80で同量の水蒸気と変成反応して同量の水素を含む水素リッチな変成ガス含有ガスとなる。変成ガス含有ガスには、バイオマス由来ガス化ガスの他方部分に含まれる水素が含まれるので、第8オフガスと変成ガス含有ガスとを混合した第4混合ガスには、[0.16+0.48×p/(1+p)]の水素が含まれており、この水素は水素分離装置40で分離されて調合装置60に供給される。従って、分配比pは、次式(5)から、
[0.16+0.48×p/(1+p)]/[0.48×1/(1+p)]=2                           (5)
 p=0.80/0.64=1.25となる。
 これにより、例えば、COリッチガス化ガス供給装置10から供給されるバイオマス由来ガス化ガスを、一方部分に対する他方部分の分配比が1.25となるように分配装置70で分配し水蒸気供給装置27から一酸化炭素変成装置80に供給される標準状態に換算した水蒸気の量を、COリッチガス化ガス供給装置10から供給されるバイオマス由来ガス化ガスの量のp/(1+p)=0.56倍にすると、バイオマス由来ガス化ガスおよび水蒸気を無駄なく利用することができる。
In the sixth embodiment, the distribution ratio p by the distribution device 70 is calculated, for example, in the case where the biomass-derived gasified gas and the steam having the same composition as the above-mentioned compositions are used as the two types of fuel gas and the target value is 2. Assuming that the amount of the biomass-derived gasified gas is 1, the amount of carbon monoxide contained in one portion of the biomass-derived gasified gas distributed by the distribution device 70 is 0.48 × 1 / (1 + p). It is separated by the carbon oxide separating device 50 and supplied to the blending device 60. The amount of hydrogen contained in one portion is 0.16 × p / (1 + p), and is supplied to the mixing device 30 while being contained in the eighth off-gas. The amount of carbon monoxide contained in the other portion of the biomass-derived gasified gas distributed by the distribution device 70 is 0.48 × p / (1 + p), and is converted by the carbon monoxide conversion device 80 to the same amount of steam. It reacts to become a hydrogen-rich modified gas-containing gas containing the same amount of hydrogen. Since the metamorphic gas-containing gas contains hydrogen contained in the other part of the biomass-derived gasified gas, the fourth mixed gas obtained by mixing the eighth off-gas and the metamorphic gas-containing gas contains [0.16 + 0.48 × p / (1 + p)], which is separated by the hydrogen separator 40 and supplied to the blender 60. Therefore, the distribution ratio p is given by the following equation (5).
[0.16 + 0.48 × p / (1 + p)] / [0.48 × 1 / (1 + p)] = 2 (5)
p = 0.80 / 0.64 = 1.25.
Thereby, for example, the biomass-derived gasification gas supplied from the CO-rich gasification gas supply device 10 is distributed by the distribution device 70 so that the distribution ratio of the other portion to one portion becomes 1.25, and the gasification gas is supplied from the steam supply device 27. The amount of steam converted to the standard state supplied to the carbon monoxide shifter 80 is increased to p / (1 + p) = 0.56 times the amount of the biomass-derived gasification gas supplied from the CO-rich gasification gas supply device 10. Then, the biomass-derived gasified gas and steam can be used without waste.
11.第6の実施形態の効果
  第6の実施形態では、第5の実施形態が奏する効果に加え、少なくともバイオマス由来ガス化ガスを含むガス化ガスに含まれる炭素と水素の全てを合成ガスの製造に使用することができる。
11. Effects of the Sixth Embodiment In the sixth embodiment, in addition to the effects of the fifth embodiment, at least all of carbon and hydrogen contained in the gasified gas including the biomass-derived gasified gas are used for producing synthesis gas. Can be used.
12.第7の実施形態の構成
  第7の実施形態は、図7に示すように、2種類の燃料ガスとして一酸化炭素リッチな副生ガスと炭酸ガスフリー水素とを用いる点が第4の実施形態と異なるので、第4の実施形態と同じ構成要素には同一の参照番号を付して、この相違点を中心に説明する。この場合、炭酸ガスフリー水素が、水素を提供可能な燃料ガスであり、その組成は水素の割合が100%である。
 炭酸ガスフリー水素は、炭酸ガスの排出量を低減して生成した水素であり、CCS付石炭ガス化ガス由来水素、再生可能電力利用水電解水素、バイオマス由来水素、原子力水素等のいずれか一種又は複数種を混合したものでよい。CCS付石炭ガス化ガス由来水素は、CCS(Carbon-Dioxide Capture and Storage)付石炭ガス化ガス装置によって製造された石炭ガス化ガスから水素を分離して生成した水素である。再生可能電力利用水電解水素は、太陽光発電、風力発電、地熱発電、波力発電、潮力発電等によって得られた電力を使用して水を電気分解して生成した水素である。バイオマス由来水素は、メタン発酵で得たバイオガスを改質して生成した水素、或はバイオマスガス化ガスの一酸化炭素を変成反応させて生成した水素である。原子力水素は、原子力電力で水を電気分解して生成した水素、 原子炉熱によって水を熱化学分解して生成した水素等がある。
 一酸化炭素リッチな副生ガスとしては、炭酸ガス排出係数の大きい、転炉ガス、高炉ガス等を使用する。転炉ガスは、転炉における鉄の精錬工程で生じる副生ガスで、一酸化炭素が約70%ほど含まれる。高炉ガスは、高炉で鉄鉱石を還元して銑鉄を製造する際に生じる副生ガスで、一酸化炭素が約25%含まれる。
12. Configuration of Seventh Embodiment The seventh embodiment is different from the fourth embodiment in that a carbon monoxide-rich by-product gas and carbon dioxide-free hydrogen are used as two types of fuel gas, as shown in FIG. Therefore, the same components as those of the fourth embodiment are denoted by the same reference numerals, and the description will be made focusing on this difference. In this case, carbon dioxide-free hydrogen is a fuel gas that can provide hydrogen, and its composition is 100% hydrogen.
Carbon dioxide-free hydrogen is hydrogen produced by reducing the amount of carbon dioxide gas emitted, and is one or more of hydrogen derived from coal gasification gas with CCS, water electrolysis hydrogen using renewable power, hydrogen derived from biomass, and nuclear hydrogen. A mixture of a plurality of types may be used. Hydrogen derived from coal gasification gas with CCS is hydrogen generated by separating hydrogen from coal gasification gas produced by a coal gasification gas apparatus with CCS (Carbon-Dioxide Capture and Storage). Water electrolyzed hydrogen using renewable power is hydrogen generated by electrolyzing water using power obtained by solar power generation, wind power generation, geothermal power generation, wave power generation, tidal power generation, and the like. Biomass-derived hydrogen is hydrogen produced by reforming biogas obtained by methane fermentation or hydrogen produced by a shift reaction of carbon monoxide of biomass gasified gas. Nuclear hydrogen includes hydrogen generated by the electrolysis of water with nuclear power, and hydrogen generated by the thermochemical decomposition of water by reactor heat.
As the by-product gas rich in carbon monoxide, a converter gas, a blast furnace gas, or the like having a large carbon dioxide emission coefficient is used. Converter gas is a by-product gas generated in the iron refining process in the converter, and contains about 70% of carbon monoxide. Blast furnace gas is a by-product gas generated when pig iron is produced by reducing iron ore in a blast furnace and contains about 25% of carbon monoxide.
 COリッチ副生ガス供給装置15が一酸化炭素分離装置50に接続され、一酸化炭素の含有率(割合)が高い一酸化炭素リッチな副生ガスを一酸化炭素分離装置50に供給する。一酸化炭素分離装置50は、COリッチ副生ガス供給装置15から供給された一酸化炭素リッチな副生ガスから一酸化炭素を分離して調合装置60に供給し、第11オフガスをオフガス利用装置3に供給する。第11オフガスをフレア処理して無害化し、外部に排出してもよい。炭酸ガスフリー水素供給装置29が調合装置60に接続され、炭酸ガスフリー水素を調合装置60に供給する。 The CO-rich by-product gas supply device 15 is connected to the carbon monoxide separation device 50, and supplies a carbon monoxide-rich by-product gas having a high carbon monoxide content (ratio) to the carbon monoxide separation device 50. The carbon monoxide separation device 50 separates carbon monoxide from the carbon monoxide rich by-product gas supplied from the CO-rich by-product gas supply device 15 and supplies the separated carbon monoxide to the blending device 60, and uses the eleventh off-gas as an off-gas utilization device. Supply 3 The eleventh off-gas may be rendered harmless by flare treatment and discharged to the outside. The carbon dioxide-free hydrogen supply device 29 is connected to the mixing device 60, and supplies the carbon dioxide-free hydrogen to the mixing device 60.
 2種類の燃料ガスとして供給される一酸化炭素リッチな副生ガスと炭酸ガスフリー水素ガスの量は、第4の実施形態と同様に標準状態での容量比が一酸化炭素リッチな副生ガスに含まれる一酸化炭素の割合と、燃料ガスとしての炭酸ガスフリー水素に含まれる水素の割合と、前記目標値とに基づいて設定された値となるように設定する。 The amount of the carbon monoxide-rich by-product gas and the amount of the carbon dioxide-free hydrogen gas supplied as the two types of fuel gas are the same as in the fourth embodiment. Are set to values set based on the ratio of carbon monoxide contained in the hydrogen gas, the ratio of hydrogen contained in carbon dioxide-free hydrogen as fuel gas, and the target value.
13.第7の実施形態の効果
  第7の実施形態では、第1の実施形態が奏する効果に加え、一酸化炭素分離装置50には一酸化炭素リッチな副生ガスのみが供給されるので、一酸化炭素分離装置50を小型化できる。さらに、水素分離装置が不要となるので、設置費やランニングコストを低減することができる。一方の燃料ガスとして一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスに代えて一酸化炭素リッチな副生ガスを用いる点では、第1の実施例より炭酸ガス排出が多くなるが、他方の燃料ガスとして炭酸ガスフリー水素を用いるので、炭酸ガス排出を低減して低炭素FT合成油製造用合成ガスを製造することができる。
13. Effects of the Seventh Embodiment In the seventh embodiment, in addition to the effects of the first embodiment, since only the carbon monoxide rich by-product gas is supplied to the carbon monoxide separation device 50, The size of the carbon separation device 50 can be reduced. Furthermore, since a hydrogen separation device is not required, installation costs and running costs can be reduced. In that a carbon monoxide-rich by-product gas is used in place of the gasification gas containing at least the biomass-derived gasification gas rich in carbon monoxide as one fuel gas, the carbon dioxide gas emission is larger than in the first embodiment. Since carbon dioxide-free hydrogen is used as the other fuel gas, carbon dioxide emission can be reduced, and a synthetic gas for producing low-carbon FT synthetic oil can be produced.
 1:低炭素FT合成油製造用合成ガス製造システム、 2:FT合成油製造装置、 3,4:オフガス利用装置、 10:COリッチガス化ガス供給装置、 15:COリッチ副生ガス供給装置、 20:Hリッチ副生ガス供給装置、 25:水素供給装置、 27:水蒸気供給装置、 29:炭酸ガスフリー水素供給装置、 30:混合装置、 40:水素分離装置、 50:一酸化炭素分離装置、 60:調合装置、 70:分配装置、 80:一酸化炭素変成装置 1: Synthetic gas production system for producing low carbon FT synthetic oil, 2: FT synthetic oil production device, 3, 4: Off-gas utilization device, 10: CO-rich gasified gas supply device, 15: CO-rich by-product gas supply device, 20 : H 2 rich by-product gas supply device, 25: hydrogen supply device, 27: steam supply device, 29: carbon dioxide free hydrogen supply device, 30: mixing device, 40: hydrogen separation device, 50: carbon monoxide separation device, 60: blending device, 70: distribution device, 80: carbon monoxide conversion device

Claims (7)

  1.  一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスを供給するCOリッチガス化ガス供給装置と、
     水素リッチな副生ガスを供給するHリッチ副生ガス供給装置と、
     前記COリッチガス化ガス供給装置から前記少なくともバイオマス由来ガス化ガスを含むガス化ガスが供給され、前記Hリッチ副生ガス供給装置から前記水素リッチな副生ガスが供給され、前記少なくともバイオマス由来ガス化ガスを含むガス化ガスと前記水素リッチな副生ガスとを混合して第1混合ガスとする混合装置と、
     前記混合装置から前記第1混合ガスが供給され、前記第1混合ガスを水素と第1オフガスとに分離する水素分離装置と、
     前記水素分離装置から前記第1オフガスが供給され、前記第1オフガスを一酸化炭素と第2オフガスとに分離する一酸化炭素分離装置と、
     前記水素分離装置から前記分離された水素が供給され、前記一酸化炭素分離装置から前記分離された一酸化炭素が供給され、前記分離された水素と前記分離された一酸化炭素とを一酸化炭素に対する水素のモル比が目標値になるように調合して合成ガスにする調合装置と、を備え、
     前記混合装置は、前記少なくともバイオマス由来ガス化ガスを含むガス化ガスと前記水素リッチな副生ガスとを、標準状態での容量比が前記少なくともバイオマス由来ガス化ガスを含むガス化ガスおよび前記水素リッチな副生ガスに含まれる一酸化炭素の割合および水素の割合と、前記目標値とに基づいて設定された値となるように混合する、
     低炭素FT合成油製造用合成ガス製造システム。
    CO-rich gasification gas supply device for supplying a gasification gas containing at least biomass-derived gasification gas rich in carbon monoxide,
    An H 2 -rich by-product gas supply device for supplying a hydrogen-rich by-product gas,
    The CO-rich gases from said supply device gasification gas containing at least from biomass gasification gas is supplied, the H 2 the hydrogen-rich product gas from a rich byproduct gas supply device is supplied, at least the biomass-derived gases A mixing device for mixing a gasified gas containing a chemical gas and the hydrogen-rich by-product gas to form a first mixed gas;
    A hydrogen separation device that supplies the first mixed gas from the mixing device and separates the first mixed gas into hydrogen and a first off-gas;
    The first offgas is supplied from the hydrogen separator, and the carbon monoxide separator separates the first offgas into carbon monoxide and a second offgas;
    The separated hydrogen is supplied from the hydrogen separator, the separated carbon monoxide is supplied from the carbon monoxide separator, and the separated hydrogen and the separated carbon monoxide are converted into carbon monoxide. A blending device that blends the molar ratio of hydrogen with respect to the target value to obtain a synthesis gas,
    The mixing device, the gasification gas containing at least the biomass-derived gasification gas and the hydrogen-rich by-product gas, the volume ratio in a standard state, the gasification gas containing at least the biomass-derived gasification gas and the hydrogen Mixing the proportion of carbon monoxide and the proportion of hydrogen contained in the rich by-product gas to a value that is set based on the target value,
    Synthetic gas production system for low carbon FT synthetic oil production.
  2.  一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスを供給するCOリッチガス化ガス供給装置と、
     水素リッチな副生ガスを供給するHリッチ副生ガス供給装置と、
     前記Hリッチ副生ガス供給装置に接続され前記水素リッチな副生ガスを水素と第3オフガスとに分離する水素分離装置と、
     前記COリッチガス化ガス供給装置から前記少なくともバイオマス由来ガス化ガスを含むガス化ガスが供給され、前記水素分離装置から前記第3オフガスが供給され、前記少なくともバイオマス由来ガス化ガスを含むガス化ガスと前記第3オフガスとを混合して第2混合ガスとする混合装置と、
     前記混合装置から前記第2混合ガスが供給され、前記第2混合ガスを一酸化炭素と第4オフガスとに分離する一酸化炭素分離装置と、
     前記水素分離装置から前記分離された水素が供給され、前記一酸化炭素分離装置から前記分離された一酸化炭素が供給され、前記分離された一酸化炭素と前記分離された水素とを一酸化炭素に対する水素のモル比が目標値になるように調合して合成ガスにする調合装置と、を備え、
     前記COリッチガス化ガス供給装置から前記混合装置に供給される前記少なくともバイオマス由来ガス化ガスを含むガス化ガスと前記Hリッチ副生ガス供給装置から前記水素分離装置に供給される前記水素リッチな副生ガスとの標準状態での容量比を、前記少なくともバイオマス由来ガス化ガスを含むガス化ガスおよび前記水素リッチな副生ガスに含まれる一酸化炭素の割合と、前記水素リッチな副生ガスに含まれる水素の割合と、前記目標値とに基づいて設定する、
     低炭素FT合成油製造用合成ガス製造システム。
    CO-rich gasification gas supply device for supplying a gasification gas containing at least biomass-derived gasification gas rich in carbon monoxide,
    An H 2 -rich by-product gas supply device for supplying a hydrogen-rich by-product gas,
    A hydrogen separator connected to the H 2 -rich by-product gas supply device and separating the hydrogen-rich by-product gas into hydrogen and a third off-gas;
    A gasification gas containing at least the biomass-derived gasification gas is supplied from the CO-rich gasification gas supply device, the third offgas is supplied from the hydrogen separation device, and a gasification gas containing the at least biomass-derived gasification gas. A mixing device for mixing the third off-gas to form a second mixed gas;
    The second mixed gas is supplied from the mixing device, and a carbon monoxide separating device that separates the second mixed gas into carbon monoxide and a fourth off-gas;
    The separated hydrogen is supplied from the hydrogen separator, the separated carbon monoxide is supplied from the carbon monoxide separator, and the separated carbon monoxide and the separated hydrogen are converted into carbon monoxide. A blending device that blends the molar ratio of hydrogen with respect to the target value to obtain a synthesis gas,
    Of the hydrogen-rich supplied to the hydrogen separator from the H 2 rich product gas supply device and the gasification gas containing at least from biomass gasification gas supplied to the mixing apparatus from the CO-rich reduction gas supply device The volume ratio in the standard state with the by-product gas, the ratio of carbon monoxide contained in the gasification gas containing at least the biomass-derived gasification gas and the hydrogen-rich by-product gas, and the hydrogen-rich by-product gas Set based on the ratio of hydrogen contained in and the target value,
    Synthetic gas production system for low carbon FT synthetic oil production.
  3.  一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスを供給するCOリッチガス化ガス供給装置と、
     水素リッチな副生ガスを供給するHリッチ副生ガス供給装置と、
     前記COリッチガス化ガス供給装置に接続され前記少なくともバイオマス由来ガス化ガスを含むガス化ガスを一酸化炭素と第5オフガスとに分離する一酸化炭素分離装置と、
     前記Hリッチ副生ガス供給装置から前記水素リッチな副生ガスが供給され、前記一酸化炭素分離装置から前記第5オフガスが供給され、前記水素リッチな副生ガスと前記第5オフガスとを混合して第3混合ガスとする混合装置と、
     前記混合装置から前記第3混合ガスが供給され、前記第3混合ガスを水素と第6オフガスとに分離する水素分離装置と、
     前記水素分離装置から前記分離された水素が供給され、前記一酸化炭素分離装置から前記分離された一酸化炭素が供給され、前記分離された一酸化炭素と前記分離された水素とを一酸化炭素に対する水素のモル比が目標値になるように調合して合成ガスにする調合装置と、を備え、
     前記COリッチガス化ガス供給装置から前記一酸化炭素分離装置に供給される前記少なくともバイオマス由来ガス化ガスを含むガス化ガスと前記Hリッチ副生ガス供給装置から前記混合装置に供給される前記水素リッチな副生ガスとの標準状態での容量比を、前記少なくともバイオマス由来ガス化ガスを含むガス化ガスに含まれる一酸化炭素の割合と、前記少なくともバイオマス由来ガス化ガスを含むガス化ガスおよび前記水素リッチな副生ガスに含まれる水素の割合と、前記目標値とに基づいて設定する、
     低炭素FT合成油製造用合成ガス製造システム。
    CO-rich gasification gas supply device for supplying a gasification gas containing at least biomass-derived gasification gas rich in carbon monoxide,
    An H 2 -rich by-product gas supply device for supplying a hydrogen-rich by-product gas,
    A carbon monoxide separation device connected to the CO-rich gasification gas supply device and separating a gasification gas containing at least the biomass-derived gasification gas into carbon monoxide and a fifth offgas;
    The H 2 the hydrogen-rich product gas from a rich byproduct gas supply device is supplied, the said fifth off-gas from the carbon monoxide separation unit is supplied with the hydrogen-rich by-product gas and said fifth off-gas A mixing device for mixing into a third mixed gas,
    A hydrogen separation device supplied with the third mixed gas from the mixing device, and separating the third mixed gas into hydrogen and a sixth off-gas;
    The separated hydrogen is supplied from the hydrogen separator, the separated carbon monoxide is supplied from the carbon monoxide separator, and the separated carbon monoxide and the separated hydrogen are converted into carbon monoxide. A blending device that blends the molar ratio of hydrogen with respect to the target value to obtain a synthesis gas,
    The hydrogen supplied from the H 2 rich product gas supply device and the gasification gas containing at least from biomass gasification gas supplied to the carbon monoxide separation unit from said CO-rich gas of the gas supply apparatus to the mixing apparatus The volume ratio in a standard state with a rich by-product gas, the ratio of carbon monoxide contained in the gasified gas containing at least the biomass-derived gasified gas, and the gasified gas containing the at least the biomass-derived gasified gas and Set based on the ratio of hydrogen contained in the hydrogen-rich by-product gas and the target value,
    Synthetic gas production system for low carbon FT synthetic oil production.
  4.  一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスを供給するCOリッチガス化ガス供給装置と、
     水素を燃料ガスとして供給する水素供給装置と、
     前記COリッチガス化ガス供給装置から前記少なくともバイオマス由来ガス化ガスを含むガス化ガスが供給され、前記少なくともバイオマス由来ガス化ガスを含むガス化ガスを一酸化炭素と第7オフガスとに分離する一酸化炭素分離装置と、
     前記水素供給装置から前記水素が供給され、前記一酸化炭素分離装置から前記分離された一酸化炭素が供給され、前記分離された一酸化炭素と前記水素とを一酸化炭素に対する水素のモル比が目標値になるように調合して合成ガスにする調合装置と、を備え、
     前記COリッチガス化ガス供給装置から前記一酸化炭素分離装置に供給される前記少なくともバイオマス由来ガス化ガスを含むガス化ガスと前記水素供給装置から前記調合装置に供給される前記水素との標準状態での容量比を、前記少なくともバイオマス由来ガス化ガスを含むガス化ガスに含まれる一酸化炭素の割合と、燃料ガスとしての水素に含まれる水素の割合と、前記目標値とに基づいて設定する、
     低炭素FT合成油製造用合成ガス製造システム。
    CO-rich gasification gas supply device for supplying a gasification gas containing at least biomass-derived gasification gas rich in carbon monoxide,
    A hydrogen supply device for supplying hydrogen as fuel gas,
    A gasification gas containing at least the biomass-derived gasification gas is supplied from the CO-rich gasification gas supply device, and the gasification gas containing the at least the biomass-derived gasification gas is separated into carbon monoxide and a seventh offgas. A carbon separation device,
    The hydrogen is supplied from the hydrogen supply device, the separated carbon monoxide is supplied from the carbon monoxide separation device, and the separated carbon monoxide and the hydrogen have a molar ratio of hydrogen to carbon monoxide. A blending device that blends to a target value to produce synthesis gas,
    In a standard state of the gasification gas containing at least the biomass-derived gasification gas supplied from the CO-rich gasification gas supply device to the carbon monoxide separation device and the hydrogen supplied to the blending device from the hydrogen supply device. The capacity ratio is set based on the ratio of carbon monoxide contained in the gasified gas containing at least the biomass-derived gasified gas, the ratio of hydrogen contained in hydrogen as the fuel gas, and the target value,
    Synthetic gas production system for low carbon FT synthetic oil production.
  5.  一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスを供給するCOリッチガス化ガス供給装置と、
     水蒸気を供給する水蒸気供給装置と、
     COリッチガス化ガス供給装置から供給される前記少なくともバイオマス由来ガス化ガスを含むガス化ガスを所定割合で一方部分と他方部分とに分配する分配装置と、
     前記少なくともバイオマス由来ガス化ガスを含むガス化ガスの一方部分が供給され、前記少なくともバイオマス由来ガス化ガスを含むガス化ガスの一方部分を一酸化炭素と第8オフガスとに分離する一酸化炭素分離装置と、
     前記水蒸気供給装置から前記水蒸気が供給され、前記分配装置から前記少なくともバイオマス由来ガス化ガスを含むガス化ガスの他方部分が供給され、前記水蒸気と前記少なくともバイオマス由来ガス化ガスを含むガス化ガスの他方部分とを変成反応させて水素リッチな変成ガス含有ガスを生成する一酸化炭素変成装置と、
     前記一酸化炭素変成装置に接続され前記変成ガス含有ガスを水素と第9オフガスとに分離する水素分離装置と、
     前記水素分離装置から前記分離された水素が供給され、前記一酸化炭素分離装置から前記分離された一酸化炭素が供給され、前記分離された一酸化炭素と前記分離された水素とを一酸化炭素に対する水素のモル比が目標値になるように調合して合成ガスにする調合装置と、を備え、
     前記COリッチガス化ガス供給装置から前記分配装置に供給される前記少なくともバイオマス由来ガス化ガスを含むガス化ガスと前記水蒸気供給装置から前記一酸化炭素変成装置に供給される前記水蒸気との標準状態での容量比を、前記少なくともバイオマス由来ガス化ガスを含むガス化ガスに含まれる一酸化炭素の割合および水素の割合と、前記目標値とに基づいて設定する、
     低炭素FT合成油製造用合成ガス製造システム。
    CO-rich gasification gas supply device for supplying a gasification gas containing at least biomass-derived gasification gas rich in carbon monoxide,
    A steam supply device for supplying steam,
    A distributor that distributes the gasified gas containing at least the biomass-derived gasified gas supplied from the CO-rich gasified gas supply device to one part and the other part at a predetermined ratio;
    One part of the gasification gas containing at least the biomass-derived gasification gas is supplied, and carbon monoxide separation for separating one part of the gasification gas containing the at least the biomass-derived gasification gas into carbon monoxide and an eighth offgas Equipment and
    The steam is supplied from the steam supply device, the other portion of the gasification gas containing at least the biomass-derived gasification gas is supplied from the distribution device, the gasification gas containing the steam and the at least biomass-derived gasification gas A carbon monoxide shifter for generating a hydrogen-rich shift gas-containing gas by a shift reaction with the other part;
    A hydrogen separator connected to the carbon monoxide shifter and separating the shift gas-containing gas into hydrogen and a ninth off-gas;
    The separated hydrogen is supplied from the hydrogen separator, the separated carbon monoxide is supplied from the carbon monoxide separator, and the separated carbon monoxide and the separated hydrogen are converted into carbon monoxide. A blending device that blends the molar ratio of hydrogen with respect to the target value to obtain a synthesis gas,
    In a standard state of the gasified gas containing at least the biomass-derived gasified gas supplied from the CO-rich gasified gas supply device to the distribution device and the steam supplied to the carbon monoxide conversion device from the steam supply device. The volume ratio is set based on the ratio of carbon monoxide and the ratio of hydrogen contained in the gasified gas containing at least the biomass-derived gasified gas, and the target value,
    Synthetic gas production system for low carbon FT synthetic oil production.
  6.  一酸化炭素リッチな少なくともバイオマス由来ガス化ガスを含むガス化ガスを供給するCOリッチガス化ガス供給装置と、
     水蒸気を供給する水蒸気供給装置と、
     COリッチガス化ガス供給装置から供給される前記少なくともバイオマス由来ガス化ガスを含むガス化ガスを所定割合で一方部分と他方部分とに分配する分配装置と、
     前記分配装置から前記少なくともバイオマス由来ガス化ガスを含むガス化ガスの一方部分が供給され、前記少なくともバイオマス由来ガス化ガスを含むガス化ガスの一方部分を一酸化炭素と第8オフガスとに分離する一酸化炭素分離装置と、
     前記水蒸気供給装置から前記水蒸気が供給され、前記少なくともバイオマス由来ガス化ガスを含むガス化ガスの他方部分が前記分配装置から供給され、前記水蒸気と前記少なくともバイオマス由来ガス化ガスを含むガス化ガスの他方部分とを変成反応させて水素リッチな変成ガス含有ガスを生成する一酸化炭素変成装置と、
     前記一酸化炭素変成装置から前記変成ガス含有ガスが供給され、前記一酸化炭素分離装置から前記第8オフガスが供給され、前記変成ガス含有ガスと前記第8オフガスとを混合して第4混合ガスとする混合装置と、
     前記混合装置に接続され前記第4混合ガスを水素と第10オフガスとに分離する水素分離装置と、
     前記水素分離装置から前記分離された水素が供給され、前記一酸化炭素分離装置から前記分離された一酸化炭素が供給され、前記分離された一酸化炭素と前記分離された水素とを一酸化炭素に対する水素のモル比が目標値になるように調合して合成ガスにする調合装置と、を備え、
     前記COリッチガス化ガス供給装置から前記分配装置に供給される前記少なくともバイオマス由来ガス化ガスを含むガス化ガスと前記水蒸気供給装置から前記一酸化炭素変成装置に供給される前記水蒸気との標準状態での容量比を、前記少なくともバイオマス由来ガス化ガスを含むガス化ガスに含まれる一酸化炭素の割合および水素の割合と、前記目標値とに基づいて設定する、
     低炭素FT合成油製造用合成ガス製造システム。
    CO-rich gasification gas supply device for supplying a gasification gas containing at least biomass-derived gasification gas rich in carbon monoxide,
    A steam supply device for supplying steam,
    A distributor that distributes the gasified gas containing at least the biomass-derived gasified gas supplied from the CO-rich gasified gas supply device to one part and the other part at a predetermined ratio;
    One part of the gasification gas containing at least the biomass-derived gasification gas is supplied from the distribution device, and one part of the gasification gas containing the at least the biomass-derived gasification gas is separated into carbon monoxide and an eighth offgas. A carbon monoxide separation device,
    The steam is supplied from the steam supply device, the other portion of the gasification gas containing at least the biomass-derived gasification gas is supplied from the distribution device, and the steam and the gasification gas containing the at least biomass-derived gasification gas A carbon monoxide shifter for generating a hydrogen-rich shift gas-containing gas by a shift reaction with the other part;
    The shift gas-containing gas is supplied from the carbon monoxide shift device, the eighth offgas is supplied from the carbon monoxide separation device, and the shift gas-containing gas and the eighth offgas are mixed to form a fourth mixed gas. A mixing device,
    A hydrogen separation device connected to the mixing device and separating the fourth mixed gas into hydrogen and a tenth off-gas;
    The separated hydrogen is supplied from the hydrogen separator, the separated carbon monoxide is supplied from the carbon monoxide separator, and the separated carbon monoxide and the separated hydrogen are converted into carbon monoxide. A blending device that blends the molar ratio of hydrogen with respect to the target value to obtain a synthesis gas,
    In a standard state of the gasified gas containing at least the biomass-derived gasified gas supplied from the CO-rich gasified gas supply device to the distribution device and the steam supplied to the carbon monoxide conversion device from the steam supply device. The volume ratio is set based on the ratio of carbon monoxide and the ratio of hydrogen contained in the gasified gas containing at least the biomass-derived gasified gas, and the target value,
    Synthetic gas production system for low carbon FT synthetic oil production.
  7.  一酸化炭素リッチな副生ガスを供給するCOリッチ副生ガス供給装置と、
     炭酸ガスフリー水素を燃料ガスとして供給する炭酸ガスフリー水素供給装置と、
     前記COリッチ副生ガス供給装置から前記一酸化炭素リッチな副生ガスが供給され、前記一酸化炭素リッチな副生ガスを一酸化炭素と第11オフガスとに分離する一酸化炭素分離装置と、
     前記炭酸ガスフリー水素供給装置から前記炭酸ガスフリー水素が供給され、前記一酸化炭素分離装置から前記分離された一酸化炭素が供給され、前記分離された一酸化炭素と前記炭酸ガスフリー水素とを一酸化炭素に対する水素のモル比が目標値になるように調合して合成ガスにする調合装置と、を備え、
     前記COリッチ副生ガス供給装置から前記一酸化炭素分離装置に供給される前記一酸化炭素リッチな副生ガスと前記炭酸ガスフリー水素供給装置から前記調合装置に供給される前記炭酸ガスフリー水素との標準状態での容量比を、前記一酸化炭素リッチな副生ガスに含まれる一酸化炭素の割合と、燃料ガスとしての水素に含まれる水素の前記目標値とに基づいて設定する、
     低炭素FT合成油製造用合成ガス製造システム。
    A CO-rich by-product gas supply device for supplying a carbon monoxide-rich by-product gas,
    A carbon dioxide-free hydrogen supply device that supplies carbon dioxide-free hydrogen as fuel gas,
    The carbon monoxide-rich by-product gas is supplied from the CO-rich by-product gas supply device, and a carbon monoxide separation device that separates the carbon monoxide-rich by-product gas into carbon monoxide and an eleventh off-gas,
    The carbon dioxide-free hydrogen is supplied from the carbon dioxide-free hydrogen supply device, the separated carbon monoxide is supplied from the carbon monoxide separation device, and the separated carbon monoxide and the carbon dioxide-free hydrogen are separated from each other. A blending device for blending so that the molar ratio of hydrogen to carbon monoxide becomes a target value to obtain a synthesis gas,
    The carbon monoxide-rich by-product gas supplied from the CO-rich by-product gas supply device to the carbon monoxide separation device and the carbon dioxide-free hydrogen supplied to the blending device from the carbon dioxide-free hydrogen supply device; The capacity ratio in the standard state is set based on the ratio of carbon monoxide contained in the carbon monoxide-rich by-product gas and the target value of hydrogen contained in hydrogen as fuel gas.
    Synthetic gas production system for low carbon FT synthetic oil production.
PCT/JP2018/043875 2018-09-14 2018-11-28 Synthetic gas production system for low-carbon ft synthetic oil production WO2020054088A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019520174A JP6552030B1 (en) 2018-09-14 2018-11-28 Syngas production system for low carbon FT synthetic oil production
PCT/JP2019/020969 WO2020054138A1 (en) 2018-09-14 2019-05-27 Synthetic gas production system for producing ft synthetic oil, methanol, or dme

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2018/034235 2018-09-14
PCT/JP2018/034235 WO2020054063A1 (en) 2018-09-14 2018-09-14 Synthetic gas production system for low-carbon ft synthetic oil production

Publications (1)

Publication Number Publication Date
WO2020054088A1 true WO2020054088A1 (en) 2020-03-19

Family

ID=69776531

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2018/034235 WO2020054063A1 (en) 2018-09-14 2018-09-14 Synthetic gas production system for low-carbon ft synthetic oil production
PCT/JP2018/043875 WO2020054088A1 (en) 2018-09-14 2018-11-28 Synthetic gas production system for low-carbon ft synthetic oil production
PCT/JP2019/020969 WO2020054138A1 (en) 2018-09-14 2019-05-27 Synthetic gas production system for producing ft synthetic oil, methanol, or dme

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034235 WO2020054063A1 (en) 2018-09-14 2018-09-14 Synthetic gas production system for low-carbon ft synthetic oil production

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020969 WO2020054138A1 (en) 2018-09-14 2019-05-27 Synthetic gas production system for producing ft synthetic oil, methanol, or dme

Country Status (1)

Country Link
WO (3) WO2020054063A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009069A (en) * 2005-06-30 2007-01-18 Hitachi Ltd Method and system for reforming byproduct gas in steelmaking plant
JP2009516054A (en) * 2005-11-18 2009-04-16 イーストマン ケミカル カンパニー Method for producing a variable synthesis gas composition
WO2010119972A1 (en) * 2009-04-14 2010-10-21 Ggiジャパン株式会社 Btl fuel production system and method for producing btl fuel
JP2010248459A (en) * 2009-04-16 2010-11-04 Kazuteru Shinohara Method of manufacturing liquid oil making biomass as raw material
JP2011006575A (en) * 2009-06-25 2011-01-13 Nippon Steel Engineering Co Ltd Sedimentation and separation method and apparatus of gasified combustible gas-containing substance, and utilization method of gasified combustible gas
JP2017202459A (en) * 2016-05-12 2017-11-16 積水化学工業株式会社 Gas separation method, method for producing organic oxide, gas separation device, and system for producing organic oxide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289773A (en) * 2004-04-02 2005-10-20 Iseo Ogawa Method and apparatus for producing carbon monoxide from carbon dioxide
US20090031615A1 (en) * 2007-08-01 2009-02-05 General Electric Company Integrated method for producing a fuel component from biomass and system therefor
JP5531462B2 (en) * 2008-07-04 2014-06-25 株式会社村田製作所 Carbon dioxide reforming catalyst, method for producing the same, carrier for carbon dioxide reforming catalyst, reformer, and method for producing synthesis gas
DE102009022509B4 (en) * 2009-05-25 2015-03-12 Thyssenkrupp Industrial Solutions Ag Process for the production of synthesis gas
JP2017007872A (en) * 2015-06-17 2017-01-12 エア・ウォーター株式会社 Synthesis gas production process and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009069A (en) * 2005-06-30 2007-01-18 Hitachi Ltd Method and system for reforming byproduct gas in steelmaking plant
JP2009516054A (en) * 2005-11-18 2009-04-16 イーストマン ケミカル カンパニー Method for producing a variable synthesis gas composition
WO2010119972A1 (en) * 2009-04-14 2010-10-21 Ggiジャパン株式会社 Btl fuel production system and method for producing btl fuel
JP2010248459A (en) * 2009-04-16 2010-11-04 Kazuteru Shinohara Method of manufacturing liquid oil making biomass as raw material
JP2011006575A (en) * 2009-06-25 2011-01-13 Nippon Steel Engineering Co Ltd Sedimentation and separation method and apparatus of gasified combustible gas-containing substance, and utilization method of gasified combustible gas
JP2017202459A (en) * 2016-05-12 2017-11-16 積水化学工業株式会社 Gas separation method, method for producing organic oxide, gas separation device, and system for producing organic oxide

Also Published As

Publication number Publication date
WO2020054063A1 (en) 2020-03-19
WO2020054138A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
Frattini et al. A system approach in energy evaluation of different renewable energies sources integration in ammonia production plants
CA2652905C (en) Improvement of carbon efficiencies in hydrocarbon production
CA2762945C (en) Method of making synthesis gas
EP3303524B1 (en) Process for producing a substitute natural gas from synthesis gas
AU2019203801B2 (en) Combined system for producing steel and method for operating the combined system
CN103857772A (en) Partial oxidation of methane and higher hydrocarbons in syngas streams
US20040171701A1 (en) Methanol production process
US20220081290A1 (en) Process and plant for producing hydrogen by steam reforming and high-temperature electrolysis
US8268896B2 (en) Co-production of fuels, chemicals and electric power using gas turbines
JP4030846B2 (en) Methanol production method and apparatus
Panichkittikul et al. Improvement of biohydrogen production from biomass using supercritical water gasification and CaO adsorption
JP2015117312A (en) Method for producing gas turbine fuel
US20230119589A1 (en) Processes and systems for producing hydrocarbon fuels having high carbon conversion efficiency
Kraisornkachit et al. Performance evaluation of different combined systems of biochar gasifier, reformer and CO2 capture unit for synthesis gas production
WO2020054088A1 (en) Synthetic gas production system for low-carbon ft synthetic oil production
JP6552030B1 (en) Syngas production system for low carbon FT synthetic oil production
CN110217757A (en) Coal liquefaction, petroleum or the biomass equipment with the integration of higher carbon and the thermal efficiency are generated with reduced carbon dioxide
Ball et al. Hydrogen production
Gallucci et al. Conventional Processes for Hydrogen Production
JP2005053771A (en) Method and system for producing hydrogen
EP4332200A1 (en) Synthetic fuel production method
EP4328287A1 (en) Synthetic fuel production method
JP3947266B2 (en) Hydrogen production method and apparatus used therefor
US20240051827A1 (en) Integration of hydrogen fueled gas turbine with a hydrocarbon reforming process
CN115340066A (en) Installation and method for producing synthesis gas with means for limiting carbon dioxide emissions using steam

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019520174

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933435

Country of ref document: EP

Kind code of ref document: A1