JP2007009069A - Method and system for reforming byproduct gas in steelmaking plant - Google Patents

Method and system for reforming byproduct gas in steelmaking plant Download PDF

Info

Publication number
JP2007009069A
JP2007009069A JP2005191824A JP2005191824A JP2007009069A JP 2007009069 A JP2007009069 A JP 2007009069A JP 2005191824 A JP2005191824 A JP 2005191824A JP 2005191824 A JP2005191824 A JP 2005191824A JP 2007009069 A JP2007009069 A JP 2007009069A
Authority
JP
Japan
Prior art keywords
gas
furnace
reforming furnace
reforming
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005191824A
Other languages
Japanese (ja)
Inventor
Toru Akiyama
穐山  徹
Yusuke Tadakuma
祐輔 只隈
Atsushi Eba
篤 江場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Steel Corp
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd, Nippon Steel Corp filed Critical Babcock Hitachi KK
Priority to JP2005191824A priority Critical patent/JP2007009069A/en
Publication of JP2007009069A publication Critical patent/JP2007009069A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Industrial Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the quantity of industrially useful carbon monoxide through reducing carbon dioxide emissions in steelmaking plants and also reforming carbon dioxide in the byproduct gas in the steelmaking plants. <P>SOLUTION: In a steelmaking furnace 1, carbon dioxide-rich byproduct gas 54 is generated in the process of manufacturing crude steel 56 from iron feedstocks 51 including iron ore and scrap and then fed via a gas holder 7 and a compressor 2 to a gas reforming furnace 4 where carbon-containing solid compounds 52 such as coal and wastes are gasified. The carbon dioxide in the thus fed byproduct gas is reduced into carbon monoxide by char generated in the gas reforming furnace 4. Thereby, the calorific value of the byproduct gas is increased. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、製鉄プロセスの副生成ガスを改質する方法及びシステムに関する。   The present invention relates to a method and system for reforming by-product gas in an iron making process.

製鉄プロセスでは、鉄鉱石やスクラップ鉄などの鉄原料が、石炭や有機性廃棄物と共に高炉や転炉などの製鉄炉に投入される。有機性廃棄物とは、例えば廃タイヤチップ、廃プラスチック等のように炭素分や水素分を含有する物質である。炉内には、酸素や空気などを供給して、前記投入された石炭や有機性廃棄物の炭素や水素の一部を燃焼させることにより、鉄原料を溶解、還元して鉄を生産する。   In the iron making process, iron raw materials such as iron ore and scrap iron are put into iron making furnaces such as blast furnaces and converters together with coal and organic waste. Organic waste is a substance containing carbon or hydrogen, such as waste tire chips and waste plastics. In the furnace, oxygen or air is supplied to burn part of carbon and hydrogen of the input coal and organic waste, thereby melting and reducing the iron raw material to produce iron.

製鉄炉内では、炭化水素が部分的に燃焼し、一酸化炭素や水素、炭化水素(タール等)を含有するガスが生じる。このガスは、鉄原料に含まれる酸化鉄を還元することによって酸化し、二酸化炭素や水蒸気となる。なお、一酸化炭素や水素、炭化水素ガスの全てが二酸化炭素と水蒸気に転換する訳ではなく、一部は残って製鉄炉から副生成ガスとして排出される。副生成ガスには、可燃性ガスが含まれるが、発熱量が低い場合もある。そこで、該ガスを有効利用する様々な検討が実施されている。   In an iron making furnace, hydrocarbons are partially burned to generate a gas containing carbon monoxide, hydrogen, and hydrocarbons (tar, etc.). This gas is oxidized by reducing iron oxide contained in the iron raw material, and becomes carbon dioxide or water vapor. Note that not all carbon monoxide, hydrogen, and hydrocarbon gas are converted into carbon dioxide and water vapor, and some of them remain and are discharged from the steelmaking furnace as by-product gases. The by-product gas includes a combustible gas, but the calorific value may be low. Therefore, various studies for effectively using the gas have been carried out.

特許文献1には、製鉄所内のコークス炉や高炉、転炉などから生成する副生成ガスから水素を採取し、高発熱量のガスと低発熱量のガスを調合するなどして、製鉄所内外の様々な機器に利用する方法などが考案されている。   In Patent Document 1, hydrogen is collected from a by-product gas generated from a coke oven, a blast furnace, a converter, etc. in a steelworks, and a high calorific value gas and a low calorific value gas are mixed. The method of using it for various devices is devised.

特開2004−224926号公報JP 2004-224926 A

特許文献1のように、コークス炉、高炉、転炉など複数の炉を有する製鉄所では、様々な組成や発熱量の副生成ガスが排出される。従って、ガスを調合して適正な発熱量として利用することが可能であり、有効である。しかし、例えば、転炉のみしか有しないような小規模の製鉄所では、1種類の副生成ガスしか排出されない。この副生成ガスの発熱量が低く、利用先が限定されるような場合は、副生成ガスから窒素や二酸化炭素などの非可燃性ガスを分離して、副生成ガスの発熱量を向上させ、分離した非可燃性ガスについては、別途何らかの用途に利用する方法が考えられる。   As in Patent Document 1, in a steel mill having a plurality of furnaces such as a coke oven, a blast furnace, and a converter, by-product gases having various compositions and calorific values are discharged. Therefore, it is possible to prepare gas and use it as an appropriate calorific value, which is effective. However, for example, in a small steelworks having only a converter, only one kind of by-product gas is discharged. When the by-product gas has a low calorific value and the usage destination is limited, the non-combustible gas such as nitrogen and carbon dioxide is separated from the by-product gas to improve the calorific value of the by-product gas, About the separated nonflammable gas, the method of utilizing for a certain use separately can be considered.

この方法は、製鉄所内に窒素や二酸化炭素を使用する装置がある場合や、販売先がある場合には有効であると考えられる。しかし、利用先がない場合には成立しない。二酸化炭素は、二酸化炭素排出削減の地球環境問題対策の観点からすれば、大気放出を避けて、製鉄所内で利用することが望まれる。   This method is considered to be effective when there is a device using nitrogen or carbon dioxide in the steelworks or when there is a sales destination. However, it does not hold if there is no usage destination. From the viewpoint of measures against global environmental problems to reduce carbon dioxide emissions, it is desirable that carbon dioxide be used in steelworks while avoiding atmospheric release.

本発明の目的は、製鉄副生成ガス中に含まれる非可燃性ガスである二酸化炭素を製鉄所内で有効利用し、しかも、二酸化炭素を改質して可燃性ガスで化学材料としても有用である一酸化炭素を得ることのできる製鉄副生成ガスの改質方法およびシステムを提供することにある。   An object of the present invention is to effectively use carbon dioxide, which is a non-flammable gas contained in an iron-produced by-product gas, in a steelworks, and is also useful as a chemical material with a combustible gas by reforming carbon dioxide. An object of the present invention is to provide a method and system for reforming an iron-produced by-product gas capable of obtaining carbon monoxide.

本発明における製鉄副生成ガスの改質方法及びシステムは、基本的には、製鉄炉(例えば高炉や転炉)とガス改質炉とを備え、製鉄炉から発生する二酸化炭素を含む製鉄副生成ガスをガス改質炉に供給する。   The iron production byproduct gas reforming method and system according to the present invention basically includes an iron making furnace (for example, a blast furnace or a converter) and a gas reforming furnace, and includes an iron making byproduct containing carbon dioxide generated from the iron making furnace. Gas is supplied to the gas reforming furnace.

ガス改質炉とは、製鉄炉とは別置の改質ガス生成用の炉であり、石炭、及び可燃廃棄物及び/又はその副生成物である炭素を含有する化合物を酸素と反応させて、部分燃焼により一酸化炭素、水素などの改質ガス(可燃性ガス)を生成するものである。ガス改質炉の部分燃焼時に改質ガスのほかに炭素分を多く含むチャー(炭素を含有する固体化合物)が発生する。   The gas reforming furnace is a furnace for generating reformed gas that is separate from the iron making furnace, and reacts coal and a combustible waste and / or a compound containing carbon, which is a by-product, with oxygen. The reformed gas (combustible gas) such as carbon monoxide and hydrogen is generated by partial combustion. During partial combustion in a gas reforming furnace, char containing a large amount of carbon (solid compound containing carbon) is generated in addition to the reformed gas.

これにより、ガス改質炉中に送られた製鉄副生成ガスに含まれる二酸化炭素の一部がガス改質炉で得られるチャーにより、C+CO→2COによって反応し一酸化炭素に還元される。それにより、副生成ガスの発熱量が向上する。製鉄炉からガス改質炉に送られる副生成ガスは、ガス改質炉の運転圧力以上に高めて送られることが好ましい。 As a result, a portion of the carbon dioxide contained in the iron by-product gas sent into the gas reforming furnace reacts with C + CO 2 → 2CO and is reduced to carbon monoxide by the char obtained in the gas reforming furnace. Thereby, the calorific value of the by-product gas is improved. The by-product gas sent from the iron making furnace to the gas reforming furnace is preferably sent at a pressure higher than the operating pressure of the gas reforming furnace.

さらに付記的には、次のような構成が提案される。   In addition, the following configuration is proposed.

製鉄炉で生じた副生成ガスは、ガス改質炉のガス出口付近に供給すると、ガス改質炉内で発生した高温ガスを冷却し、それによってガス改質炉の壁面への灰の付着を抑制することができる。   When the by-product gas generated in the iron making furnace is supplied near the gas outlet of the gas reforming furnace, it cools the high-temperature gas generated in the gas reforming furnace, thereby preventing ash from adhering to the wall of the gas reforming furnace. Can be suppressed.

さらに、上記製鉄副生成ガス(特に二酸化炭素)をガス改質炉で還元させて一酸化炭素(改質ガス)を増量させた後に、ガス改質炉から排出される改質ガスに含まれる煤塵や硫黄分などを除去する構成を提案する。   Furthermore, after reducing the iron by-product gas (especially carbon dioxide) in the gas reforming furnace to increase the amount of carbon monoxide (reformed gas), the dust contained in the reformed gas discharged from the gas reforming furnace A structure that removes sulfur and other components is proposed.

また、上記のようにしてガス改質炉から排出される改質ガスに含まれている二酸化炭素を除去して、更に改質ガスの有用成分(一酸化炭素、水素など)の分圧を高めて、燃料や化学原料として供する構成を提案する。   In addition, the carbon dioxide contained in the reformed gas discharged from the gas reforming furnace is removed as described above, and the partial pressure of useful components (carbon monoxide, hydrogen, etc.) of the reformed gas is further increased. Therefore, we propose a configuration to be used as fuel and chemical raw materials.

また、上記のように一酸化炭素が増量した改質後の副生成ガスから、水素や一酸化炭素をそれぞれ分離し、水素は燃料として、一酸化炭素は化学原料に供する構成を提案する。   Further, a configuration is proposed in which hydrogen and carbon monoxide are separated from the reformed by-product gas in which the amount of carbon monoxide is increased as described above, and hydrogen is used as a fuel and carbon monoxide is used as a chemical raw material.

本発明により、製鉄(鉄鋼)炉で生じる副生成ガスの二酸化炭素の大気排出削減を図り、しかもその副生成ガスを改質して一酸化炭素を増量でき、発熱量も向上し、副生成ガスの用途を拡大することができる。また、ガス改質炉を安定に運転することができる。   According to the present invention, it is possible to reduce atmospheric emissions of carbon dioxide, a by-product gas generated in an iron (steel) furnace, and to reform the by-product gas to increase the amount of carbon monoxide. Can be expanded. In addition, the gas reforming furnace can be operated stably.

製鉄プロセスでは、鉄鉱石やスクラップ鉄などの鉄原料を石炭などの炭素分や水素分を含有する物質の部分燃焼により還元して粗鋼を得る。通常、製鉄炉の排ガス(副生成ガス)中に一酸化炭素(CO)や水素(H)、炭化水素ガスなどの可燃性ガスを含有するが、発熱量が低く、利用先が制限される場合がある。そのため、本発明では、副生成ガス改質炉を設けて、該改質炉内で石炭を部分燃焼して得られる活性チャーにより副生成ガス中の二酸化炭素(CO)を還元して一酸化炭素に改質し、発熱量を向上させる。 In the iron making process, raw steel such as iron ore and scrap iron is reduced by partial combustion of a substance containing carbon or hydrogen such as coal to obtain crude steel. Usually, combustible gases such as carbon monoxide (CO), hydrogen (H 2 ), and hydrocarbon gas are contained in the exhaust gas (by-product gas) of an iron furnace, but the calorific value is low and the usage destination is restricted. There is a case. Therefore, in the present invention, a by-product gas reforming furnace is provided, and carbon dioxide (CO 2 ) in the by-product gas is reduced by an activated char obtained by partial combustion of coal in the reforming furnace to be oxidized. Reforming to carbon to improve the calorific value.

以下、本発明の実施例を、図面を参照しながら説明する。なお、本発明は、以下の実施例に限定されるものではない。
(実施例1)
図1は本発明の一実施例による製鉄副生成ガス改質方法及びシステムの構成を示している。
Embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited to the following examples.
Example 1
FIG. 1 shows the structure of a method and system for reforming a by-product gas by an embodiment of the present invention.

全体的には、製鉄炉1、ガスホルダ7、圧縮機2、石炭ホッパ3、ガス改質炉4が主な構成要素である。製鉄炉1は、例えば高炉、転炉などが使用される。製鉄炉1には、鉄原料(例えば鉄鉱石やスクラップ)51、石炭52、空気または酸素富化空気53が供給され、粗鋼56を生産する。なお、製鉄炉の燃料として、廃タイヤ、廃プラスチックなどの炭素含有化合物を加えてもよい。製鉄プロセスでは、二酸化炭素を多く、また一酸化炭素や水素、炭化水素ガスも含む副生成ガス54が発生し排出される。   Overall, the iron making furnace 1, the gas holder 7, the compressor 2, the coal hopper 3, and the gas reforming furnace 4 are main components. As the iron making furnace 1, for example, a blast furnace or a converter is used. The iron making furnace 1 is supplied with an iron raw material (for example, iron ore or scrap) 51, coal 52, air or oxygen-enriched air 53 to produce crude steel 56. In addition, you may add carbon-containing compounds, such as a waste tire and a waste plastic, as a fuel of an iron furnace. In the iron making process, a by-product gas 54 containing a large amount of carbon dioxide and also containing carbon monoxide, hydrogen, and hydrocarbon gas is generated and discharged.

副生成ガス54をガスホルダ7に一時的に貯留した後、圧縮機2により、ガス改質炉4以上の圧力に高めた後、副生成ガスノズル5を介してガス改質炉4に供給される。一方、ガス改質炉4には、石炭ホッパ3から石炭52’と共に酸素57が石炭ノズル6を介して供給される。   After the by-product gas 54 is temporarily stored in the gas holder 7, the pressure is increased to a pressure higher than that of the gas reforming furnace 4 by the compressor 2, and then supplied to the gas reforming furnace 4 through the by-product gas nozzle 5. On the other hand, the gas reforming furnace 4 is supplied with oxygen 57 from the coal hopper 3 along with the coal 52 ′ via the coal nozzle 6.

なお、ガスホルダ7は、製鉄炉1からの副生成ガス54を一時的に貯留して、組成や流量、圧力などを一定に取り出せるようにする。   The gas holder 7 temporarily stores the by-product gas 54 from the iron making furnace 1 so that the composition, flow rate, pressure, and the like can be taken out constantly.

ガス改質炉については、特にその構造を限定するものではない。その基本的な構造自体は、既存の石炭ガス化炉を適用すればよく、詳細説明は省略する。基本的には、改質炉に石炭投入用の石炭ノズル6と副生成ガスノズル5を備え、内部に石炭を部分燃焼させて一酸化炭素や水素に富むガスを発生させる高温炉を有し、上部に改質炉の生成ガスの出口があり、下部に石炭中の灰分を溶融しスラグとして排出するスラグ排出孔(図示省略)を有する。   The structure of the gas reforming furnace is not particularly limited. The basic structure itself may be an existing coal gasifier, and detailed description thereof is omitted. Basically, the reforming furnace includes a coal nozzle 6 for coal input and a by-product gas nozzle 5, and has a high-temperature furnace that partially burns coal to generate a gas rich in carbon monoxide and hydrogen. There is an outlet for the product gas of the reforming furnace, and a slag discharge hole (not shown) for melting the ash content in the coal and discharging it as slag at the bottom.

石炭は酸素と共に石炭ノズル6を介して改質炉内に供給される。改質炉では、石炭は酸素により一部が燃焼してガス化反応を生じ、一酸化炭素や水素に富むガスを発生する。石炭中の炭素の一部は固体として残ったままとなる。これをチャーと称する。   Coal is supplied into the reforming furnace through the coal nozzle 6 together with oxygen. In the reforming furnace, coal is partially burned by oxygen to cause a gasification reaction, generating a gas rich in carbon monoxide and hydrogen. Some of the carbon in the coal remains as a solid. This is called char.

ガス改質炉4内では、石炭52’が酸素57により部分燃焼し、1600℃程度の高温となり、かつ、一酸化炭素、水素、メタンなどを含むガスと炭素分を多く含むチャーが発生する。高温のチャーは、副生成ガスノズル5より供給された副生成ガス54と接触する。ここで、副生成ガス54中の二酸化炭素は、チャーにより還元され、一酸化炭素に転換(改質)し、更に、チャー中の炭素分が酸化して一酸化炭素に転換する。これは、次の化学式で表される。
[化2]
CO+C→2CO
aC+bO→cCO+dCO
以上の反応を経て、一酸化炭素が多く含まれる改質ガス55がガス化改質炉4より取り出される。改質ガス中の一酸化炭素が増量するため、発熱量が向上する。副生成ガスは、改質炉出口部に導入することにより、灰の冷却や壁面のシール効果により灰の付着を抑制する。
In the gas reforming furnace 4, the coal 52 ′ is partially burned by the oxygen 57, becomes a high temperature of about 1600 ° C., and a gas containing carbon monoxide, hydrogen, methane, etc. and a char containing a large amount of carbon are generated. The high temperature char contacts the byproduct gas 54 supplied from the byproduct gas nozzle 5. Here, the carbon dioxide in the by-product gas 54 is reduced by char and converted (reformed) into carbon monoxide, and further, the carbon content in the char is oxidized and converted into carbon monoxide. This is represented by the following chemical formula:
[Chemical 2]
CO 2 + C → 2CO
aC + bO 2 → cCO + dCO 2
Through the above reaction, the reformed gas 55 containing a large amount of carbon monoxide is taken out from the gasification reforming furnace 4. Since the amount of carbon monoxide in the reformed gas is increased, the calorific value is improved. By-product gas is introduced into the reforming furnace outlet to suppress ash adhesion by cooling the ash and sealing the wall.

図2は、本発明の副生成ガスの改質方法を実施した場合aの石炭ガス(ガス改質炉から排出されるガス)中に含まれる二酸化炭素濃度と、比較例bの石炭ガス中の二酸化濃度を比較した図である。図3は、本発明の副生成ガスの改質方法を実施した場合aと比較例bとの改質ガス中に含まれる一酸化炭素濃度を比較した図である。比較例bは、製鉄副生成ガスをガス改質炉4に導入せずにガス改質炉の出口下流で石炭ガスと合流(混合)させた例である。図2の横軸には、比較例a,bの製鉄副生成ガスに対する石炭ガスの割合を示し、縦軸には、排出される二酸化炭素濃度を示す。図3の横軸も図2同様であり、縦軸に一酸化炭素濃度を示す。   FIG. 2 shows the carbon dioxide concentration contained in the coal gas (a gas discharged from the gas reforming furnace) of a when the by-product gas reforming method of the present invention is performed, and the coal gas of Comparative Example b. It is the figure which compared the dioxide concentration. FIG. 3 is a graph comparing the carbon monoxide concentrations contained in the reformed gases of a and comparative example b when the by-product gas reforming method of the present invention is performed. The comparative example b is an example in which the iron-produced by-product gas is joined (mixed) with the coal gas downstream of the outlet of the gas reforming furnace without being introduced into the gas reforming furnace 4. The horizontal axis of FIG. 2 shows the ratio of coal gas to the iron production byproduct gas of Comparative Examples a and b, and the vertical axis shows the concentration of discharged carbon dioxide. The horizontal axis of FIG. 3 is the same as that of FIG. 2, and the vertical axis indicates the carbon monoxide concentration.

製鉄副生成ガスには二酸化炭素が多く含まれるため、その副生成ガスと石炭ガスを比較例bのように単に混合させただけでは、図2に示すように、全体のガス中の二酸化炭素が増加する。本発明の場合aは、改質方法を適用することにより、二酸化炭素の一部を石炭から発生したチャーにより、還元することができるため、排出される全体のガス中の二酸化炭素濃度は低下し、二酸化炭素の排出削減の効果を有する。   Since the steelmaking by-product gas contains a large amount of carbon dioxide, simply mixing the by-product gas and the coal gas as in Comparative Example b results in the carbon dioxide in the entire gas as shown in FIG. To increase. In the case of the present invention, by applying the reforming method, a part of carbon dioxide can be reduced by char generated from coal, so the concentration of carbon dioxide in the entire exhausted gas decreases. , Has the effect of reducing carbon dioxide emissions.

また、本発明の場合aによれば、図3に示すように、製鉄副生成ガス中の二酸化炭素が還元し、一酸化炭素に転換することにより、比較例bに比べて、全体のガス中の一酸化炭素濃度は増加する。その結果、本発明の改質ガスは、全体のガスの発熱量が増加するため、ガスの用途拡大に供することができる。   In addition, according to the case a of the present invention, as shown in FIG. 3, the carbon dioxide in the iron by-product gas is reduced and converted to carbon monoxide. The carbon monoxide concentration increases. As a result, the reformed gas of the present invention increases the calorific value of the entire gas, and thus can be used for expanding the use of gas.

なお、製鉄副生成ガス中の二酸化炭素のうち改質炉で一酸化炭素に還元されるのは一部であるので、全体のガス中の一酸化濃度は、図3に示すように、二酸化炭素の投入量が多くなるにつれて低下する傾向がある。しかし、一酸化炭素濃度は、要求濃度維持できれば良いので、その要求濃度を満たせば、製鉄副生成ガスをガス改質炉に投入しても何ら問題はない。例えば、あるプロセスで65%の濃度が欲しい場合、本発明は、石炭ガスは60vol%で足りるのに対して、比較例bでは、石炭ガスは70vol%必要となる。したがって、本発明によれば、要求一酸化炭素濃度に対して石炭使用量を減らすことができ、原料削減のメリットを有する。   In addition, since a part of the carbon dioxide in the iron by-product gas is reduced to carbon monoxide in the reforming furnace, the concentration of monoxide in the entire gas is as shown in FIG. It tends to decrease as the amount of input increases. However, the carbon monoxide concentration only needs to be able to maintain the required concentration. If the required concentration is satisfied, there is no problem even if the steelmaking byproduct gas is introduced into the gas reforming furnace. For example, when a concentration of 65% is desired in a certain process, the present invention requires 60 vol% of coal gas, whereas in comparative example b, 70 vol% of coal gas is required. Therefore, according to the present invention, the amount of coal used can be reduced with respect to the required carbon monoxide concentration, and there is a merit of raw material reduction.

図4は、本発明の第2実施例を示すもので、基本的な構成は第1実施例と同様であるが、本実施例では、さらに構成要素を付加したものである。上記した第1実施例の内容は、本実施例でも同じである。相違点は、改質ガス精製装置として、ガス改質炉4の下流に脱塵装置8と脱硫装置9を設けた点にある。   FIG. 4 shows a second embodiment of the present invention. The basic configuration is the same as that of the first embodiment, but in this embodiment, further components are added. The contents of the first embodiment described above are the same in this embodiment. A difference is that a dedusting device 8 and a desulfurization device 9 are provided downstream of the gas reforming furnace 4 as a reformed gas purification device.

上記改質ガス55は、煤塵などの粉体固形物や、石炭52などに含まれていた硫黄分を含有している。上記改質ガス55をサイクロンやフィルタなどの脱塵装置8により脱塵し、更に脱硫装置9で硫黄分を除去して改質後の副生成ガス58を得る。これによりクリーンなガスを得ることができ、燃料などとして利用することができる。   The reformed gas 55 contains a powdery solid such as soot dust or a sulfur content contained in the coal 52 or the like. The reformed gas 55 is dedusted by a dedusting device 8 such as a cyclone or a filter, and a sulfur content is further removed by a desulfurization device 9 to obtain a by-product gas 58 after reforming. As a result, clean gas can be obtained and used as fuel or the like.

図5は、本発明の第3の実施例を示す構成図である。本実施例も、基本的な構成は第1実施例と同様であるが、本実施例では、さらに構成要素を付加したものである。上記した第1実施例の内容は、本実施例でも同じである。相違点は、ガス改質炉4の下流に脱塵装置8と二酸化炭素分離装置12を設けた点にある。   FIG. 5 is a block diagram showing a third embodiment of the present invention. The basic configuration of this embodiment is the same as that of the first embodiment, but in this embodiment, further components are added. The contents of the first embodiment described above are the same in this embodiment. The difference is that a dust removing device 8 and a carbon dioxide separator 12 are provided downstream of the gas reforming furnace 4.

改質ガス55含まれる煤塵などの粉体固形物を脱塵装置8により脱塵し、脱塵後のガスを二酸化炭素分離装置12に導入して二酸化炭素64を分離し、ドライアイスなどとして利用することができる。二酸化炭素除去後のガス65は、発熱量が向上しているため、燃料などとして利用するのに適している。   Powder solids such as soot dust contained in the reformed gas 55 are removed by the dust removing device 8, and the gas after the dust removal is introduced into the carbon dioxide separator 12 to separate the carbon dioxide 64, which is used as dry ice or the like. can do. Since the calorific value of the gas 65 after removing carbon dioxide is improved, it is suitable for use as a fuel.

図6は、本発明の第4の実施例を示す構成図である。本実施例も、基本的な構成は第1実施例と同様であるが、本実施例では、さらに構成要素を付加したものである。上記した第1実施例の内容は、本実施例でも同じである。相違点は、ガス改質炉4の下流に脱塵装置8と水素分離装置10を設けた点にある。   FIG. 6 is a block diagram showing a fourth embodiment of the present invention. The basic configuration of this embodiment is the same as that of the first embodiment, but in this embodiment, further components are added. The contents of the first embodiment described above are the same in this embodiment. The difference is that a dust removing device 8 and a hydrogen separation device 10 are provided downstream of the gas reforming furnace 4.

改質ガス55含まれる煤塵などの粉体固形物を脱塵装置8により脱塵し、脱塵後のガスを水素分離装置10に導入して水素ガス59を分離し、水素燃料などとして利用することができる。水素ガス除去後の改質ガス60は、可燃性である一酸化炭素が含まれているので、燃料などとして利用することができる。水素分離装置10には、PSA(圧力スイング吸着)などを用いることができる。   Powder solids such as dust contained in the reformed gas 55 are dedusted by the dedusting device 8, and the degassed gas is introduced into the hydrogen separation device 10 to separate the hydrogen gas 59 and used as hydrogen fuel or the like. be able to. Since the reformed gas 60 after the removal of hydrogen gas contains combustible carbon monoxide, it can be used as a fuel or the like. For the hydrogen separator 10, PSA (pressure swing adsorption) or the like can be used.

図7は、本発明の第5の実施例を示す構成図である。本実施例も、基本的な構成は第1実施例と同様であるが、本実施例では、さらに構成要素を付加したものである。上記した第1実施例の内容は、本実施例でも同じである。相違点は、ガス改質炉4の下流に脱塵装置8と一酸化炭素分離装置11を設けた点にある。   FIG. 7 is a block diagram showing a fifth embodiment of the present invention. The basic configuration of this embodiment is the same as that of the first embodiment, but in this embodiment, further components are added. The contents of the first embodiment described above are the same in this embodiment. The difference is that a dust removing device 8 and a carbon monoxide separation device 11 are provided downstream of the gas reforming furnace 4.

改質ガス55含まれる煤塵などの粉体固形物を脱塵装置8により脱塵し、脱塵後のガスを一酸化炭素分離装置11に導入して一酸化炭素61を分離する。一酸化炭素は、化学原料などとして利用することができる。一酸化炭素除去後のガス62は、水素ガスを含有しているために、燃料などとして利用することができる。一酸化炭素分離装置11にはPSAなどを用いることができる。   Powder solids such as dust contained in the reformed gas 55 are dedusted by the dedusting device 8, and the dedusted gas is introduced into the carbon monoxide separation device 11 to separate the carbon monoxide 61. Carbon monoxide can be used as a chemical raw material. Since the gas 62 after the removal of carbon monoxide contains hydrogen gas, it can be used as a fuel or the like. For the carbon monoxide separator 11, PSA or the like can be used.

図8は、本発明の第6の実施例を示す構成図である。本実施例も、基本的な構成は第1実施例と同様であるが、本実施例では、さらに構成要素を付加したものである。上記した第1実施例の内容は、本実施例でも同じである。相違点は、ガス改質炉4の下流に脱塵装置8と水素分離装置10と一酸化炭素分離装置11を設けた点にある。   FIG. 8 is a block diagram showing a sixth embodiment of the present invention. The basic configuration of this embodiment is the same as that of the first embodiment, but in this embodiment, further components are added. The contents of the first embodiment described above are the same in this embodiment. The difference is that a dust removing device 8, a hydrogen separation device 10, and a carbon monoxide separation device 11 are provided downstream of the gas reforming furnace 4.

改質ガス55に含まれる煤塵などの粉体固形物を脱塵装置8により脱塵し、脱塵後のガスを水素分離装置10に導入して水素ガス59を分離し、水素燃料などとして利用することができる。水素除去後のガス60を更に一酸化炭素分離装置11に導入して一酸化炭素61を分離し、化学原料(例えば酢酸)などとして利用することができる。   Powder solids such as dust contained in the reformed gas 55 are dedusted by the dedusting device 8, and the degassed gas is introduced into the hydrogen separation device 10 to separate the hydrogen gas 59 to be used as hydrogen fuel or the like. can do. The gas 60 after the hydrogen removal is further introduced into the carbon monoxide separator 11 to separate the carbon monoxide 61 and can be used as a chemical raw material (for example, acetic acid).

上記いずれの実施例においても、製鉄所における二酸化炭素排出削減を図り、かつ製鉄副生成ガスに含まれる二酸化炭素の改質を図り、産業上有用性のある一酸化炭素量の増大を図ることができる。上記実施例では、ガス改質炉4で、石炭のみをガス化しているが、その他、廃タイヤ、廃プラスチック等の炭素を含む固体化合物をガス化してもよい。   In any of the above-described embodiments, it is possible to reduce carbon dioxide emissions at an ironworks and to reform carbon dioxide contained in a by-product gas, thereby increasing the amount of industrially useful carbon monoxide. it can. In the above embodiment, only the coal is gasified in the gas reforming furnace 4, but other solid compounds containing carbon such as waste tires and waste plastics may be gasified.

本発明の第1実施例による製鉄副生成ガス改質方法及びシステムの構成を示した図。The figure which showed the structure of the iron manufacture byproduct gas reforming method and system by 1st Example of this invention. 本発明の製鉄副生成ガスの改質方法を実施した場合aと比較例bとの、石炭ガス中に含まれる二酸化炭素濃度の比較を示した図。The figure which showed the comparison of the carbon dioxide density | concentration contained in coal gas of the case a and the comparative example b when implementing the modification | reformation method of the iron by-product gas of this invention. 本発明の製鉄副生成ガスの改質方法を実施した場合aと比較例bとの、石炭ガス中に含まれる一酸化炭素濃度の比較を示した図。The figure which showed the comparison of the carbon monoxide density | concentration contained in coal gas of the case where the reforming method of the iron by-product gas of this invention is implemented and the comparative example b. 本発明の第2実施例に係る製鉄副生成ガスの改質方法及びシステムの構成を示した図。The figure which showed the structure of the modification | reformation method and system of an iron manufacture byproduct gas concerning 2nd Example of this invention. 本発明の第3実施例に係る製鉄副生成ガスの改質方法及びシステムの構成を示した図。The figure which showed the structure of the modification | reformation method and system of an iron manufacture byproduct gas based on 3rd Example of this invention. 本発明の第4実施例に係る製鉄副生成ガスの改質方法及びシステムの構成を示した図。The figure which showed the structure of the modification | reformation method and system of an iron manufacture byproduct gas which concerns on 4th Example of this invention. 本発明の第5実施例に係る製鉄副生成ガスの改質方法及びシステムの構成を示した図。The figure which showed the structure of the modification | reformation method and system of an iron manufacture byproduct gas concerning 5th Example of this invention. 本発明の第6実施例に係る製鉄副生成ガスの改質方法及びシステムの構成を示した図。The figure which showed the structure of the modification | reformation method and system of an iron manufacture byproduct gas which concerns on 6th Example of this invention.

符号の説明Explanation of symbols

1:製鉄炉、2:圧縮機、3:石炭ホッパ、4:ガス改質炉、5:副生成ガスノズル、6:石炭ノズル、7:ガスホルダ、8:脱塵装置、9:脱硫装置、10:水素分離装置、11:一酸化炭素分離装置、12:二酸化炭素除去装置、51:鉄原料、52:石炭、53:空気または酸素富化空気、54:副生成ガス、55:改質ガス、56:粗鋼、57:酸素、58:精製後の改質ガス、59:水素、60:水素除去後の改質ガス、61:一酸化炭素、62:一酸化炭素除去後の改質ガス、63:水素及び一酸化炭素除去後のガス、64:二酸化炭素、65:二酸化炭素除去後のガス。 1: Iron making furnace, 2: Compressor, 3: Coal hopper, 4: Gas reforming furnace, 5: By-product gas nozzle, 6: Coal nozzle, 7: Gas holder, 8: Dedusting device, 9: Desulfurization device, 10: Hydrogen separator, 11: carbon monoxide separator, 12: carbon dioxide remover, 51: iron raw material, 52: coal, 53: air or oxygen-enriched air, 54: by-product gas, 55: reformed gas, 56 : Crude steel, 57: Oxygen, 58: Reformed gas after purification, 59: Hydrogen, 60: Reformed gas after removal of hydrogen, 61: Reformed gas after removal of carbon monoxide, 62: Reformed gas after removal of carbon monoxide, 63: Gas after removing hydrogen and carbon monoxide, 64: carbon dioxide, 65: gas after removing carbon dioxide.

Claims (10)

高炉や転炉などの製鉄炉と、
石炭、可燃廃棄物及びその副生成物である炭素を含有する化合物の少なくとも一つを酸素と反応させて、部分燃焼により一酸化炭素などの改質ガスを生成するガス改質炉と、を備え、
前記製鉄炉から発生する二酸化炭素を含む製鉄副生成ガスを前記ガス改質炉に供給して、二酸化炭素の一部を前記ガス改質炉で得られるチャーにより一酸化炭素に還元することを特徴とする製鉄副生成ガスの改質方法。
Iron making furnaces such as blast furnaces and converters,
A gas reforming furnace that reacts at least one of coal, combustible waste, and a carbon-containing compound that is a by-product thereof with oxygen to generate a reformed gas such as carbon monoxide by partial combustion. ,
A steelmaking by-product gas containing carbon dioxide generated from the iron making furnace is supplied to the gas reforming furnace, and a part of the carbon dioxide is reduced to carbon monoxide by char obtained in the gas reforming furnace. A method for reforming a steel by-product gas.
請求項1において、前記製鉄炉から発生する製鉄副生成ガスを、ガスホルダおよび圧縮機を介して前記ガス改質炉に供給する製鉄副生成ガスの改質方法。   The method for reforming a steelmaking byproduct gas according to claim 1, wherein the steelmaking byproduct gas generated from the steelmaking furnace is supplied to the gas reforming furnace through a gas holder and a compressor. 請求項1において、前記ガス改質炉に供給される製鉄副生成ガスは、その中の二酸化炭素がガス改質炉内で一酸化炭素に改質されつつ、ガス改質炉で発生した高温ガスとの直接接触により高温ガスを冷却することを特徴とする製鉄副生成ガスの改質方法。   2. The high-temperature gas generated in the gas reforming furnace according to claim 1, wherein the iron-produced by-product gas supplied to the gas reforming furnace is reformed into carbon monoxide in the gas reforming furnace while carbon dioxide therein is reformed. A method for reforming a steelmaking by-product gas, characterized in that the hot gas is cooled by direct contact with the steel. 粗鋼生産時に二酸化炭素や一酸化炭素を含む製鉄副生成ガスを排出する製鉄炉と、
前記製鉄副生成ガスを一時的に貯留して、製鉄副生成ガスを組成や流量、圧力を安定した状態で送出可能にするガスホルダと、
石炭、可燃廃棄物、可燃廃棄物の副生成物の少なくとも一つを酸素や空気などにより部分燃焼させて一酸化炭素などの改質ガスやチャーを生成するガス改質炉とを備え、
前記製鉄炉の製鉄副生成ガスの送出ラインが前記ガスホルダを介して前記ガス改質炉に接続されて、前記製鉄副生成ガスを前記ガス改質炉に供給するガス供給ラインが形成されていることを特徴とする製鉄副生成ガスの改質システム。
An iron making furnace that discharges by-product gas containing carbon dioxide and carbon monoxide during crude steel production;
A gas holder that temporarily stores the iron by-product gas and enables the iron by-product gas to be sent out in a stable state in composition, flow rate, and pressure,
A gas reforming furnace that partially burns at least one of coal, combustible waste, and by-products of combustible waste with oxygen or air to generate reformed gas such as carbon monoxide or char;
An iron production by-product gas delivery line of the iron making furnace is connected to the gas reforming furnace via the gas holder, and a gas supply line for supplying the iron production by-product gas to the gas reforming furnace is formed. By-product gas reforming system characterized by this.
請求項4において、前記製鉄炉・ガス改質炉間の前記製鉄副生成ガスの供給ラインにガス圧力を高めるための圧縮機を設けている製鉄副生成ガスの改質システム。   5. The iron production by-product gas reforming system according to claim 4, wherein a compressor for increasing gas pressure is provided in the iron production by-product gas supply line between the iron making furnace and the gas reforming furnace. 請求項4において、前記ガス改質炉の後段に該ガス改質炉から送出される改質ガスを脱塵し硫化水素などの硫黄分を除去するガス精製装置を設けた製鉄副生成ガスの改質システム。   5. The iron production by-product gas modification according to claim 4, wherein a gas purification device is provided that dedusts the reformed gas sent from the gas reforming furnace and removes sulfur content such as hydrogen sulfide at a subsequent stage of the gas reforming furnace. Quality system. 請求項4において、前記ガス改質炉の後段に該ガス改質炉から送出される改質ガスに含まれる二酸化炭素を分離除去する装置を設け、除去後の改質ガスを燃料や化学原料に供する製鉄副生成ガスの改質システム。   5. The apparatus according to claim 4, wherein a device for separating and removing carbon dioxide contained in the reformed gas sent from the gas reforming furnace is provided at a subsequent stage of the gas reforming furnace, and the removed reformed gas is used as fuel or a chemical raw material. Steelmaking by-product gas reforming system. 請求項4において、前記ガス改質炉の後段に該ガス改質炉から送出される改質ガスに含まれる水素を分離回収する装置を設け、水素及び水素除去後のガスをそれぞれ燃料に供するようにした製鉄副生成ガスの改質システム。   5. The apparatus according to claim 4, wherein a device for separating and recovering hydrogen contained in the reformed gas delivered from the gas reforming furnace is provided at a subsequent stage of the gas reforming furnace, and the hydrogen and the hydrogen-removed gas are respectively used as fuel. Steelmaking by-product gas reforming system. 請求項4において、前記ガス改質炉の後段に該ガス改質炉から送出される改質ガスに含まれる一酸化炭素を分離回収する装置を設け、一酸化炭素を化学原料に利用し、一酸化炭素を除去した後のガスは燃料に利用する製鉄副生成ガスの改質システム。   In Claim 4, the apparatus which isolate | separates and collects carbon monoxide contained in the reformed gas sent out from the gas reforming furnace is provided at the rear stage of the gas reforming furnace, and the carbon monoxide is used as a chemical raw material. The gas after removing the carbon oxide is a reforming system for steelmaking by-product gas used as fuel. 請求項4において、前記ガス改質炉の後段に該ガス改質炉から送出される改質ガスに含まれる水素と一酸化炭素をそれぞれ分離回収する装置を設け、水素を燃料として、一酸化炭素を化学原料に利用する製鉄副生成ガスの改質システム。   5. The apparatus according to claim 4, wherein a device for separating and recovering hydrogen and carbon monoxide contained in the reformed gas sent from the gas reforming furnace is provided at a subsequent stage of the gas reforming furnace, and hydrogen is used as fuel for carbon monoxide. Steelmaking by-product gas reforming system that uses as a chemical raw material.
JP2005191824A 2005-06-30 2005-06-30 Method and system for reforming byproduct gas in steelmaking plant Withdrawn JP2007009069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005191824A JP2007009069A (en) 2005-06-30 2005-06-30 Method and system for reforming byproduct gas in steelmaking plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005191824A JP2007009069A (en) 2005-06-30 2005-06-30 Method and system for reforming byproduct gas in steelmaking plant

Publications (1)

Publication Number Publication Date
JP2007009069A true JP2007009069A (en) 2007-01-18

Family

ID=37747979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005191824A Withdrawn JP2007009069A (en) 2005-06-30 2005-06-30 Method and system for reforming byproduct gas in steelmaking plant

Country Status (1)

Country Link
JP (1) JP2007009069A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291081A (en) * 2007-05-23 2008-12-04 Central Res Inst Of Electric Power Ind Gasification plant
JP2009190929A (en) * 2008-02-14 2009-08-27 Jfe Steel Corp Method of reforming-separating gaseous mixture containing carbon dioxide
JP2012522889A (en) * 2009-04-03 2012-09-27 ポール ヴルス エス.エイ. Method and apparatus for producing directly reduced iron
JP2013518019A (en) * 2010-02-01 2013-05-20 シー ― ソルコエス エネルギア イ メイオアンビエンテ リミターダ Process for reusing carbon dioxide (CO2)
KR101321823B1 (en) * 2011-12-28 2013-10-23 주식회사 포스코 Apparatus for manufacturing syngas containing co and h2 and method thereof
US8911700B2 (en) 2009-02-20 2014-12-16 Siemens Vai Metals Technologies Gmbh Process and installation for producing substitute gas
US8968441B2 (en) 2009-01-30 2015-03-03 Siemens Vai Metals Technologies Gmbh Method and system for producing pig iron or fluid steel pre-products
KR20180061323A (en) 2015-11-17 2018-06-07 제이에프이 스틸 가부시키가이샤 Gasification method of carbonaceous fuel, operating method of steel mill and method of producing gasified gas
JP6552030B1 (en) * 2018-09-14 2019-07-31 株式会社 ユーリカ エンジニアリング Syngas production system for low carbon FT synthetic oil production
WO2020054063A1 (en) * 2018-09-14 2020-03-19 株式会社 ユーリカ エンジニアリング Synthetic gas production system for low-carbon ft synthetic oil production

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291081A (en) * 2007-05-23 2008-12-04 Central Res Inst Of Electric Power Ind Gasification plant
US8480766B2 (en) 2007-05-23 2013-07-09 Central Research Institute Of Electric Power Industry Gasification equipment
JP2009190929A (en) * 2008-02-14 2009-08-27 Jfe Steel Corp Method of reforming-separating gaseous mixture containing carbon dioxide
US8968441B2 (en) 2009-01-30 2015-03-03 Siemens Vai Metals Technologies Gmbh Method and system for producing pig iron or fluid steel pre-products
US8911700B2 (en) 2009-02-20 2014-12-16 Siemens Vai Metals Technologies Gmbh Process and installation for producing substitute gas
JP2012522889A (en) * 2009-04-03 2012-09-27 ポール ヴルス エス.エイ. Method and apparatus for producing directly reduced iron
JP2013518019A (en) * 2010-02-01 2013-05-20 シー ― ソルコエス エネルギア イ メイオアンビエンテ リミターダ Process for reusing carbon dioxide (CO2)
KR101321823B1 (en) * 2011-12-28 2013-10-23 주식회사 포스코 Apparatus for manufacturing syngas containing co and h2 and method thereof
KR20180061323A (en) 2015-11-17 2018-06-07 제이에프이 스틸 가부시키가이샤 Gasification method of carbonaceous fuel, operating method of steel mill and method of producing gasified gas
JP6552030B1 (en) * 2018-09-14 2019-07-31 株式会社 ユーリカ エンジニアリング Syngas production system for low carbon FT synthetic oil production
WO2020054063A1 (en) * 2018-09-14 2020-03-19 株式会社 ユーリカ エンジニアリング Synthetic gas production system for low-carbon ft synthetic oil production
WO2020054088A1 (en) * 2018-09-14 2020-03-19 株式会社 ユーリカ エンジニアリング Synthetic gas production system for low-carbon ft synthetic oil production

Similar Documents

Publication Publication Date Title
JP2007009069A (en) Method and system for reforming byproduct gas in steelmaking plant
CA2673274C (en) Process and installation for generating electrical energy in a gas and steam turbine (combined cycle) power generating plant
RU2532202C2 (en) Method of reduction on basis of reforming-gas with circulation of reducing gases and decarbonisation of portion of offgas used as combustible gas for reforming plant
CA2715525C (en) Method for the melting of pig iron with the recirculation of blast furnace gas and with the addition of hydrocarbons
US20070256360A1 (en) Method for the gasification of moisture-containing hydrocarbon feedstocks
JP5088535B2 (en) Fuel gasification equipment
JP2017503922A (en) Method of operating top gas circulation blast furnace equipment
TW201510227A (en) Blast furnace for metal production and nethod for processing metal ore
EA022922B1 (en) Method for sequestering carbon dioxide from a top gas fuel
KR20120056260A (en) Reformer gas-based reducing method with reduced nox emission
TWI803522B (en) Method for producing hot synthesis gas, in particular for use in blast furnace operation
HU188685B (en) Process for production of combustible gas in iron-bath reactor containing carbon monoxid and hydrogen
RU2726175C1 (en) Methods and systems for increasing carbon content in cancellous iron in reducing furnace
JP2016526606A (en) Gas desulfurization in pig iron production
RU2014128940A (en) METHOD FOR CARBOTHERMAL OR ELECTROTHERMAL MANUFACTURE OF IRON OR BASIC PRODUCTS
WO2017086070A1 (en) Method for gasifying carbonaceous fuel, method for operating iron mill, and method for producing gasified gas
SE457355B (en) MAKE SURE TO PREPARE A CLEAN, CARBON OXIDE AND GAS GAS INCLUDING GAS
JP5069087B2 (en) How to use blast furnace gas
KR20140048898A (en) Reduction of metal oxides using a gas stream containing both hydrocarbon and hydrogen
TW201035327A (en) Process and installation for producing substitute gas
EP2408881A1 (en) Coal gasification with additional production of useful materials
JP2007009068A (en) System and method for utilizing reformed gas
TWI785506B (en) Operation method of blast furnace and auxiliary equipment of blast furnace
JP5639955B2 (en) Coal gasification system
TWI775216B (en) Blast furnace operation method and blast furnace accessory equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902